Схема питания сверхпроводящей обмотки тороидального поля термоядерной установки токамак
Иллюстрации
Показать всеРеферат
СХЕМА ПИТАНИЯ СВЕРХПРОВОДЯЩЕЙ ОБМОТКИ ТОРОИДАЛЬНОГО ПОЛЯ ТЕРМОЯДЕРНОЙ УСТАНОВКИ ТОКАМАК по авт. свид. № 711889, отличающаяс я тем, что, с целью повышения надежности работы установки, кажд,ый резистор выполнен из низкоуглеродистой стали и масса проводника резистора выбрана таким образом, чтобы к концу выделения энергии активное сопротивление резистора ,увеличилось в 1,5-2 раза.
СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСНИХ
РЕСПУБЛИК (! 9) (31) (51)4 6 21 В 1/00
: /
: м1
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ
1 (Л
ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ГО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ (61) 711889 (21) 3700482/24-25 (22) 13.02.84 (46) 07. 10. 85. Бюл. У 37 (72) Е.В. Корнаков, Ф.М. Спевакова и А.М. Столов (53) 533.9(088.8) (56) 1. Авторское свидетельство СССР
N 711889, кл. Ь 21 В 1/00. (54)(57) СХЕМА ПИТАНИЯ СВЕРХПРОВОДЯЩЕЙ ОБМОТКИ ТОРОИДАЛЬНОГО ПОЛЯ ТЕРМОЯДЕРНОЙ УСТАНОВКИ ТОКАМАК по авт. свид. Ф 711889, отличающаяс я тем, что, с целью повышения надежности работы установки, каждый резистор выполнен из низкоуглеродистой стали и масса проводника резистора выбрана таким образом, чтобы к концу выделения энергии активное сопротивление резистора,увеличилось в
1,5-2 раза. 4
1153708 где R — где 1, где щ— л L
И4
Изобретение относится к установкам, предназначенным для получения управляемой термоядерной реакции.
Известна схема питания сверхпроводящей обмотки тороидального поля тер- S моядерной установки токамака (Ij, в которой источник постоянного тока подключен к цепи, образованной последовательно-поочередным соединением секций сверхпроводящей обмотки и раз-10 мыкателей, причем каждая из секций сверхпроводящей обмотки шунтирована двумя последовательно соединенными резисторами с одинаковым активным сопротивлением и общая точка этих ре- IS зисторов заземлена. Применение резисторов, шунтирующих секции обмотки, позволяет осуществить сравнительно быстрый вывод электромагнитной энергии, накопленной в магнитной системе 20 при аварийном пере. соде части сверхпроводника в нормальное состояние.
Эффективность схемы вывода энергии характеризуется энергией, выделяющейся в обмотке в аварийном режи- 25 ме, при згпанном максимальном напряжении на обмотке, Эта энергия пропорциональна интегралу с=, а.
30 о где - ток секции сверхпроводящей обмотки.
Чем меньше величина k, тем эффективнее схема вывода, 35
Снижение тока происходит по экспоненциальному закону, при котором скорость вывода энергии резко уменьшается с уменьшением тока, Уменьшение скорости вывода энергии приводит к увеличению перегрева обмотки при аварийном выводе, возникновению дополнительных механических напряжений в обмотке и увеличению испарения жидкого гелия, что в конечном счете при прочих равных условиях снижает надежность работы установки, При экспоненциальном спаде тока л о () ток секции сверхпроводящей обмотки в начальный момент вывода; коэффициент самоиндукции секции сверхпроводящей обмотки; активное сопротивление двух резисторов, шунтирую-. щих секцию сверхпроводящей обмотки.
Целью изобретения является повышение надежности работы установки за счет снижения энергии, выделяющейся в сверхпроводнике при аварийном выводе.
Поставленная mesh достигается тем, что в схеме питания сверхпроводящей обмотки тороидального. поля термоядерной установки токамак по авт. свид. Р 711889 каждый резистор выполнен из низкоуглеродистой стати и масса проводника резистора выбрана таким образом, чтобы к концу выделения энергии активное сопротивление резистора увеличилось в 1,5-2 pasa, При таком выполнении резистора энергия, выделенная в обмотке, оказывается меньшей, чем вычисленная по выражению (1).
Рассмотрим процессы, происходящие в схеме,при выводе энергии в резистор, активное сопротивление которого возрастает под влиянием выделенной в нем энергии, Дифференциальное уравнение, описы- вающее контур вывода
a„
C — (1 =О, (2)
Jt где 1 (1) — активное сопротивление двух резисторов, шунтирующих секцию сверхпроводящей обмотки (1 .,(81 ° ." (3) активное сопротивление двух резисторов в начальный момент вывода; температурный коэффициент сопротивления проводящего ма териала резистора; температура проводящего материала резистора; энергия, выделенная в проводящем материале резистора о и с (4) масса проводящего материала резистора; удельная теплоемкость проводящего материала резистора
— (.) iã (5
4R(i) d 9f
dt dt
1153708
Подставляя (5) в (2), получаем и(, 3 --с) R, (6) Где Q $ R имеет место при
Р + <2 2) (7) 1 КС
1 3(
1, 2 е. — -е. "1
2 тто "о 2 ° 2 (9) о+
n1.
Когда вся энергия, накопленная в обмотке, выделится в резисторе, его сопротивление возрастает в К раз.
Из (Э) следует ю (КС 1) т о
W (10)
После подстановки (10)в(9) и преобразований получаем
Ы ткт
L о о где
Максимальное напряжение на зажимах обмотки
"а" 0 3 3(К -1) 2 (12) Составитель В. 17«»
Техред Л.Микеш Корректор Л,Пилипенко
Редактор Л.Утехина
Заказ 7015/1
Тираж 407 Подписное
ВНИИПИ Государственного комитета СССР по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ППП "Патент", r.Óæãoðoä, ул. Проектная, 4
Интегрируя (6), получаем
Из (2) и (7) следует
LD; И т: („, м. *;*I).
Из выражения (12) следует, что при (0
К « l. 61 — « Например, при (о м О ттс
k1*2 — I,08 (U1
К =3 — 141
"о макс
С учетом (11) выражение (14) тУ т.,*„,(. (... о 2 К о о е — „СС К -1
С
"о л
2 "o
При КС= 1,5 .К 1 2.0,8t т ° e° . поте ри уменьшаются на 19Х по сравнению с выражением (1)
2 "о
2 * — 0,69, но с учетом возрастания напряжения потери уменьшаются на 25,48Х по сравнению с выражением (1).
В пределе, если обеспечивается спад тока при постоянном напряжении, может быть достигнуто уменьшение потерь на 337, а следовательно, снижается зона распространения нормальной фазы проводника обмотки.
Таким образом, примение нелинейного сопротивления позволяет снизить потери в сверхпровднике и тем самым повысить надежность работы установки.