Устройство для решения систем дифференциальных уравнений

Иллюстрации

Показать все

Реферат

 

ИЗОБРЕТЕНИЕ ОТНОСИТСЯ К ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКЕ И МОЖЕТ БЫТЬ ИСПОЛЬЗОВАНО ДЛЯ РЕШЕНИЯ ОПТИМИЗАЦИОННЫХ ЗАДАЧ. ЦЕЛЬ ИЗОБРЕТЕНИЯ - РАСШИРЕНИЕ ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ ЗА СЧЕТ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПРОИЗВОДНЫМИ ОТ ФУНКЦИЙ ИСКОМЫХ ФУНКЦИИ ВРЕМЕНИ. УСТРОЙСТВО СОДЕРЖИТ ФОРМИРОВАТЕЛИ 1<SB POS="POST">1</SB>-1N ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ, ФОРМИРОВАТЕЛИ 2<SB POS="POST">1</SB>-2N ФУНКЦИЙ ПРАВЫХ ЧАСТЕЙ УРАВНЕНИЙ, ИНТЕГРАТОРЫ 3<SB POS="POST">1</SB>-3N ВЫЧИТАТЕЛИ 4<SB POS="POST">1</SB>-4N, БЛОКИ 5<SB POS="POST">1</SB><SP POS="POST">.</SP><SB POS="POST">1</SB>-5N<SP POS="POST">.</SP>N ВЫЧИСЛЕНИЯ ЧАСТНЫХ ПРОИЗВОДНЫХ, БЛОКИ УМНОЖЕНИЯ 6<SB POS="POST">1</SB><SP POS="POST">.</SP><SB POS="POST">1</SB>-6N<SP POS="POST">.</SP>N СУММАТОРЫ 7<SB POS="POST">1</SB>-7N КОММУТАТОРЫ 8<SB POS="POST">1</SB>-8N. ЦЕЛЬ ДОСТИГНУТА ЗА СЧЕТ ЗАМЕНЫ ИСХОДНОЙ СИСТЕМЫ УРАВНЕНИЙ ЭКВИВАЛЕНТНОЙ. 1 ИЛ.

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСНИХ

РЕСПУБЛИН (19) (И) (5D 4 С 06 J 1/02

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ABTOPCHOMY СВИДЕТЕЛЬСТВУ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ

ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ

ПРИ ГКНТ СССР (21) 4317673/24-24 (22) 16.10.87 (46) 30.04.89. Бюл. ¹ 16 (71) Институт проблем моделирования в .энергетике АН УССР и Ереванский политехнический институт им. К.Маркса (72) Г.И.Грездов, С.О.Симонян, M,Ã.×èëèíãàðÿí и А.Л.Шихутский (53) 681.32(088 ° 8) (56) Авторское свидетельство СССР № 662950, кл. С 06 J 1/02, 1978.

Грездов Г.И. Теория и применение гибридных моделей. — Киев: Наукова думка, 1975, с. 88, рис. 46. (54) УСТРОЙСТВО ДЛЯ РЕШЕНИЯ СИСТЕМ

ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (57) Изобретение относится к вычислительной технике и может использоваться для решения оптимизационных задач.

Цель изобретения — расширение функдиональных возможностей за счет реше- ния систем нелинейных дифференциальных уравнений с производными от функций искомых функции времени. Устройство содержит N формирователей 1 дифференцируемой фукнции, N формирова-телей 2 функций правых частей уравнений, N интеграторов 3,,N вычитателей 4, N x N блоков 5 вычисления частных производных, N x N блоков 6 умножения, N сумматоров 7,,N коммутаторов 8.

Цель достигнута за счет замены исходф ной системы уравнений эквивалентной.

1 ил. (2) (3) Изобретение относится к вычислительной технике и может быть использовано для решения оптимизационных задач.

Цель изобретения - расширение функциональных возможностей за счет решения систем нелинейных дифференциальных уравнений.

На чертеже приведена схема предлагаемого устройства.

Устройство содержит формирователь

1 дифференциальной функции, формирователи 2 функций правых частей уравнений, интеграторы 3, вычитатели 4, блоки 5 вычисления частной производной, блоки 6 умножения, сумматоры 7, коммутаторы 8, управляющий вход 9, входы 10 задания начальных условий и выходы 11.

В предлагаемом вычислительном устройстве для решения систем уравнений исходная система — —.-=Ь (х); х(0) =х,, da(x) (1) где а(х)=а,(х),...,а„(х);

b (х) =b, (х),..., Ь „(х); х=х (),... txN(t) ,решается методом градиентного дифференциального спуска.

Предлагаемое устройство работает в двух режимах: режиме задания началь ных условий и режиме решения. Из одно

ro режима в другой устройство переводится путем подачи соответствующего сигнала на вход 9.

Режим задания начальных условий является вспомогательным. В этом режиме выполняется подготовка устройства к решению: производится масштабирование переменных, задаются начальные условия интегрирования и т.д.

Режим задания начальных условий харак теризуется тем, что интеграторы 3 находятся в режиме задания начальных условий. Через коммутаторы 8 на входы формирователей 1 и 2 и блоков 5 подаются значения компонент вектора начальных условий х(0) =х 1,,..., х q поступающие с входов 10 задания начальных условий. При этом начальные условия для интеграторов 3 снимаются с выходов формирователей 1.

Режим решения характеризуется тем, что интеграторы 3 находятся в режиме интегрирования. Через коммутаторы 8 на входы формирователей 1 и 2 и блоков 5 поцаются значения компонент . вектора аргументов задачи х (С),...,.

76502 2

x s (t) поступающие с выходов соответствующих сумматоров 7.

Исходная система (1) в процессе подготовки к решению заменяется эквивалентной с, О

U, (x)= I Ь; (x)d t;

V (х,)=а;(х,);

10 а„(х) =U; (х), где U; — вспомогательная функция (i=1,..., N) .

Реализация метода градиентного дифференциального спуска в предлагаемом устройстве основана на очевидном из (2) более медленном характере изменения величин U;(x) по сравнению с

Ь,;(х) и а,(х) . Суть реализованного метода состоит в вычислении согласно (2) значений U, (х) и таком изменении аргумента x(t), чтобы его значения удовлетворяли условиям (3) .

В предлагаемом устройстве значения

25 функций а;(х) и Ь1(x) (3.=1,... N) формируются соответственно формирователями 1 и 2

Величины U,(х) (i=1,...,N) формируются интеграторами 3 при начальных

3р условиях на интеграторах

0;{х )=а; (х ) .

Сумматоры 4 выполняют вычитание согласно (3) поступающих на их входы компонент а (х) и U (õ) .

Удовлетворение условий (3) достигается путем реализации быстрого градиеитного дифференциального спуска к минимуму квадратичной функции

P(x), построенной по рассогласова40. ниям в условиях (3):

Р(х)=(а(х)-U(x)) (а(х)-U(x))=

=, (а, (х)-U;(х)) (4)

w =1 .)

Модель дифференциального спуска для удовлетворения условий (3) описынается выражениями йх; " Эа; (х)

- — .=-К;, (а (х)-U. (х)). — - — —, а,, з З ax; (5) (=1,...,и), где К вЂ” коэффициент усиления (К:;- оо).

Значения частных производных вы5r числяются в блоках 5 и подаются с их выходов на первые входы блоков 6, на вторые входы которых поступают рассогласования в условиях (3) (а (х)-О ° (х)).

1476502

Формула изобретения

Составитель А.Чеканов

Техред М.Ходанич Корректор А.Обручар

Редактор Л. Пчолинск ая

Заказ 2159/51 Тираж 669 Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101

С выходов блоков 6 значения произведений, соответствующие (5), поступают на входы сумматоров 7, которые обеспечивают решение дифференциаль5 ных уравнений (5). С выходов сумматоров 7 значения аргументов х,(t),..., x<(t), представляющие искомое решение, через коммутаторы 8 выдаются на выходы 11 устройства.

Устройство для решения систем дифференциальных уравнений, содержащее N формирователей дифференцируе- 15 мой функции, где N — - размерность аргумента, (N x N) — блоков вычисления частной производной, (N х N) — блоков умножения и N сумматоров, причем выход (i,j)-го блока вычисления частной производной соединен с первым входом .(i,j) -ro блока умножения (i,j=

=1,N), отличающееся тем, что,с целью расширения функциональных возможностей за счет решения систем 25 нелинейных дифференциальных уравнений с производными от функций искомых функций времени, в него введены N формирователей функций правых частей уравнений, N интеграторов,,N вычитателей и N коммутаторов, причем i-й вход (i=1,N) группы входов начальных условий устройства соединены с первым входом i-го коммутатора, выход которого соединен с i-м выходом устройства и i-ми входами всех формирователей дифференцируемой функции, формирователей функций правых частей уравнений, а также i-ми входами блоков вычисления частных производных, управляющий вход устройства подключен к управляющим входам коммутаторов и интеграторов, выход i-ro (i=1,N) формирователя дифференцируемой функции соединен с входом уменьшаемого

i-го вычитателя и входом задания начальных условий i-го интегратора, выход которого соединен с входом вычитаемого i-го вычитателя, выход которого соединен с вторыми входами (j i)-x блоков умножения (для всех

j=1,N), выход (i,j) -ro блока умножения (i,j=1 N) соединен с j-м входом

i-го сумматора первой группы, выход которого соединен с вторым входом

i-го коммутатора, выход i-го формирователя функций правой части уравнения соединен с входом подынтегральной функции i-го (i=1,N) интегратора.