Телевизионная система

Реферат

 

Изобретение относится к цветному телевидению и может быть использовано для передачи двух телевизионных программ по одному стандартному телевизионному каналу и для сокращения полосы частот полного цветового телевизионного сигнала (ПЦТС), например для передачи телевидения высокой четкости по стандартному телевизионному каналу. Цель изобретения - увеличение объема информации, передаваемой ПЦТС, и улучшение помехозащищенности передаваемой информации. ПЦТС Eм(t) формируют, используя рефлексно-модулированные сигналы (РМС) E3(t) , при этом на передающей стороне видеосигналами E1-1(t) , E1-2(t) осуществляют квадратурную модуляцию поднесущих в фазах 0 и /2 , формируя РМС E3(t) на поднесущих, выбор частот f которых обеспечивает требуемые разности фаз поднесущих в соседних строках одного кадра и в одинаковых по номерам строках смежных кадров и передают сформированные РМС в выделенных для них временных интервала ПЦТС Eм(t) . При приеме из ПЦТС Eм(t) выделяют посылки РМС E3(t) , задерживают их на интервалы времени, кратные длительностям телевизионной развертки, умножают задержанные и незадержанные посылки на гармонические сигналы U1(t) , U2(t) , алгебраически суммируют и выделяют из сигналов, полученных при суммировании, видеосигналы E1-1(t) , E1-2(t). 20 з.п. ф-лы, 21 ил.

Изобретение относится к области техники систем связи, в частности к электросвязи.

В системах вещательного телевидения применяют два способа уплотнения сигналов, содержащих информацию о яркости и цветности изображений - частотный и временной. При частотном уплотнении сигнал цветности, являющийся продуктом модуляции цветовой поднесущей цветоразностными сигналами, передают внутри частотного спектра сигнала яркости. Такой способ использован в стандартных системах вещательного телевидения NTSC, SECAM, PAL (C. C. I.) Report 407-1, 1966-1970). Достоинством частотного уплотнения сигналов яркости и цветности является относительная простота декодирующего устройства в телевизоре, что было особенно важно при уровне техники, существовавшем в начальный период внедрения цветного вещания (1950-1960 г). Однако при частотном уплотнении качество цветных изображений существенно снижается из-за перекрестных помех между сигналами яркости и цветности. Существенное подавление этих помех достигается, как правило, за счет снижения разрешающей способности в простpанственной и временной областях. Так, например, метод гребенчатой фильтрации за счет суммирования сигналов смежных кадров дает полное подавление перекрестных помех между сигналами яркости и цветности лишь на неподвижных участках изображений, причем в NTSC для этого необходимо суммировать сигналы двух смежных кадров, в PAL - четырех, в SECAM - до шести кадров. Гребенчатая фильтрация за счет суммирования смежных во времени и простpанстве сигналов строк ведет к снижению четкости по горизонтали и вертикали. Размещение частотных компонентов сигнала цветности в области верхних частот спектра полного цветового телевизионного сигнала определяет повышенную чувствительность сигналов стандартных систем вращательного телевидения к неравномерностям частотных и фазовых характеристик тракта, к шумовым помехам с квадратичной спектральной плотностью, к искажениям типа "дифференциальное усиление" и "дифференциальная фаза". С учетом этого для систем повышенного качества, а также для будущих систем телевидения высокой четкости - ТВЧ (HDTV) предлагается использовать временной способ уплотнения сигналов, содержащих информацию о яркости и цветности, передавая эти сигналы в интервале строки последовательно.

Для системы телевидения повышенного качества без изменения числа строк Z разложения и частоты fр кадров предложен ряд вариантов системы непосредственного спутникового вещания MAC (Multiplexed Analogue Component, C. C. I. R, Report AB/10-11, 1983-1986). В строке сигнала системы MAC один из цветоразностных сигналов с коэффициентом сжатия во времени 3:1 и сигнал яркости, сжатый во времени в 1,5 раза, передаются в активной части строки, причем цветоразностные сигналы передаются поочередно через строку. Для сохранения яркостной четкости требуется расширение полосы частот полного цветного телевизионного сигнала в 1,5 раза. Поскольку подобное расширение полосы частот допустимо лишь во вновь организуемых каналах спутникового вещания, был предложен также вариант MAC-D2, полоса частот полного цветового сигнала в котором соответствует стандартным для наземного вещания, но яркостная четкость по горизонтали соответственно в 1,5 раза ниже.

В других способах временного уплотнения сигнал яркости без изменения его временного масштаба предлагается передавать во всем активном интервале, а цветоразностные сигналы, сжатые во времени, в части интервала гашения. К таким предложениям относятся, например, патент Японии N 51-48623, кл. 97(5), Н11(9), 1976, система MUSE (NHK Tech. Report, 1984, Vol. 27, N 7, p. 19; IEEE trans., 1987, Vol. BC-33, N 4, p. 130), система HDTV с временным уплотнением сигнала яркости и цветоразностных сигналов (Electronics 1983, Vol. 56, N 14, p. p. 82-84). Во всех этих системах передача цветоразностных сигналов осуществляется поочередно, например, в одной строке в интервале гашения передают цветоразностный сигнал "R-Y", в интервале гашения следующей строки развертки передают цветоразностный сигнал "B-Y".

Важным преимуществом систем с временным уплотнением сигналов яркости и цветоразностных сигналов является полное отсутствие перекрестных искажений (помех) между этими сигналами, меньшая, чем у сигналов стандартных вещательных систем, чувствительность к неравномерностям частотных и фазовых характеристик канала связи и к шумовым помехам с квадратичной спектральной плотностью. Вместе с тем последовательная передача цветоразностных сигналов заметно уступает одновременной их передаче в части помехоустойчивости, а также видности шумов на экране из-за укрупнения их структуры по вертикали, в соседней строке повторяются и цветоразностный сигнал и шумы, переданные в предыдущей строке. При поочередной передаче возникают мерцания яркости и цветности на горизонтальных границах между цветными деталями изображений. Полностью устранить эти мелькания можно лишь остановив структуру передачи цветоразностных сигналов, как это сделано в MAC, в нечетных строках всегда передается один и тот же по названию цветоразностный сигнал, например "R-Y", в четных строках - другой цветоразностный сигнал "B-Y", так что каждый кадр начинается с передачи "R-Y". Но это приводит к заметному и неустранимому снижению цветовой четкости по вертикали, что особенно сказывается при транскодировании в сигналы стандартных вещательных систем. Кроме того, поскольку "R-Y" и "B-Y" могут иметь существенно разный размах, их нелинейные искажения в канале передачи ведут к неустранимым искажениям цветового тона, нарушается соотношение между "R-Y" и "B-Y". С аналогичными трудностями приходится сталкиваться и при решении задач сокращения скорости цифрового потока при передаче сжатых во времени цветоразностных сигналов последовательно в трактах цифровых линий связи. Из-за различий в размахах "R-Y" и "B-Y" кодирование высокочастотных компонент цветоразностных сигналов малым числом уровней может привести к возникновению цветных окантовок.

До сих пор не были известны приемлемые способы одновременной передачи двух цветоразностных сигналов в интервалах гашения.

Дуговой круг вопросов связан с необходимостью увеличения объема информации за период передачи строки, поля, кадра телевизионной развертки. Эти задачи возникают в ходе разработки новых систем - с изменением формата кадра до 16: 9, с передачей двух цветных изображений в реальном масштабе времени, передачей изображений высокой четкости. Изменение формата изображения с существующего 4:3 до 16:9 при сохранении той же четкости по горизонтали и вертикали, как и в существующих вещательных системах, требует расширения полосы частот полного цветового телевизионного сигнала на одну треть. Передача двух цветных изображений, например, в системе стереоцветного телевидения с той же четкостью и с теми же способами формирования полного цветового телевизионного сигнала, как в существующих вещательных системах, требует расширения полосы частот в 2 раза при сохранении формата 4:3 и в 2,67 раза при переходе к формату 16:9. Переход от существующих стандартов телевидения 525 строк х 60 полей (30 кадров) и 625 строк х 50 полей (25 кадров) к системам телевидения высокой четкости при использовании существующих способов формирования полного цветового телевизионного сигнала требует значительного расширения полосы частот.

Так, в японской системе HDTV с временным уплотнением сигнала яркости и цветоразностных сигналов при числе строк разложения 1125, числе полей 60 (30 кадров), формате кадра 16:9 полная полоса при эквивалентном увеличении четкости по горизонтали и вертикали составила бы 33,75 МГц с учетом принятых в разных странах значений коэффициента Кэлла - от 25,8 до 31,1 МГц, т.е. в 5-6 раз шире, чем в существующих стандартных системах. Сокращение полосы частот в этой системе до 20 МГц, как это предложено японскими специалистами, обеспечивает четкость по горизонтали с учетом изменения формата до 16:9 по сравнению: - с системой 525 х 60 - выше в 1,56 раза (по вертикали выше в 1,96 раза) при расширении полосы частот в 4,76 раза; - с системой 625 строк стандарта 4:2:2 (аналоговая база кода студий) - выше в 1,16 раза при расширении полосы частот в 3,48 раза; - с системой 625 строк OIRT - выше в 1,11 раза, полоса частот в - 3,33 раза. Вертикальная четкость по сравнению с системами на 625 строк выше в 1,8 раза.

Поскольку в освоенных для телевизионного вещания частотных диапазонах нет выделенных каналов для передачи полного цветового телевизионного сигнала с полосой 20 МГц, система HDTV с временным уплотнением была модифицирована в систему MUSE, которую следует рассматривать как способ MUSE передачи сигналов системы HDTV с временным уплотнением. В системе MUSE частота кадров 15 Гц при частоте полей 60 Гц, т.е. каждый кадр состоит из четырех полей, использованы чересстрочная развертка в сочетании с чересточечным растром. В каждом поле передается по 562,5 строки длительностью 29,63 мкс, число воспроизводимых на экране строк - 1125 (в активной части кадра - 1035 строк). Полоса частот полного цветового сигнала 8,1 МГц. В каждой строке передачи может быть передано 374 независимых элемента яркости. Для воспроизведения одной строки изображения на экране используются сигналы двух строк передачи (из двух полей), т.е. 748 независимых отсчетов сигнала яркости, поступающего на вход.

Таким образом, при числе строк разложения 1125 в одном кадре частоты 30 Гц на передающей стороне (частота строк 33750 Гц), число строк передачи в полном цветовом телевизионном сигнале удваивается за счет сокращения частоты кадров с 30 до 15 Гц при сохранении частоты строк. Действительно, период кадра, т.е. время, через которое передается информация об одной и той же точке изображения в системе MUSE, составляет период четырех полей, что соответствует 66667 мкс. В этом случае число строк передачи в одном кадре, определяемое (Recomendation N 476 C. C. I. R) как отношение частоты fн строк к частоте fр кадров, составляет 2250. При этом, если в исходном изображении при числе строк разложения 1125 и числе кадров 30 в секунду, число независимых отсчетов (элементов) яркости, например, составляет в активной части строки и в активной части кадра, а также в секунду - при полосе частот сигнала яркости 33,75 МГц: в строке - 1560, в кадре - 1,61x 106, в секунду 48,44 106; при полосе частот сигнала яркости 20 МГц, соответственно, эти цифры 924, 0,957 106, 28,7 x 106; при сокращении полосы частот до 16,2 МГц: 748, 0,775 106, 23,25 106. При воспроизведении изображений по системе MUSE число независимых элементов яркости на экране должно восстанавливаться из переданных в двух строках 2 х 374=748, переданных за кадр - 0,774 106, переданных в секунду - 11,61 106 отсчетов сигнала яркости.

Теоретический предел четкости в MUSE составляет 748 элементов яркости в строке, однако на практике при чересточечном растре неизбежны потери, невозможно синтезировать фильтр с бесконечно крутым спадом частотной характеристики. Так, например, при использовании цифрового кода студии 4:2:2 потери составляют порядка 17%. Даже, если принять, что при воспроизведении изображений системы MUSE потери составят 5-10%, то четкость по горизонтали с учетом изменения формата кадра с 4:3 до 16:9 в MUSE по сравнению со стандартными вещательными системами на 625 строк составит по сравнению с системой 625 строк, полоса частот яркостного сигнала F=5 МГц (стандарт G C. C. I. R) - 0,97-1,03 (теоретический предел 1,08); по сравнению с системой 625 строк, F=5,5 МГц (Англия) - 0,88-0,93 (теоретический предел 0,98); по сравнению с системой 625 строк, F=575 МГц (аналоговая база кода студии 4: 2: 2) -0,84-0,9 (теоретический предел 0,94); по сравнению с системой 625 строк, F=6 МГц (O. I. R. T и Франция) - 0,81-0,85 (теоретический предел 0,9). Причем указанные величины достигаются в системе MUSE только для неподвижных деталей сюжета, для подвижных объектов горизонтальная четкость в MUSE существенно ниже.

Считается, что благодаря высокой корреляции сигналов смежных кадров, достигающей 100% для сигналов яркости на неподвижных деталях сюжета, снижение частоты кадров вполне допустимо, это не более чем снижение избыточности телевизионного сигнала. Что касается "размазывания переходов" для подвижных сюжетов, возникающих при снижении числа кадров с 30 до 15 в секунду, то в MUSE используются специальные меры по компенсации этого нежелательного эффекта (так называемая система "детектора движения"), осуществляющие коррекцию размытия границ подвижных объектов за счет снижения пространственной четкости изображений. Вместе с тем снижение частоты кадров с 30 до 15 Гц на передающей стороне и повторение каждого элемента на приемной стороне для восстановления частоты кадров 30 Гц (требование отсутствия мельканий) повышает видность шумов на приемном экране примерно на 7,7 дБ. С учетом расширения полосы частот до 8,1 МГц помехозащищенность в MUSE по сравнению с существующими системами вещательного телевидения значительно ниже, допустимая мощность шума в канале связи с частотной модуляцией (передача через спутник) на порядок ниже. Но даже для такого изображения требуется передать объем информации, который не может передать наиболее широкополосный цветовой телевизионный сигнал существующих вещательных систем. В сигнале системы 625 строк, 25 кадров F=6 МГц, активная часть строки 52 мкс, число активных строк в кадре 575, может быть передана информация только о 8,97 106 независимых элементах яркости в секунду (625 в активной части строки, 0,359 106 в активной части кадра), т.е. порядка 77,3% от требуемой в MUSE и примерно в 3,2 раза меньшая, чем в системе HDTV с числом строк 1125 при частоте кадров 30 Гц и полосе частот сигнала F=20 МГц.

Таким образом, для создания телевизионных систем повышенного качества и тем более для создания новых вещательных систем (стереоцветного телевидения, ТВЧ) необходимо увеличить объем информации, передаваемой полным цветовым телевизионным сигналом. Практически нереально использовать для этого пропорциональное расширение полосы частот сигнала при эфирном вещании на телевизионные приемники в освоенных частотных диапазонах. В таком случае пришлось бы сокращать число программ и изменять весь частотный план, поскольку в этих диапазонах все каналы распределены и используются, причем они рассчитаны на передачу сигнала с максимальной полосой частот порядка 6 МГц (по высокой частоте полоса наземного канала порядка 8 МГц у самых широкополосных, у спутникового канала ЧМ-27 МГц.

Другой путь - передача дополнительной информации за счет исключения избыточности в телевизионном сигнале. К числу реализованных для вещательных систем таких способов относятся: - передача сигналов цветности в полосе частот сигнала яркости путем частотного уплотнения (NTSC, SECAM, PAL, MAC-60, например), - поочередная передача сигналов, содержащих информацию о цветности (SECAM, MAC, MUSE, HDTV 1125 x 60 x 2:1, например), - снижение частоты кадров (MUSE, HD-NTSC с чересточечным растром, например).

Ряд аспектов влияния этих технических решений на качество и помехозащищенность изображений был рассмотрен выше.

Третий путь - не сокращая избыточность, сузить полосу частот информационного сигнала. В телевидении на возможность такого технического решения было обращено внимание еще при разработке системы PAL. Теоретически возможен способ передачи и декодирования квадратурно-модулированного сигнала двумя определенно сформированными посылками сигнала с частичным и даже полным подавлением одной боковой полосы, т.е. произведен обмен полосы частот на время передачи, что и было отчасти использовано при передаче сигналов цветности в PAL. Однако осуществить такой обмен достаточно эффективно на практике даже в условиях высокой степени корреляции телевизионных сигналов в смежных кадрах не удается, особенно при временном уплотнении сигналов яркости и цветности. Требуется не частичное, как в сигналах цветности PAL, а практически полное подавление одной боковой полосы, так как при временном уплотнении квадратурно-модулированных сигналов цветности с сигналами яркости, частота поднесущей должна быть очень низкой. Осуществить это на практике можно было бы при использовании почти идеальных фильтров, поскольку ширина спектра телевизионных сигналов измеряется мегагерцами и в них присутствуют "нулевые" частоты. Следовательно, для эффективного подавления одной боковой полосы потребовались бы фильтры с полосой пропускания порядка нескольких мегагерц и с крутизной среза в десятки децибел на единицы или десятки килогерц. При восстановлении сигнала с квадратурной модуляцией на низкочастотной поднесущей и с подавленной одной боковой - обратном переносе его на высокочастотную несущую гетеродинированием кроме таких почти идеальных фильтров потребовались бы также почти идеальные фазовращатели (обеспечивающие точный поворот на 90о, например, для всех составляющих спектра от единиц герц или килогерц до нескольких мегагерц). Поэтому, например, в кабельных магистральных линиях связи, где осуществляют передачи телевизионных сигналов методом однополосной модуляции, частоту несущей приходится выбирать в пределах порядка 25-40% ширины одной боковой полосы. Следовательно, эффективность обмена полосы на время достигает лишь 70-80% и сопряжена при этом со значительными техническими трудностями. Но если бы "упаковку" квадратурно-модулированного телевизионного сигнала удалось осуществить на практике без указанных технических трудностей, причем, доведя эффективность обмена полосы на время до величины, близкой к 100% (точно 100% нельзя достичь даже теоретически в этом случае), а главное восстановить из двух посылок исходный квадратурно-модулированный телевизионный сигнал, из которого можно было бы выделить модулирующие сигналы, применяя для этого восстановления достаточно простые технические средства, то путь сокращения полосы частот полного цветового телевизионного сигнала без устранения в нем избыточности представлялся бы весьма перспективным.

Следует отметить, что простое растягивание во времени квадратурно-модулированного телевизионного сигнала с полосой 2 F и размещение его в полосе частот от 0 до F (частота несущей F) способ неподходящий. Он не применим к сигналам цветности, поскольку цветоразностных сигналов два, а таким путем за кадр их можно передать в два раза меньше. Кроме того, для подобной передачи потребуется очень высокая линейность фазовой характеристики в полосе от 0 до F.

В основу изобретения положена задача создания телевизионной системы, обеспечивающей увеличение объема информации, передаваемого полным цветовым телевизионным сигналом в единицу времени, без расширения полосы частот этого сигнала.

Решение этой задачи возможно, если, используя высокую корреляцию сигналов соседних кадров, полей и строк телевизионного изображения, заменить входящие в состав полного цветового телевизионного сигнала с временным уплотнением видеосигналы, содержащие информацию о яркости и цветности, сигналами с большей информационной емкостью. Такими сигналами, в частности, являются посылки квадратурно-модулированных телевизионных сигналов при условии размещения их в полосе частот, примерно равной ширине полосы одной боковой. Очень простым техническим способом "сворачивания" спектра квадратурно-модулированного сигнала для размещения его в полосе частот, примерно равной ширине одной боковой полосы, является квадратурная модуляция несущей или поднесущей, частота которой много меньше верхней граничной частоты спектра модулирующих видеосигналов, осуществленная без полного или частичного ограничения (подавления) одной боковой полосы. В таком напряжении с "завернутой" нижней боковой полосой содержатся все частотные составляющие верхней и нижней боковых полос квадратурно-модулированного сигнала. Это дает основание полагать, что в таком напряжении сохраняется вся информация, которая была заложена в квадратурно-модулированный сигнал с развернутыми боковыми на высокочастотной несущей. Однако считать полученное в результате переноса квадратурно-модулированного сигнала на низкочастотную несущую напряжение с "завернутой" нижней боковой полосой частот информационным сигналом можно лишь в том случае, когда на приемной стороне из этого напряжения можно выделить информацию, содержавшуюся в модулирующих сигналах. Как показали проведенные исследования, это осуществимо, причем достаточно простыми в технической реализации приемами. Поскольку напряжение с "завернутой" боковой полосой частот может быть использовано для передачи информации, оно может быть квалифицировано как сигнал. Характерным отличительным признаком такого сигнала с квадратурной модуляцией, частота несущей которого много ниже верхней граничной частоты спектров модулирующих сигналов, является наличие компонент "завернутой" ("отраженной", "рефлексной") нижней боковой полосы. Для определения процесса формирования такого сигнала можно использовать термин "рефлексная квадратурная модуляция" в отличие от квадратурной модуляции с развернутыми боковыми полосами, в том числе и квадратурной модуляции с частично подавленной одной боковой полосой, о чем говорилось выше. Сам сформированный "рефлексной квадратурной модуляцией" полезный сигнал можно назвать "сигналом с рефлексной квадратурной модуляцией" или сокращенно "рефлексно-модулированным сигналом".

Поставленная цель достигается тем, что в телевизионной системе, в полном цветовом телевизионном сигнале которой сигналы, содержащие информацию о яркости и цветности изображений, передают с временным уплотнением, размещая сигналы яркости во всем интервале активной части строки, а сжатые во времени цветоразностные сигналы, содержащие информацию о цветности, передают в интервалах гашения по строкам, полный цветовой телевизионный сигнал согласно изобретению формируют используя рефлексно-модулированные сигналы, содержащие информацию об отдельных характеристиках изображения, в том числе рефлексно-модулированные сигналы яркости и сигналы цветности. При этом видеосигналами, содержащими информацию об отдельных характеристиках изображений, т.е. такими видеосигналами, к числу которых относятся сигналы яркости и цветоразностные сигналы, осуществляют квадратурную модуляцию поднесущих в фазах "0" и , формируя рефлексно-модулированные сигналы на поднесущих, выбор частот f которых обеспечивает требуемые разности фаз немодулированных поднесущих в соседних строках одного кадра н и в одинаковых по номерам строках смежных кадров р. Сформированные рефлексно-модулированные сигналы передают в выделенных для них временных интервалах полного цветового телевизионного сигнала. На приемной стороне из принятого полного цветового телевизионного сигнала выделяют посылки рефлексно-модулированных сигналов и направляют их в каналы обработки информации, содержащейся в этих рефлексно-модулированных сигналах. В каналах обработки осуществляют задержку посылок рефлексно-модулированных сигналов на интервалы времени, кратные длительностям периодов телевизионной развертки, и обрабатывают совместно задержанную и незадержанную посылки этих сигналов путем их умножения на гармонические сигналы в соответствующих фазах. Напряжения, получаемые в результате перемножений задержанной и незадержанной посылок рефлексно-модулированных сигналов с гармоническими сигналами в данном канале обработки, алгебраически суммируют и выделяют из суммированного напряжения модулирующие видеосигналы. Выделенные в соответствующих каналах обработки сигналы яркости и цветоразностные сигналы с выравненными временными масштабами совмещают во времени.

Согласно изобретению возможно осуществлять обработку задержанной и незадержанной посылок рефлексно-модулированных сигналов путем умножения одной из них на гармонический сигнал вида U1(t)=2cos xt, а другой посылки - на гармонический сигнал вида U2(t)= 2cos(xt+ +q н), где х=2 fx; fx - частота гармонического сигнала, превышающая граничную частоту спектра рефлексно-модулированного сигнала; н=2fн; f - частота поднесущей рефлексно-модулированного сигнала; н - длительность строки; q - число натурального ряда. Алгебраическое суммирование напряжений, получаемых при перемножении посылок рефлексно-модулированных сигналов с гармоническими сигналами U1(t) и U2(t), дает квадратурно-модулированный сигнал с развернутыми боковыми полосами на высокочастотной несущей. При детектировании этого сигнала можно выделить видеосигналы, модулирующие несущую на передающей стороне.

Совместную обработку задержанных и незадержанных посылок рефлексно-модулированных сигналов на приемной стороне согласно изобретению, возможно также осуществить непосредственно на частоте f поднесущей. При этом нужно одну посылку умножить на гармонический сигнал вида U1(t)=2cos t, где = 2f, а другую посылку - на гармонический сигнал вида U2(t)=2cos(t++qн). При алгебраическом суммировании напряжений, получаемых в результате эти перемножений, непосредственно выделяется один из модулирующих видеосигналов. Чтобы выделить второй модулирующий сигнал, нужно умножить одну из посылок рефлексно-модулированных сигналов на гармонический сигнал вида U3(t)= 2sin t, а другую посылку - на гармонический сигнал вида U4(t)=2sin( t+ +q н). При алгебраическом суммировании напряжений, получаемых в результате этих перемножений, непосредственно выделяется второй модулирующий видеосигнал.

Целесообразно, чтобы в полном цветовом телевизионном сигнале предлагаемой телевизионной системы в интервалах гашения по строкам одновременно передавали оба цветоразностных сигнала, формируя путем рефлексной квадратурной модуляции сигнал цветности на цветовой поднесущей, частота которой fo= , где fн= частота строк; fр - частота кадров; m и n - числа натурального ряда, выбор значений которых обеспечивает разность фаз оцветовой поднесущей в соседних строках одного кадра он (2n-1) и в одинаковых по номерам строках смежных кадров ор= (2i-1), где i - целое число. Для этого в качестве модулирующих цветовую поднесущую видеосигналов надо использовать цветоразностные сигналы и изменить временной масштаб сформированного сигнала цветности с коэффициентом сжатия К, равным отношению верхней граничной частоты номинальной полосы частот полного цветового телевизионного сигнала к выбранному значению верхней граничной частоты спектра, передаваемого в одной строке сигнала цветности до его сжатия во времени. Входящие в состав сигнала цветности сигналы цветовой синхронизации, представляющие собою сжатые во времени в К раз сигналы рефлексно-модулированной поднесущей в "опорной" фазе, могут передаваться в нескольких строках интервала гашения по кадрам, причем время передачи каждой посылки сигналов цветовой синхронизации в строках кадрового интервала гашения должно быть равно времени передачи сигнала цветности в одной строке активной части кадра. Сформированный сигнал цветности, сжатый во времени, должен передаваться в строках полного цветового телевизионного сигнала в интервалах между срезом строчного синхронизирующего импульса и началом активной части строки. На приемной стороне выделенные из принятого полного цветового телевизионного сигнала посылки сигналов цветности целесообразно задерживать на время, равное длительности кадра, и алгебраически суммировать с посылками сигналов цветности, выделенными из одинаковых по номерам строк незадержанного сигнала кадра, поступающего на вход. Посылки алгебраически суммированных сигналов цветности из одинаковых по номерам строк смежных кадров необходимо дополнительно задержать на время T=q н, где н= , и совместно обрабатывать дополнительно задержанную и незадержанную посылки сигналов цветности путем умножения их на гармонические сигналы в соответствующих фазах. При этом следует учитывать, что разность фаз о между фазой 01 немодулированной цветовой поднесущей в задержанной посылке сигнала цветности и фазой 02немодулированной цветовой поднесущей в незадержанной посылке сигнала цветности была связана с временем Т задержки соотношением o = 01 - 02 = oq н, где 0=2 f0.

Согласно изобретению совместную обработку задержанной и незадержанной посылок суммированных сигналов цветности из одинаковых по номерам строк смежных кадров возможно осуществлять путем умножения одной из них на гармонический сигнал вида U1(t)=2cosxt, а другой посылки - на гармонический сигнал вида U2(t)=2cos(xt+ + o), где х=2 fx; fx- частота гармонического сигнала, превышающая граничную частоту спектра сигнала цветности. При суммировании напряжений, получающихся в результате этих перемножений, получается квадратурно-модулированный сигнал цветности с развернутыми боковыми полосами на высокочастотной несущей. Синхронным детектированием этого сигнала можно выделить оба цветоразностных сигнала.

Возможна также совместная обработка задержанной и незадержанной посылок суммированных сигналов цветности из одинаковых по номерам строк смежных кадров и выделения цветоразностных сигналов непосредственно на частоте f0 цветовой поднесущей. При такой обработке одну из посылок следует умножить на гармонический сигнал вида U1(t)=2cosо t, вторую посылку - на гармонический сигнал вида U2(t)=2cos (о t+ + o) и алгебраически просуммировать напряжения, получаемые в результате этих перемножений. Таким путем выделяют непосредственно один из цветоразностных сигналов. Для выделения второго цветоразностного сигнала нужно одну из посылок сигналов цветности суммированных из одинаковых по номерам строк смежных кадров, умножить на гармонический сигнал вида U3(t)=2sino t, вторую посылку умножить на гармонический сигнал вида U4(t)=2sin(o t+ + o) и алгебраически просуммировать напряжения, получаемые в результате этой пары перемножений. При этом выделится непосредственно второй цветоразностный сигнал. Согласно изобретению целесообразно выбирать время дополнительной задержки посылок суммированных сигналов цветности из одинаковых по номерам строк смежных кадров при совместной обработке этих посылок на приемной стороне, равным длительности строки н. При этом разность фаз гармонических сигналов, на которые требуется умножать задержанную и незадержанную посылки, следует выбирать равной + o (2n + 1).

Также целесообразно, чтобы в ряде применений предлагаемой системы при совместной обработке на приемной стороне задержанных и незадержанных посылок суммированных сигналов цветности из одинаковых по номерам строк смежных кадров использовали дополнительную задержку посылок на время Т, примерно равное длительности поля телевизионной развертки, T = , где Z - число строк разложения. Возможно использование двух вариантов осуществления такой задержки. В первом варианте дополнительную задержку посылок в первом поле осуществляют на время T1= н, а во втором поле - на время T2= н . При этом разность фаз гармонических сигналов, на которые требуется умножать задержанные и незадержанные посылки сигналов цветности, следует выбирать равным