Способ получения трансгенных растений gossypium, устойчивых к насекомым

Реферат

 

Использование: биотехнология, генетическая инженерия растений. Сущность изобретения: трансгенный хлопок получают в результате взаимодействия культивируемых клеток хлопка со штаммом бактерий Agrobacterium tumefaciens, содержащим рекомбинантную плазмидную ДНК с химерным геном, кодирующим кристаллический протеин -эндотоксина Bacillus thuringiensis, промотором, 5' и 3' нетранслируемыми областями и вторым геном, обеспечивающим устойчивость к антибиотику, инкубируют трансформированные клетки, переносят его в среду для выращивания, культивируют каллюс на среде для выращивания каллюсов, отбирают трансформированный эмбриогенный каллюс, затем фильтруют суспензию для отделения эмбриогенного каллюса размером 600 мкм с последующим получением регенераторов. 25 ил.

Изобретение относится к способу получения трансгенных растений, клетки которых способны экспрессировать химерный ген, кодирующий кристаллический -эндотоксин Bacillus thuringiensis. Такой кристаллический протеин представляет собой протоксин, который превращается в токсин в ходе заглатывания личинками насекомых разновидностей Lepidoptero, Coleoptera и Diptera.

Кристаллический протеин из Вt представляет собой потенциально важный инсектицид, не оказывающий вредного воздействия на людей, других млекопитающих, птиц, рыб или других насекомых помимо личинок насекомых разновидностей Lepidoptera, Coleoptera и Diptera. Bt токсин обладает чрезвычайно высокой активностью и лишь нанограммовые его количества требуются для уничтожения личинок восприимчивых насекомых. Другие преимущества использования кристаллического протеина из Bt в качестве инсектицида включают его широкий спектр активности против личинок насекомых разновидностей Lepidoptera, Coleоptera и Diptera, а также явные затруднения в развитии такими личинками устойчивости к действию кристаллического протеина даже в случае его использования в крупном масштабе. Указанные личинки представляют собой большую проблему для сельского хозяйства и лесного хозяйства и особенно для культивации хлопка.

Кристаллический протеин является эффективным инсектицидом в том случае, когда он применяется на растениях, подверженных заражению личинками насекомых разновидностей Lepidoptera, Coleoptera или diptera. Такие растения включают спаржевую капусту, латун и хлопок. Заражение личинками Lepidoptera представляет собой особенно серьезную проблему для хлопковых растений.

До сих пор Вt кристаллический протеин (протоксин) выделяли из Bacillus и применяли на растениях такими стандартными методами, как опыление и опрыскивание. Препараты, содержащие Bt кристаллический протеин, находят коммерческое использование в качестве биологических инсектицидов. Например, Бактоспеин, выпускаемый компаниями Биокем Продактс Лтд. Дипел, Аббот Лабораториз и Турцид, Сандоз АГ.

Тот факт, что Вt продуцирует кристаллический протеин только в ходе споруляции, представляет собой значительный недостаток, связанный с производством и использованием такого биологического инсектицида. Ограничение такой фазой роста, особенно при реализации промышленного процесса, может приводить к неудобствам и чрезмерной длительности производства. Кроме этого, затраты, связанные с указанным производством, могут затруднять конкуренцию такого биологического инсектицида с другими выпускаемыми промышленностью продуктами на основе таких химических веществ, как, например, производные пиретроида.

Другим недостатком, связанным с использованием Вt токсина, является, например, тот факт, что протеин обычно остается на поверхности растения, подвергаемого обработке, где он эффективен лишь по отношению к личинкам, питающимся на поверхности, и где он дезактивируется в результате длительного воздействия ультрафиолетового излучения. Такая дезактивация может представлять собой, по крайней мере, одну из причин потери стойкости кристаллического протеина под воздействием окружающей среды. В результате приходится осуществлять многократное и дорогостоящее применение кристаллического протеина.

Указанные и другие недостатки могут быть преодолены путем внедрения и экспрессии гена, кодирующего Bt кристаллический протеин или протеин, обладающий такими же инсектицидными токсическими свойствами, что и Вt кристаллический протеин, в растения. В настоящем изобретении описывается путь преодоления указанных недостатков в результате внедрения и экспрессии гена, кодирующего Вt кристаллический протеин или протеин, обладающий инсектицидно токсическими свойствами Bt кристаллического протеина, в протопласты зерновой культуры и регенерации продуктивных трансгенных зерновых растений из трансформированных протопластов и культивации таких зерновых растений, устойчивых к действию насекомых.

Методы генной инженерии описаны в качестве усовершенствованных путей продуцирования кристаллического протеина. Так, например, в патентах США 4 448 885 и 4 467 036 описываются плазмиды для продуцирования кристаллического протеина в бактериальных штаммах, отличных от Bt. Такие методы позволяют получать кристаллический протеин, но не снимают недостатки, связанные с использованием кристаллического протеина в качестве коммерческого инсектицида.

Предложено непосредственно клонировать Bt токсичные гены в растения с целью реализации такой ситуации, когда растения защищают сами себя (Клауэнер, 1984). В заявке на Европейский патент ЕР-0142924 (Аграгенатикс) предлагается способ клонирования токсичных генов из Bt в табак (с.59) и этот же способ предлагается для защиты хлопка (с.77).

Способы трансформации клеток хлопка и развития из таких клеток растений описаны в заявке на патент США с серийным номером 122 200 - "Регенерация и трансформация хлопка", фирмы Фитоген, а также в заявке на патент США с серийным N 122 162 под названием "эффективный способ регенерации хлопка из культивированных клеток" фирмы Циба-Гейге. Способ трансформации клеток хлопка в заявке фирмы Фитоген на патент с серийным номером 122 200 и способ регенерации хлопковых растений в заявках на патенты фирм Фитоген и Циба-Гейги с серийными NN 122 200 и 122 162 соответственно включены в объем настоящей заявки.

Цель изобретения - создать способ защиты хлопковых растений от повреждения насекомыми, заключающийся в продуцировании инсектицидно эффективного количества Bt кристаллического протеина или протеина, обладающего инсектицидно токсическими свойствами Bt кристаллического протеина в клетке растения, причем такое количество должно быть достаточно эффективным для уничтожения или борьбы с насекомыми, питающимися указанными растениями.

Цель изобретения достигнута в результате разработки химерных генов, способных экспрессировать в хлопковых клетках полипептид, обладающий в значительной степени инсектицидно-токсическими свойствами Bt кристаллического протеина (далее в тексте, Bt токсичный ген).

На фиг.1 показана конструкция mp/19bt плазмиды, содержащей 5' окончание Bt протоксинового гена; на фиг.2 - конструкция mp/19bt ca/del плазмиды, содержащей VI промотор СаМV гена, слитый с 5' окончанием Вt протоксиновой кодирующей последовательности; на фиг.3 - конструкция p702/bt плазмиды, содержащей 3' кодирующий участок протоксина, слитый с СаМV сигналами обрыва транскрипции; на фиг.4 - конструкция рВR 322)bt14, содержащая полную протоксиновую кодирующую последовательность, от которой ответвляются последовательности СаМV промотора и терминатора; на фиг.5 - конструкция pRK252/Tn903/Bg III; на фиг.6 - конструкция pС1B5; на фиг.7-8 - конструкция рС1B4; на фиг. 9 - конструкция pС1B2; на фиг.10 - конструкция pС1B10, плазмиды с широким набором возможных хозяев, содержащей Т-ДНК границы и ген для селекции растения; на фиг.11 - конструкция pС1B10/19 sbt; на фиг.12 - конструкция pС1B710; на фиг. 13 - конструкция pС1B10/710; на фиг.14 - конструкция pС1B10/35 sbt; на фиг.15 - конструкция pС1B10/35 sbt (КрпI); на фиг. 16 - конструкция pС1B10/35 sbt (ВсII); на фиг. 17 - конструкция pС1B10/35 sbt (607); на фиг.18 - конструкция pС1B1300, плазмиды, имеющей химерный ген, содержащий СаМV 35S промотор/АМV лидер (Bt (BcI) делецию/35 терминатор; на фиг. 19, 20 и 21 - конструкция pС1B 1301, имеющей химерный ген, содержащий хлопковую rbs-gx промотор/Bt (607 делеция) кодирующую последовательность; на фиг.22 - конструкция pС1B1302, имеющей химерный ген, содержащий хлопковую rbs-gv промотор/Вt (607 делеция) кодирующую последовательность; на фиг. 23 - рестрикционная карта хлопковых геномных клонов, несущих rbc-gx и rbc-gv; на фиг.24 - нуклеотидная и аминокислотная последовательность rbc-gv (первый АТG и метионин переходного пептида показаны в виде блока); на фиг.25 - нуклеотидная и аминокислотная последовательности rbc-X. Первый АТG и метионин переходного пептида показаны в виде блока.

В соответствии с настоящим изобретением перечисленные ниже плазмиды и/или микроорганизмы были депонированы Международным депозидарием "Американская коллекция типовых культур, Роквилл, Мэриленд" в соответствии с требованиями Будапештского договора.

1) Escherichia coli MC1061, pCIB10/35S BT...АTCC 67329 (дата депонирования: 27 февраля 1987 г.) 2) Escherichia coli HB101, pCIB10/19sBT...АTCC 67330 (дата депонирования 27 февраля 1987 г.) 3) Плазмида р LVIII АТСС 40235 (дата депонирования: 14 мая 1986 г.) 4) Фаг /rbc-gv АТСС 40486 (дата депонирования, 25 августа 1988 г.) 5) Фаг /rbc-X АТСС 40487 (дата депонирования, 25 августа 1988 г.) Рассматриваемые хлопковые клетки включают клетки любых и всех хлопковых растений, в которые может быть введена, реплицирована и экспрессирована гетерологичная. В качестве примеров подходящих разновидностей хлопковых растений можно отметить Gossypium hirsutum, Gossypium arborcum и Gossypium barbadeuse. Разновидность Gossypium hirsutum является предпочтительной и она может быть обдирного или сборного типов. Обдирной или сборный хлопок отличаются способом сбора урожая, причем коробочки обдирного хлопка очень прочно присоединены к растению и они не опадают даже при послесезонных штормах. При сборе обрывного хлопка растение фактически разрушается. Сборный хлопок присоединен к стеблю менее прочно и его собирают менее разрушительными методами. Некоторые выпускаемые промышленностью разновидности G. hirsutum, которые можно регенерировать методом настоящего изобретения включают: AcaIa 1515-75, AcaIa SI-2, AcaIa-SI-4, AcaIa SI-5, AcaIa-SIC-1, AcaIa-SIC-22, AcaIa-SIC-28, AcaIa-SIC-30, AcaIa B-1644. AcaIa-B-1810, AcaIa B-2724, AcaIa-GC-510.

Coker 304, Coker 315, Coker 201, Coker 310, Coker 312, DP 41, DP 90.

DPL 50, DPL 20, DPL 120, DPL 775.

Hankert 611, lankert 57, Paymaster 145, Paymaster HS 26, Stoneville 306, Stoneville 825, Funk 519-2, Funk FC 3008, Funk FC 3024, Funk C 1568R, Funk FC 2005, Funk C 0947B, Funk C 2028, Funk FC 2017, Funk C 1379, McNair 235, Tomcot SR 21-Siokra Tx-CAB-CS.

Предпочтительными разновидностями являются Acala SI-2, AcaIa SIC-1, AcaIa GC 510, AcaIa SIC-28, AcaIa SIC-30, AcaIa B-1644 и Siokra.

AcaIa SI-2, AcaIa GC 510, AcaIa B-1644 и Siokra особенно предпочтительны. Термин "растительные клетки" относится к любой клетке хлопкового растения. Некоторые примеры клеток, входящих в объем настоящего изобретения, включают дифференцированные клетки, представляющие собой часть живого растения; недифференцированные клетки в культуре; клетки недифференцированной ткани, такой как каллюс или опухоли; семена; амбрионы; побеги и пыльцу.

Химерный ген настоящего изобретения содержит последовательность регуляции транскрипции, включающую промотор и 5' и 3' нетранслированные последовательности, являющиеся функциональными в хлопковых растениях. Такие последовательности, независимо друг от друга, могут быть получены из любого источника, например вирусного, растительного или бактериального гена.

Подходящие для использования вирусные промоторы и 5' и 3' нетранслированные последовательности являются функциональными для хлопковых растений и они могут быть получены, например, из таких растительных вирусов, как вирус мозаики цветной капусты (СаМУ). Для использования предпочтительными промоторами САМV являются 19S и 35S промотор.

Для выделения СаМV 19S промотора и, необязательно, соседнего 5' нетранслированного участка, рестрикционный фрагмент СаМУ генома, содержащего желаемую последовательность, подвергают селекции. Подходящим рестрикционым фрагментом, содержащим 19S промотор и 5' нетранслированный участок, является фрагмент между Pst1 сайтом, начинающимся в положении 5386, и Hind III сайтом, начинающимся в положении 5850 (Хон и др., 1982, 194-220). Как описывается ниже, аналогичными методами может быть получен 35S промотор СаМV.

Нежелательные нуклеотиды в рестрикционном фрагменте могут быть необязательно удалены стандартными методами. Некоторые подходящие методы делеции нежелательных нуклеотидов включают использование экзонуклеаз (Маниатис с сотр., 1982) и регулируемого нуклеотидом мутагенеза (Золлер и Смит, 1982).

Аналогичная методика может использоваться для получения желаемого 3' нетранслированного участка. Так, например, подходящая СаМV 19S генная 3' нетранслированная последовательность может быть получена выделением участка между ЕсоРУ сайтом в положении 7342 и Bg III сайтом в положении 7643 СаМV генома (Хон с сотр.).

Примеры растительных генных промоторов и 5' и 3' нетранслированных участков, подходящих для использования в настоящем изобретении, также включают те гены, которые кодируют мелкие субзвенья рибулозо-1,5-бифосфат карбоксилазы и хлорофил а/b связующий протеин. Такие участки растительного гена могут быть выделены из растительных клеток методами, аналогичными тем, что описаны выше для выделения соответствующих участков из СаМV (см. статью Морелли с сотр., 1985).

Подходящие промоторы и 5' и 3' нетранслированные участки бактериальных генов включают фрагменты, присутствующие в Т-ДНК участке плазмид Аgrobacterium. Примерами подходящих плазмид Agrobacterium могут служить Тi плазмида A. tumefaciens и Ri плазмида A.rhizogeus. Agrobacterium промоторы, а также 5' и 3' нетранслированныe участки, используемые в настоящем изобретении, представляют собой, главным образом, те фрагменты, которые присутствуют в генах, кодирующих октофин синтазу и нопалин синтазу. Такие последовательности могут быть получены методами, аналогичными тем, что были описаны выше для выделения СаМV и растительных промоторов, а также нетранслированных последовательностей (см. статью Бивана с сотр. 1983).

Кодирующий участок химерного гена содержит нуклеотидную последовательность, которая кодирует полипептид, в значительной мере обладающий токсическими свойствами Bt -эндотоксинового кристаллического протеина, если он проявляет инсектицидную активность к тому же набору личинок насекомых, что и кристаллический протеин подразновидности Bt. Некоторые подходящие для такой цели подразновидности включают, например, Bt var. Kurstaki, Bt var. berliner, Bt alesti, Bt var. tolworthi, Bt var. sotto, Bt var. dendrolimus; Bt var. tenebrionis; Bt var. san. diego; и Bt var. aizanai. Предпочтительными разновидностями являются Bt var. Kurstaki и особенно Bt var. Kurstaki НDI.

Кодирующий участок может существовать в Bt в естественном состоянии. С другой стороны, кодирующий участок может содержать последовательность, которая отличается от последовательности существующей в Bt, но является эквивалентной вследствие вырожденности генетического кода.

Кодирующая последовательность химерного гена может также кодировать полипептид, отличающийся от встречающегося в природе кристаллического протеинового -эндотоксина, но, в значительной степени, обладающий инсектицидно-токсическими свойствами кристаллического протеина.

Предпочтительно, чтобы нуклеотидная последовательность была в значительной мере гомологичной по крайней мере той части или тем частям природной последовательности, которые ответственны за инсектицидную активность.

Полипептид, экспрессированный химерным геном настоящего изобретения, будет обычно обладать по крайней мере некоторыми иммунологическими свойствами природного Bt кристаллического протеина, поскольку он имеет по крайней мере некоторые общие антигенные детерминанты.

Полипептид, кодированный химерным геном настоящего изобретения, предпочтительно должен быть структурно родственным кристаллическому -эндотоксиновому протеину, продуцируемому Bt. Bt продуцирует кристаллический протеин в присутствии субзвена, представляющего собой протоксин со значением Мr в интервале 130000-140000. Такой протеин может расщепляться под действием протеаз или щелочей с образованием инсектицидных фрагментов, имеющих Mr порядка 80 000, предпочтительно 70 000, более предпочтительно около 60 000 и возможно даже ниже. Такие фрагменты предпочтительно имеют максимальное значение Mr порядка 120 000, более предпочтительно порядка 110 000 и наиболее предпочтительно 100 000. Химерные гены, кодирующие такие фрагменты протоксина или даже более мелкие его части, согласно настоящему изобретению могут быть сконструированы в том случае, если фрагменты или части таких фрагментов обладают достаточной инсектицидной активностью. Протоксин, инсектицидные фрагменты протоксина и инсектицидные части таких фрагментов могут быть слиты с другими молекулами, например, с полипептидами и протеинами.

Кодирующие области, подходящие для использования в настоящем изобретении, могут быть получены из генов кристаллического протеина, выделенных из Bt (см. например, заявку РСТWO 86/01536 и патенты США 4448 885 и 4 467 036). Предпочтительной последовательностью нуклеотидов, которая кодирует кристаллический протеин, является последовательность, указанная как нуклеотиды 156-3623 в последовательности формулы 1 или более короткая последовательность, кодирующая инсектицидный фрагмент такого кристаллического протеина. Описание такой последовательности данно в статье Гейзера с сотр. (1986). Формула I дана ниже.

Кодирующая область, определенная нуклеотидами 156-3623 последовательности (I), кодирует полипептид, последовательность которого отвечает формуле (II).

Токсины некоторых Bt штаммов являются токсичными в отношении других насекомых, помимо разновидности lepidoptera. Так, например, токсин Bt var tenebrienis является токсичным по отношению к насекомым разновидности coleoptera. Токсичность Bt штамма san diego в отношении насекомых разновидности coleoptera и последовательность соответствующего токсинового гена раскрыты в ЕР-0.202.739 и в ЕР-0.213.818. Для введения химерного гена настоящего изобретения в растительные клетки такой ген вначале внедряют в вектор. Если не имеется достаточного количества гена для трансформации, то вектор может быть усилен репликацией в клетке-хозяине. Наиболее удобными клетками хозяевами для такого усиления являются бактериальные или дрожжевые клетки. В том случае, когда имеется достаточное количество химерного гена, его вводят в хлопковые клетки или ткани. Введение гена в хлопковые растительные клетки или ткани может осуществляться с помощью того же вектора, что использовался для репликации или с помощью другого вектора.

Некоторые примеры бактериальных клеток-хозяев, подходящих для репликации химерного гена, включают клетки, выбранные из группы, состоящей из такого вида Escherichia как Е.coli и такого вида Agrobacterium как A.tumefaciens или A.rhizogenes. Методы клонирования гетерологичных генов в бактериях описаны в патентах США 4 237 224 и 4 468 464.

Репликация генов, кодирующих кристаллический протеин Bt в Е.coli описаны Вонгом с сотр. (1983).

Предпочтительной бактериальной клеткой-хозяином для амплификации химерных В генов настоящего изобретения является Agrobacterium. Преимуществом амплификации гена в Agrobacterium является то, что Agrobacterium может далее использоваться для внедрения амплифицированного гена в растительные клетки без дополнительных генетических манипуляций.

Некоторые примеры дрожжевых клеток-хозяев, подходящих для репликации генов настоящего изобретения, включают клетки вида Saccharomyces.

Любой вектор, в который может быть внедрен химерный ген и который реплицирует в подходящей клетке-хозяине, например в бактерии или дрожжах, может использоваться для амплификации генов настоящего изобретения. Примерами векторов - производных фагов, которые используются в настоящем изобретении, являются векторы, полученные из М13 и . Подходящие векторы, являющиеся производными М13, включают М13mр18 и M13mр19. Подходящие векторы, являющиеся производными , включают gt II, gt 7 и chazon 4.

Векторы, являющиеся производными плазмид, особенно подходящие для репликации в бактериях, включают pВR 322 (Боливар с сотр., 1977), pYС18 и pYС19 (Норрандер с сотр., 1983); а также Тi плазмиды (Бенан с сотр., 1983). Предпочтительными векторами для амплификации генов в бактериях являются pВR322, pYС18 и pYС19.

Внедрение или сборка гена в вектор осуществляется стандартными методами, такими как использование техники рекомбинантных ДНК (Маннатис с сотр., 1982) и гомологичная рекомбинация (Хиннен с сотр., 1978).

Подходящие рестрикционные эндонуклеазы включают такие, которые образуют тупые концы, например, SmaI, HpaI и ЕcoRY, а также такие, которые образуют липкие концы например, EcoRI, SaCI и BamHI.

Bt токсиновые гены настоящего изобретения могут непосредственно вводиться в растительные клетки с помощью некоторых Agrobacterium, примеры которых включают Ti плазмиду вида A. tumefaciens и Ri плазмиду вида A. rhizogenes.

Такие плазмиды содержат участки (Т-ДНК), способные встраиваться в геном клеток растений.

Т-ДНК области, которые существуют в природе, являются онкогенными. Онкогенные части таких Т-ДНК областей могут быть частично или полностью удалены до или совместно с внедрением желаемой ДНК-последовательности. Такие плазмиды, содержащие модифицированные Т-ДНК области, являются безопасными.

Гены, пригодные для использования в настоящем изобретении, встраиваются в Т-ДНК, векторную систему с помощью методов, известных в данной области (Бартон и Чилтон, 1983; Чилтон, 1985). Т-ДНК векторы могут быть онкогенными (Хернальстингс с сотр. , 1980), частично безопасными (Бертон и Чилтон, 1983), полностью безопасными (Замбриски с сотр., 1983) или могут основываться а искусственных Т-ДНК векторах, имеющих синтетические Т-ДНК фланкирующие последовательности (Ванг с сотр., 1984). Подходящие, лишенные опасных признаков векторы, содержащие Т-ДНК флокирующие последовательность, включают pGA436, pGA437 и pGA438 в соответствии с описанным в работе Эна с сотр. (1985); pMON 120 (см. статью Фрэйли с сотр., 1983) и pC1B10 (Розштейн с сотр., 1987). Перенос Т-ДНК обычно осуществляют инкубированием Agrobacterium в присутствии протопластов растительных клеток или тканей поврежденных растений (см. статью Каплана с сотр., 1983).

Помимо химерного гена, кодирующего Bt или Bt-подобный токсин, векторы предпочтительно включают также ДНК-последовательность, позволяющую осуществлять селекцию или скрининг клеток хлопкового растения, содержащих вектор, в присутствии клеток, не содержащих вектор.

Предпочтительный селективный маркер представляет собой ген, кодирующий антибиотическую устойчивость. Гены, которые сообщают устойчивость к хлорамфениколу, канамицину, гигромицину, С418 или, в принципе, к любому другому антибиотику, могут использоваться в качестве способного к селекции маркера.

Примерами генов, сообщающих устойчивость к антибиотику, могут служить гены, кодирующие неомицин фосфотрансферазу (канамицин и С418 устойчивость, Велтен с сотр., 1984); гигромицин фосфотрансферазу (гигромициновая устойчивость, ван-ден Эльзен с сотр., 1985) и хлорамфеникол ацетилтрансферазу.

Примером гена, используемого главным образом в качестве селективного маркера в тканевой культуре, для идентификации растительных клеток, содержащих сконструированные методами генной инженерии векторы, является ген, кодирующий энзим, имеющий хромогенный субстрат. Так, например, если ген кодирует энзим -галактеозидазу, то растительные клетки высевают в среду тканевой культуры, содержащую хромогенный субстрат Xgаl(5-хлор-4-бром-3-индолил- -Д-галактозид), и в соответствующих условиях растительные клетки, содержащие копии такого гена, окрашиваются в голубой цвет под действием красителя индиго, который выделяется при расщеплении Xgal -галактозидазой.

Введение химерных генов в растения согласно настоящему изобретению может осуществляться с помощью любой Т-ДНК векторной системы, способной к введению генов в хлопковые растительные клетки. Такая векторная система может быть, например, Ко-интегральной системой (Коман с сотр., 1983; Замбриски с сотр. , 1983), векторной системой с расщепленными концами (Фрэйли с сотр., 1985), как это описано Чилтоном (1985). С другой стороны, векторная система может представлять собой бинарную систему (де Фрамон с сотр., 1983); Гоекема с сотр., 1983), или Тi плазмиду, содержащую ген в Т-ДНК (Матске и Чилтон, 1981). Другим возможным вариантом является система, в которой Т-ДНК находится на плазмиде, а вирулетные гены - на хромосональной ДНК.

Предпочтительная Т-ДНК векторная система представляет собой бинарную векторную систему и особенно систему, в которой используется pC1B10 (Ротштейн с сотр., 1987) (см. фиг.10).

Введение гетерологичных генов с использованием техники рекомбинантных ДНК в бинарную векторную систему описано Кли с сотр., 1935 г. Внедрение генов в Т-ДНК вектор может представлять собой гомологическую рекомбинацию с использованием стратегии двойной рекомбинации (Матске и Чилтон, 1981); стратегии одинарной рекомбинации (Коман и сотр., 1093); (Замбриски с сотр., 1983); стратегии одинарной рекомбинации без повторений в Т-ДНК (Фрэйли с сотр., 1985), в соответствии с описанным Чилтоном (1985).

Если векторы, содержащие химерный ген, не собираются в Agrobacterium, то они могут вводиться в Agrobacterium методами, известными в данной области. Такие методы включают трансформацию и конъюгацию. Трансформация Agrobacterium описана Холстерсом с сотр., 1978.

Конъюгация описана Коман с сотр. (1983) и Чилтон с сотр. (1976).

Примеры включают использование A. tumefaciens, A.rhizogenes и A.radiobacter.

Среда, способная поддерживать конкретную растительную клетку в культуре, зависит от конкретного вида хлопковой растительной клетки. Так, например, некоторые подходящие среды включают примерно 10 мг/л 2,4-дихлорфеноксиуксусной кислоты и неорганические соли Мурашиги и Скуга (Мурашиги и Скуг, 1962) или неорганические соли В-5 Гaмборга (Гамборг с сотр., 1968).

Эмбрион хлопка (Gossypium spp.), способный к прорастанию и возобновлению, может эффективно продуцироваться в результате соматического эмбриогенеза путем развития про-эмбрионных клеточных масс и из них эмбрионов в клеточной суспензионной культурной системе.

Способ изобретения позволяет продуцировать, например, в стандартной колбе Де-Лонга емкостью 250 мл около 10.000 сферических эмбрионов, из которых может быть получено примерно 1000 зрелых эмбрионов и примерно 50 растений.

Полученные в соответствии с таким способом хлопковые растения могут быть культивированы или оставлены в некультивированном состоянии.

Особенно предпочтительным является способ трансформации хлопковых клеток, подвергаемых суспензионной культивации на каллюсовой растительной среде, который после цикла роста суспензионной субкультуры включает стадии: а) выделения клеток и любого эмбриогенного каллюса из каллюсовой растительной среды; b) ресуспендирования клеток и эмбриогенного каллюса в каллюсовой растительной среде, содержащей Agrobacterium вектор, имеющий ген, который сообщает устойчивость антиобиотическому гигромицину хлопковых клеток при сохранении условий суспензионного роста в течение времени, достаточного для трансформации суспендированных клеток; с) выделения суспендированных клеток из каллюсовой растительной среды, содержащей Agrobacterium; d) обработки трансформированных клеток и эмбриогенного каллюса антибиотиком, применяемым в концентрации, достаточной для уничтожения; е) контактирования клеток и эмбриогенного каллюса с антиобиотическим гигромицином с целью селекции трансформированных клеток и эмбриогенного каллюса; f) фильтрации суспензии с целью удаления эмбриогенного каллюса размером более 600 мкм.

Стадия а.

Эмбриогенный хлопковый каллюс. Первая стадия заключается в индуцировании образования хлопкового каллюса из хлопковой эксплантатной ткани. Примеры подходящей хлопковой эксплантатной ткани включают соматические эмбрионы, зрелые и незрелые зиготные эмбрионы, котиледоны или гипокотили из сеянцев, а также молодую ткань зрелого растения. Предпочтительными являются соматические эмбрионы и котиледоны или гипокотили сеянцев.

Зиготные эмбрионы, например, могут быть получены вырезанием из семяпочек. Такие семяпочки срезаются, предпочтительно, через 7-30 дней после опыления, предпочтительно через 10-21 день после опыления и наиболее предпочтительно через 12-16 дней опыления.

Котиледоны и гипокотили могут быть получены из молодых сеянцев. Такие сеянцы имеют возраст 3-21 день, более предпочтительно 4-9 дней, и наиболее предпочтительно около 7 дней. Гипокотили срезают в продольном направлении и разрезают на удобные части размером, например, 1-20 мм, предпочтительно около 2 мм. Котиледоновую ткань разрезают на участки площадью 1-400 мм2, предпочтительно 5-100 мм2, и наиболее предпочтительно около 10 мм2.

Соматические эмбрионы, полученные по такой методике, представляют собой наиболее предпочтительный источник получения эмбриогенного каллюса согласно настоящему способу.

Соматические эмбрионы могут быть получены, например, путем использования описанного выше способа в отношении гипокотильной и котиледонной ткани в качестве источника эксплантата. Подходящим является любой соматический эмбрион, снятый до первичного развертывания листа. Размер соматического эмбриона не имеет решающего значения. Предпочтительно, чтобы соматический эмбрион имел длину менее 5 мм.

Молодая ткань зрелого хлопкового растения может быть легко получена путем отрезания верхушек побегов длиной 10 см, предпочтительно 5 см. Стеблевую и черешковую ткань разрезают в продольном направлении и далее разрезают на части того же размера, что и в случае гипокотилей (см. выше). Ткань листьев разрезают на части того же размера, что и котиледоновую ткань (см. выше).

Ткань хлопкового растения помещают в среду, подходящую для индуцирования каллюса при 20-40оС, предпочтительно 23-34, более предпочтительно при 31оС. В таком способе регенерации может использоваться среда, способная индуцировать каллюс из ткани. Такая среда может быть жидкой или твердой, хотя твердая среда предпочтительна в связи с тем, что она более удобна.

Среда, способная индуцировать каллюс в условиях настоящего изобретения, содержит неорганические соли, витамины, источник углерода, ауксин и цитокинин. pH такой среды устанавливают в интервале 3,5-7,5, предпочтительно 4,5-6,5 и наиболее предпочтительно 5,7.

Для этой цели подходят любые неорганические соли и витамины, способные вносить свой вклад в индуцирование каллюса. Примерами подходящих неорганических солей и витаминов могут служить вещества, описанные Мурашиги и Скугом (1962) (MS) и Гамборгом с сотр., (1968) (В-5). Другим примером может служить модификация MS или В-5 Гамборга, описанная Ченгом с сотр. (1980). Предпочтительные неорганические соли представляют собой MS неорганические соли. Предпочтительные витамины представляют собой витамины В-5 Гамборга.

В качестве источника углерода может применяться любой его источник, в котором может расти каллюс. Предпочтительными источниками углерода являются сахара и их производные. Предпочтительными сахарами являются глюкоза и сахароза. Особенно желательно инициировать каллюс в среде для его индуцирования, содержащей глюкозу с тем, чтобы уменьшить степень потемнения ткани и затем перенести каллюс в среду для его индуцирования, содержащую сахарозу.

Концентрация источника углерода составляет 5-60 г/л, предпочтительно 30 г/л.

Ауксин, присутствующий в среде для индуцирования каллюса, может представлять собой любой ауксин, способный индуцировать каллюс. Подходящие для этой цели ауксины включают нафталин, уксусную кислоту, пиклорам, 2,4,5-трихлорфеноксиуксусную кислоту, 2,4-дихлорфеноксиуксусную кислоту, индол-3-масляную кислоту, индол-3-молочную кислоту, индол-3-пировиноградную кислоту, индол-3-уксусную кислоту и п-хлорфеноксиуксусную кислоту. Предпочтительный ауксин представляет собой а-нафталинуксусную кислоту.

В способе настоящего изобретения может использоваться любая концентрация ауксина, способная индуцировать образование каллюса. Подходящая концентрация составляет 0,1-10 мг/л. Предпочтительная концентрация составляет 2 мг/л, особенно в том случае, когда ауксин представляет собой а-нафталинуксусную кислоту.

Цитокинин, присутствующий в среде для индуцирования каллюса, может представлять собой любой цитокинин, способный индуцировать каллюс. Подходящие для этой цели цитокинины включают кинетин, 6-бензиладенин, 2-изопентениладенин и зоатин. Предпочтительным цитокинином является кинетин.

В способе настоящего изобретения может применяться любая концентрация цитокинина, способная индуцировать образование каллюса. Подходящие для этой цели концентрации составляют 0,1-10 мг/л. Предпочтительная концентрация составляет 1 мг/л, особенно в том случае, когда цитокинин представляет собой кинетин.

В случае твердой среды она содержит компонент, вызывающий затвердевание, например, около 0,8% такого агара, как агар Noble (Difco) или около 0,8% агарозы. (Все процентные соотношения в описании даны в массовом выражении).

Ткань культивируют на среде, индуцирующей каллюс в течение времени, достаточного для образования каллюса. Так, например, ткань может культивироваться на среде, индуцирующей каллюс и содержащей глюкозу в качестве источника углерода. В этом случае типичным является пятинедельный период индуцирования. Если необходимо, для предотвращения потемнения предварительно образуют субкультуры. Предпочтительными являются недельные субкультуры.

Образующий каллюс может быть неорганизованным или может содержать про-эмбрионные клеточные массы, эмбриогенный каллюс и/или эмбрионы. Обычно в том случае, когда в качестве источника эксплантата используются гипокотили или котиледоны, каллюс, по-видимому, является неорганизованным. При использовании в качестве источника трансплантата соматических эмбрионов по крайней мере часть каллюса включает эмбриогенный каллюс, который характеризуется светло-желтым цветом и образованием узелков.

Полученный в результате каллюс далее может быть перенесен в среду субкультивирования каллюса, которая похожа на среду индуцирования каллюса за исключением того, что она содержит в качестве источника углерода сахарозу, на период времени до 5 мес. Предпочтительным является субкультивирование в течение одного или двух месяцев с переносом через месяц в свежую среду, на сахарозосодержащей среде для индуцирования каллюса.

Каллюс может индуцироваться в темноте, но предпочтительно индуцирование проводят на свету. Свет может иметь интенсивность, например, 0,5-150 Еm-2с-1 (=41,75-12525 лк).

Стадия b.

Групповые агрегаты про-эмбрионных клеточных масс. Каллюс со стадии (а) суспендируют в жидкой среде, промотирующей развитие про-эмбрионных или пролиферирующих эмбрионных клеточных масс. Важно, чтобы плотность клеток была низкой. Поэтому суспендируют не более 40 мг каллюса/мл культурной среды, предпочтительно не более 15 мг каллюса/мл культурной среды и более предпочтительно не более 5 мг каллюса/мл культурной среды.

В качестве среды, используемой стадии (b), может применяться любая среда, способная индуцировать про-эмбрионные клеточные массы. Такая среда содержит неорганические соли, витамины, источник углерода, а также ауксин. Такая среда может также содержать источники органического азота, цитокинины, аминокислоты и другие адденды, такие как казеиновый гидрализат или кокосовую воду.

Неорганические соли и витамины могут быть теми же, что на стадии (а) (см. выше). Предпочтительными веществами являются MS неорганические соли и витамины В-5.

Источник углерода может быть тем же, что на стадии (а) (см. выше). Предпочтительным источником является сахароза. Концентрация источника углерода составляет 0,1-100 г/л. Предпочтительная концентрация составляет 20 г/л, особенно в том случае, когда источником углерода является сахароза.

Ауксин может выбираться из ауксинов, используемых на стадии (а). Предпочтительными ауксинами являются 2,4-дихлорфеноксиуксусная кислота и пиклорам. Наиболее предпочтительным веществом является ци