Способ торможения ретровирусных протеаз

Реферат

 

Изобретение относится к биохимии. Сущность изобретения: для торможения ретровирусных протеаз вводят соединение общей формулы где A, Y R2,R3,R4,R5,R6, а также остатки со знаком * имеют соответствующие определения. 2 табл.

Изобретение относится к биохимии и касается способа торможения ретровирусных протеаз путем введения ингибитора протеаз.

Известно лишь небольшое количество ингибиторов ВИЧ-протеаза. Первым из них был открыт пепстатин А. IC50 которого равна примерно 0,5 ммоль. Позже было описано несколько других ингибиторов, обладающих от умеренной до высокой активностью.

Большие дозы пепстатина А оказывались в состоянии в процессе биосинтеза тормозить образование нуклеопротеина р24.

Был обнаружен новый класс соединений, тормозящих в ферментном тексте с высокой эффективностью ВИЧ-протеазу.

Согласно данному изобретению предлагается способ торможения ретровирусных протеаз путем введения ингибитора протеаз, отличающийся тем, что в качестве ингибитора используют соединение общей формулы R- (Y)l-( - (I), где Y - остаток формулы - (III), l = 0 или 1; m = 1; А - радикал формулы IV; A* - радикал формулы IV* D - (Е)n - (F)o - (G)p- (IV) D* - (E*)n* - (F*)o* - (G*)p*- (IV*) где D - радикал R1 или радикал формул V, VI или VII; D* - радикал R*1 или радикал формулы V*, VI* или VIII* R1- - CO - (V) R1* - O - (V*) R1-- -CO- (VI) R1*- CO- (VI*) R1-O--CO- (VII) R1*-O-CO- (VII*), где n, n*, 0, 0*, P, P* - независимо друг от друга равны 0 или 1; Е, Е*, F, F*, G и G* - независимо друг от друга означают аминокислоты из группы: Val, Lуs, Lуs (Z), Phe, Сhg, Ser, Asn, Gly, Ile, Тbg, Nva или Npg; R1 и R*1 независимо друг от друга означают: водород, карбоксил, метилсульфонил, трет. бутилсульфонил, трет. -бутоксикарбонил, 2-гидроксиэтилсульфонил, 1,2,3-тригидроксипропил, 1,2,3-триацетоксипропил, бензилоксикарбонил, 4-метилфенилсульфонил, 4-хлорбензилтио, бензилсульфонил, 4-хлорбензилсульфонил, гексадецилсульфонил, 4-амино-1-пиперидинилсульфонил, N-трет. -бутоксикарбонил-4-амино-1-пиперидилсуль-фонил, 4-амино-1-пиперидил-карбонил, N-трет.бутоксикарбонил-4-амино-1-пиперидил-карбонил, 2-амино-3-фенил-пропил, N-трет.бутоксикарбонил-2-амино-3-фенилпропил, 2-амино-1-гидрокси-4-метилпентил, деоксифруктозил-1, маннофуранозил, 4-аминоциклогексилкарбонил, 2-пиридилацетил, 4-пиридилтиоацетил, 2-хинолилкарбонил, 1-нафтилацетил, 1-нафтилоксиацетил, 1-(4-пиридил)-этилсульфонил, 12-аминодеканоил, 4-(N-оксидопиридил), трет.-бутилтио, 4-z-н-трет.-бутоксикарбениламиноциклоге- ксилкарбонил, 4-пиридил, тетрадеканоил, фенил, амино- или трет.-бутоксикарбониламино-группа; R2 и R*2 означают независимо друг от друга: водород, 2-(4-пиридил)-этил, изопропил, изобутил, н-пентил, бензил, 3,4-метилендиоксибензил, 2,4-диметоксибензил, 4-трет.-бутилбензил, 2-фенилэтил или циклогексилметил; R3 и R*3, R4 и R*4, R6 и R*6, R7, R10 и R*10 означают водород; R5 и R*5 означают независимо друг от друга водород или гидроксил; R8 и R*8 означают водород или вместе с R9 или R*9 и связанными с ними атомами образуют 1,2,3,4-тетрагидрохинолиндиил-3,4; R9 и R*9 независимо друг от друга означают водород, гидроксил, ацетокси, н-пропил, изопропил, изобутил, аминометил, 4-аминобутил, гидроксиметил, трет. -бутоксиметил, аминокарбонилметил, 2-бензилоксикарбонилэтил, трет. -бутоксикарбониламинометил, z-нафтилметил, трет.-бутилтиометил, 4-бензилоксикарбониламинобутил, N,No-ди-(бензилоксикарбонил)-гуанидинопропил, циклогексил, циклогексилметил, бензил, 2-фенилэтил, 4-гидроксибензил, 4-метоксибензил, 4-трет. -бутоксибензил, 1-нафтилметил, 2-тиенилметил, 1-имидазолилметил, 3-индолилметил, 4-пиридилметил, 4-(N-оксидопиридил)-метил, 2-метилтиоэтил, 2-метилсульфонилэтил, трет.-бутилсульфонилметил или 2-карбоксиэтил; R11 и R*11 независимо друг от друга означают водород, гидроксил, ацетокси, причем в формуле I одна или несколько амидных групп (-CONH-) в основной цели могут быть заменены на группу -CH2NH- или -CН(OН)СH2-, или физиологически переносимые соли этих соединений.

Под солями соединений формулы I имеются в виду, в частности, фармацевтически приемлемые или нетоксичные соли. Такие соли могут быть, например, образованы соединениями формулы I, имеющими кислые группы, например карбокси-группы, и щелочными или щелочноземельными металлами, такими как, например Na, K, Mg и Са, а также физиологически приемлемыми органическими аминами, такими как, например, триэтиламин и трис-(2-окси-этил)-амин.

Соединения формулы I, имеющие основные группы, например амино- или гуанидино-группы, образуют соли с неорганическими кислотами, такими как, например, серная, соляная или фосфорная кислоты, или с органическими карбоновыми или сульфоновыми кислотами, такими как, например, уксусная, лимонная, бензойная, малеиновая, фумаровая, винная и n-толуолсульфоновая кислоты. Предпочтительными являются соединения формулы I, у которых остатки и символы с или без звездочек соответственно одинаковы. Предпочтительными далее являются соединения формулы I, симметричные относительно C2.

Соединения формулы I получают тем, что осуществляют сочетание фрагмента с концевыми карбоксильными группами или его реакционно-способного производного с соответствующим фрагментом со свободными аминными группами, отщепляют введение (при желании) временно для защиты других функциональных групп защитные группы и полученное соединение при желании переводят в его физиологически приемлемую соль.

Фрагменты соединения формулы I с концевыми карбоксильными группами могут иметь, например, следующую формулу: D-OН (VIII) D-E-OН (IХ) D-F-OH (Х) D-G-OH (ХI) D-Е-F-OН (ХII)_ D-Е-G-OH (ХIII) D-F-G-OH (ХIV) D-Е-F-G-OН (ХIVа) То же самое относится и к аналогичным, помеченным звездочкой остаткам.

Фрагменты соединения формулы I с концевой амино-группой могут иметь, например, следующую формулу: Н-Z-Н (ХV) Н-G-Z-G*-Н (ХVI) Н-F-Z-F*-Н (ХVIa) Н-Е-Z-Е*-Н (ХVIв) H-F-G-Z-G*-F*-H (ХVII) H-E-G-Z-G*-E*-H (ХVIIa) Н-Е-F-Z-F**-Н (ХVIIв) H-E-F-G-Z-G*-F*-E*-Н (ХVIII) причем Z означает остаток формулы R- (Y)l-( R2* (XIX) В случае несимметричных молекул целевого соединения можно использовать и другие, помимо формул ХV-ХVIII, фрагменты, концевая амино-группа которых может быть защищена.

Методы, которые могут быть использованы для получения амидной связи, широко описаны. Предпочтительно использовать следующие методы: метод активированного эфира с N-оксисукцинимидом, 1-оксибензотриазолом или 3-окси-4-оксо-3,4-дигидро-1,2,3-бензотриазином в качестве спиртового компонента, сочетание с карбодиимидом, например дициклогексилкарбодиимидом (DCC) или ангидридом н-пропанфосфоновой кислоты (РРA) и метод смешанных ангидридов с использованием пивалоилхлорида или этилового или изобутилового эфира хлормуравьиной кислоты, или реакцию сочетания с производными фосфония, например бензотриазол-1-ил-окси-трис- (диметиламинофосфонийгексафторфосфатом) (ВОP) или производными уровня, например, 2(1Н-бензотриазол-1-ил)-1,1,3,3- тетраметилуронийтетрафторбаратом (ТВТV).

Фрагменты формулы V или V* могут быть синтезированы обычными способами получения аминокислот; формулы VI или VI* могут быть синтезированы, например, исходя из соответствующих аминокислот, причем при этом сохраняется хиральный центр последних. Диазотирование при -20 50oС в среде разбавленных минеральных кислот приводит к образованию -бромкарбоновых кислот или через молочную кислоту к образованию -трифторметансульфонилоксикарбоновых кислот, которые могут быть подвергнуты взаимодействию с содержащим остатки RI и RII, соответственно RI* и RII*, нуклеофилом, или получаются с использованием в качестве исходных соединений эфиров малоновой кислоты, алкилирование которых приводит к образованию моно- или дизамещенных малоновых эфиров, которые после омыления путем декарбоксилирования переводятся в нужные производные; формулы VII или VII* синтезируются, исходя из соответствующих -аминокислот, причем при этом сохраняется хиральный центр последних. Диазотирование при -20 50oC в среде разбавленных минеральных кислот приводит к образованию молочных кислот, которые могут быть подвергнуты взаимодействию с электрофилом, содержащим заместитель RI или RI*.

Фрагменты формул IХ, Х, ХII и ХIII, ХIV и ХIVa cинтезируют известными методами, использующимися для получения аминокислот и пентидов.

Фрагменты формулы ХV получают, используя в качестве исходных соединений оптически активные -аминокислоты или сахара или их производные. Так, например, для получения фрагментов с m = 1, l = 0, R5= R5* = OН и R6 = R6* = H аминокислоты известным образом переводят в N-защищенные альдегиды аминокислот, затем последние восстанавливают с помощью подходящих металлов, солей металлов или электрохимически в N-защищенные диаминодиолы. С этой целью N-защищенные альдегиды растворяют, например, в тетрагидрофуране, и при -30 60oC, предпочтительно при -10+30oC, путем добавления раствора йодида самария (II) в тетрагидрофуране переводят в N-защищенные диаминодиолы, при отщеплении защитных групп образуются соединения формулы (ХV). В результате получают смесь диастереомеров относительно центров с OН-группами, которую можно разделить на отдельные изомеры известными способами, например путем фракционной кристаллизации и/или с помощью хроматографии.

При синтезе с использованием в качестве исходных соединений сахаров или их производных хиральные центры исходного материала сохраняются или инвертируются. ОН-группы, которые необходимо сохранить, защищают соответствующим образом.

Остальные же активируют путем взаимодействия, например, с хлорангидридом сульфоновой кислоты, и могут быть заменены на нуклеофил. Целевые продукты образуются при этом в виде индивидуальных стереоизомеров.

Используя в качестве исходного соединения, например D-маннит, окси-группы пролиола в положении 3 и 4 защищают путем обработки смесью ацетона и серной кислоты и затем водного раствора уксусной кислоты, получая в результате ацетонит. В результате взаимодействия обеих концевых OH-групп со смесью хлорангидрида n-толуолсульфокислоты и пиридина и последующей обработки карбонатом калия в метаноле получают 1,2R-5R,6-диэпокси-3,4-0-изопропилиден-3R,4R-диол. Обработка этого диэпоксида купратами в среде, например, тетрагидрофурана приводит к раскрытию эпоксида и введению заместителей в положении 1 и 6. После активации OН-групп в положениях 2 и 5 путем взаимодействия с, например, хлорангидридом сульфоновой кислоты они обмениваются путем взаимодействия с азидом. Восстановление обеих азидных групп путем, например, каталитического гидрирования и отщепление ацетонидных защитных групп с помощью смеси HCl и метанола приводит к образованию производных остатка (ХV).

Фрагменты формулы ХV с m = 1, l = 1 и y-остатку формулы III получают путем взаимодействия N-защищенного альдегида аминокислоты (см. выше) в восстановительной среде (например NaBН3СN) c cоответствующим амином. Для этой цели альдегиды растворяют, например, в метаноле и подвергают взаимодействию, например, с ацетатом аммония, и, например, с цианоборгидридом натрия в качестве восстановителя. После отщепления защитных групп получают целевой фрагмент.

Для получения фрагментов формулы ХV с m = 0, l = 0, R5 = OH, R6 = Н соответствующие нитро-производные депротонируют путем взаимодействия с основаниями, например тетраметилгуанидином, и затем проводят реакцию присоединения к N-защищенному альдегиду аминокислоты (см. выше). После восстановления нитро-группы с помощью, например, никеля Ренея и отщепления защитных групп получают соединения формулы ХV в виде диастереомеров, которые разделяют вышеописанным образом.

Фрагменты формулы ХVI, ХVIa, ХVIв, ХVII, ХVIIа, ХVIIв и ХVIII cинтезируют общеизвестными методами получения аминокислот и пептидов.

Пептидные аналоги этого типа могут быть получены известными способами.

Необходимые для получения соединений формулы I предварительные и заключительные операции, такие как введение и отщепление защитных групп, являются известными. Соли соединений формулы I, имеющих солеобразующие группы, получают известным образом, например путем взаимодействия соединения формулы I с основной группой со стехиометрическим количеством подходящей кислоты или путем взаимодействия соединения формулы I c кислой группой со стехиометрическим количеством подходящего основания.

Смесь стереоизомеров, в частности смеси диастереомеров, которые могут образовываться при синтезе соединений формулы I, могут быть разделены известными способами, путем фракционной кристаллизации или с помощью хроматографии.

Соединения формулы I в соответствии с данным изобретением оказывают тормозящее действие на ферменты, в частности они тормозят действие ретровирусных аспартилпротеаз, например ВИЧ-протеаз. Эту их ингибирующую активность, проявляющуюся в пределах концентраций от милли- до наномолярных, можно определить следующим образом.

Принцип испытаний.

В качестве субстрата ВИЧ-протеазы ранее использовался, в частности гептапептид Н-ser-phe-asn-phe-pro-gln-Ile-OH. ВИЧ-протеаза расщепляет указанный субстрат между вторым phe и pro.

Совершенно неожиданно было обнаружено, что замена в этой последовательности пролина на 5-оксапролин дает субстрат, который может расщепляться ВИЧ-протеазой значительно быстрее, что дает возможность проводить анализ быстрее и с меньшим расходом фермента.

Пропись для проведения испытаний ингибиторов ВИЧ-протеаз а) Приготовление раствора субстрата 2 мг H-ser-phe-Asn-phe-opr-gln-Ile-OН (Н-opr-OН=5-оксапропил) растворяют в 1 мл буфера MGТЕ15 (возможно применение при этом ультразвука) и фильтруют полученный раствор через стерильный фильтр (0,45 мкм).

б) Приготовление раствора ингибитора.

Берут навеску ингибитора в количестве, в 2,5 раза превышающем нужную молярность в 1 мл раствора, и растворяют ее в ДМСО (10% от конечного объема). Разбавляют полученный раствор буфером MGТЕ15 до конечного объема и фильтруют его через стерильный фильтр (0,45 мкм).

в) Приготовление раствора протеазы 5 мкл раствора ВИЧ-протеазы разбавляют до нужной концентрации буфером MGТЕ25.

г) Проведение испытаний.

Отбирают пипеткой до 10 мкл раствора субстрата в пробирки (16х100) с завинчивающейся пробкой. Для слепого опыта в пробирку отбирают пипеткой 10 мкл буфера MGТЕ15, содержащего 10% ДМСO. В остальные пробирки добавляют до 10 мкл раствора ингибитора. Пробирки выдерживают в течение 5-10 мин при 37oC, после чего к каждой пробирке добавляют по 5 мкл раствора протеазы. После протекания реакции в течение 2 ч при 37oC из каждой пробы отбирают пипеткой по 10 или 20 мкл (в зависимости от чувствительности прибора для высокопроизводительной жидкостной хроматографии), заливают их в микропузырьки и разбавляют 120 мкл используемой для высокопроизводительной жидкостной хроматографии подвижной фазы.

д) Условия проведения высокопроизводительной жидкостной хроматографии Подвижная фаза: 80% 0,1 М фосфорной кислоты, рН 2,5 20% (мас.%) ацетонитрила Колонка: Merck LIchrOSORB RP18 (5 мкм) 250 4 Скорость протока 1 мл/мин. Температура колонки: 42oC Параметры детектора 215 нм, 0,08 AUF, 18,2oC Продолжительность анализа 11 мин Время удерживания субстрата 8,1 мин Время удерживания тетрапептида с концевым N-атомом: 3,9 мин.

Используемый растворитель 1) буфер MGТЕ15: 20 мМ морфолиноэтансульфокислоты (MES) 15% (W/V) глицерина 0,1 об.% тритона х100 5 мМ ЭДТА 0,5 М NaСl 1 мМ фенилметилсульфонилфторида (PMSF) 2) буфер MGТЕ25 Состав такой же, как и буфера MGТЕ15, с той разницей, что он содержит 25% (W/V) глицерина и дополнительно 1 мМ дитиотрейта (DТТ).

В колбу Эрленмейера загружают MES, ЭДТА, NaCl, ДТТ и PMSF, растворяют их в небольшом количестве воды и устанавливают рН раствора равным 6. В мерную колбу вносят соответствующую навеску глицерина и отмеривают пипеткой тритон x100. Водный раствор переносят в мерную колбу и доводят объем до метки водой.

3) Подвижная фаза для высокопроизводительной жидкостной хроматографии.

Готовят из ортофосфорной кислоты (FLUKA, ч.д.а.) 0,1 М раствор. С помощью триэтиламина (FLUKA, ч.д.а) рН этого раствора устанавливают равным 3,5. Раствор взвешивают и добавляют к нему соответствующее количество ацетонитрила (под тягой). Смесь хорошенько перемешивают и продувают в течение примерно 5 мин гелием для удаления газов.

ж) Оценка При выбранных условиях гептапептиды отделяются от образующегося в результате ферментативного расщепления тетрапептида с концевым N-атомом. Процентное содержание пиков тетрапептида по отношению к сумме тетрапептида и гептапептида характеризует скорость расщепления.

В табл.1 приведены значения IC50, представляющие собой те концентрации ингибитора, при которых скорость расщепления снижается в два раза.

Целевой пептид получали ступенчато по Fmoc-методу, с использованием этерифицированной Fmoc-Ile-OH n-бензилоксикарбонзилово-спиртовой смолы фирмы Novabiochem (загрузка около 0,5 ммоль/г cмолы). Загрузка смолы составляла 1 г. Синтез проводили по программе синтеза, модифицированной для Fmos-метода.

Использовали следующие производные аминокислот: OH, Fmoc-opr-OH, Fmoc-phe-oobt, Fmoc-asn-OH и Fmoc-ser/трет-бут/-oobt. Для синтеза Fmoc-opr-OH синтезировали H-opr-OtBu по методу Vasella и др. (J.С.S. Сhem. Сomm. 1981, с. 97-98) и подвергали его затем взаимодействию с Fmoc-osu в смеси диоксана и воды при соотношении 1:1 в присутствии NaHCO3. При последующем расщеплении третбутилового эфира трифторуксусной кислотой образуется Fmoc-opr-OН.

В патроны реактора загружены по 1 ммоль производного аминокислоты со свободной карбоксильной группой и 0,95 ммоль НOObt. Предварительная активация этих аминокислот осуществлялась непосредственно в патронах путем растворения в 4 мл ДМФ и добавлением 2 мл 0,55 М раствора диизопропилкарбодиимида в диметил. НOObt - эфиры других аминокислот растворяли в 6 мл NMP и затем так же, как и в случае предварительно активированных in situ аминокислот, осуществляли сочетание с предварительно деблокированной 20%-ным раствором пиперидина в ДМФ смолой. После окончания синтеза проводили отщепление пептида (при одновременном удалении защитных групп боковых цепей) путем обработки трифторуксусной кислотой с использованием тиоанизола и этандитиола для связывания катионов. Остаток после отгонки трифторуксусной кислоты многократно настаивали с уксусным эфиром и центрифугировали.

Остаток после центрифугирования подвергали хроматографическому разделению на декстрановом геле с использованием в качестве подвижной фазы 10% -ной уксусной кислоты. Содержащую чистый пептид фракцию упаривали и высушивали с помощью сублимационной сушки.

Масс-спектр (FAB): 854 (М+Н+) Аминокислотный анализ: asp: 0,98, сеr: 0,80, glu: 1,00, Ile: 1,05, phe: 2,10, NH3: 1,76.

Изобретение относится к применению соединений формулы I в качестве лекарственных средств и фармацевтических препаратов, содержащих эти соединения. Предпочтительным является их применение для лечения приматов, в частности человека.

Фармацевтические препараты содержат эффективное количество активного вещества формулы I в комбинации с неорганическим или органическим фармацевтическим приемлемым носителем. Предлагаемые препараты можно вводить в нос, внутривенно, подкожно или перорально. Дозировка активного вещества зависит от вида теплокровного, его веса, возраста и способа введения. Фармацевтические препараты в соответствии с изобретением получают известными способами: путем растворения, смешения, гранулирования, таблетирования.

Для получения оральных форм активные соединения смешивают с используемыми обычно для этих целей вспомогательными добавками, такими как носители, стабилизаторы или инертные разбавители, и с помощью обычных методов формируют из смесей нужные формы, например таблетки, драже, капсулы, водные, спиртовые или масляные суспензии или водные, спиртовые или масляные растворы. В качестве инертных носителей можно использовать, например, гуммиарабик, оксид магния, карбонат магния, фосфат калия, молочный сахар, глюкозу, стеарилфумарат магния или крахмалы, в частности кукурузный крахмал. При этом композиции можно получать как в виде сухого, так и влажного гранулята. В качестве масляных носителей или растворителей можно использовать, например, растительные или животные масла, такие как подсолнечное масло и рыбий жир.

Для подкожного или внутривенного введения активные соединения или их физиологически приемлемые соли, при желании в комбинации с обычно использующимися для таких целей материалами, такими как агенты растворения, эмульгаторы или другие вспомогательные добавки, готовят в виде растворов, суспензий или эмульсий. В качестве растворителей можно использовать воду, физиологические растворы поваренной соли или спирты, например, этанол, пропандиол или глицерин, а также растворы сахаров, таких как глюкоза или маннит, или смеси различных из перечисленных растворителей.

Возможно также использование ретардных композиций для инъекций. В качестве лекарственных препаратов можно использовать, например, кристаллические суспензии, микрокапсулы, палочки или имплантаты, причем последние могут быть выполнены из ткущихся полимеров, в частности биоразлагающихся полимеров, например на базе сополимеров полимолочной и полигликолевой кислот, или из человеческого альбумина.

Сокращения, использующиеся для обозначения аминокислот, соответствуют принятому в химии пептидов трехбуквенному коду (описанному, например, в Еur. J. Biochem. 138. 1984, 9-37). Если это не оговорено, упоминаемые аминокислоты имеют -конфигурацию.

Другие сокращения: FAB - бомбардировка быстрыми атомами М - молекулярный пик БОК - трет.-бутоксикарбонил П р и м е р 1. N,N'-бис-(третбутоксикарбонил-L-фенилаланил-L- валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол.

100 мг N,N'-бис-(L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол дигидрохлорида, 111мг N-третбутоксикарбонил-L-фенилаланина, 0,57 мл N-этилморфолина и 60 мг оксибензотриазола растворяли в 1,5 мл диметилформамида. После добавления к раствору 85 мг ЕDAC при 0oC перемешивание продолжали в течение еще часа при 0oC и затем в течение ночи при комнатной температуре. После этого растворитель отгоняли в вакууме, остаток растворяли в ЕЕ и проводили экстракцию насыщенным раствором KHCO3, 10%-ным раствором KHSO4 и водой. Органическую фазу высушивали безводным NaSO4 и упаривали. Остаток перекристаллизовывали из смеси этанола и воды. Выход составлял 92 мг.

MS (FAB): 993 (М+H)+, 975, 893, 793 ЯМР (270 мГц, ДМСО<D>): 0,72 (д, 6Гц, 6Н); 0,75 (д, 6Гц, 6Н); 1,29 (с, 18Н); 1,86 (м, 2Н); 2,60-2,96 (м, 8Н); 3,30 (м, 2Н); 4,17 (м, 2Н); 4,45 (м, 2Н); 4,68 (м, 2Н); 7,03 (д, 9 Гц, 2Н); 7,05-7,30 (м, 22Н); 7,53 (д, 9 Гц, 2Н).

П р и м е р 2. N,N'-бис-(L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диолдигидрохлорид 220 мг N, N'-бис-(третбутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенил-3,4-0-изопропилиденгексан-3R, 4R-диола растворяли в 10 мл примерно 3 н. раствора НСl в смеси диоксана и метанола при соотношении 1:1 и перемешивали раствор в течение часа при комнатной температуре. Летучие компоненты раствора отгоняли в вакууме и высушивали остаток в глубоком вакууме. Полученный материал использовали без дополнительной очистки на последующей стадии. Выход 184 мг.

Масс-спектр (FAB): 499 (М+Н)+, 481, 463.

П р и м е р 2.1. N,N'-бис-(трет.-бутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенил-3,4-0-изопропилиденгексан-3R, 4R-диол.

136 мг 2S, 5S-диамино-1,6-дифенил-3,4-0-изопропилиденгексан-3R, 4R-диола, 0,54 мг NEM и 260 мг N-третбутоксикарбонил-L-валина растворяли в 2 мл сухого этилацетата. При -10oC к приготовленному раствору добавляли 0,97 мл 50%-ного раствора ангидрида н-пропил фосфоновой кислоты и этилацетата. Смесь перемешивали в течение часа при 0oC и затем в течение ночи при комнатной температуре. После этого раствор разбавляли этилацетатом и последовательно экстрагировали насыщенным раствором NaHCO3 10%-ным раствором KHSO4 и водой. Органическую фазу высушивали над безводным MgSO4, упаривали в остаток, подвергали очистке с помощью хроматографии на силикагеле (подвижная фаза: смесь дихлорметана и метанола при соотношении 97:3). Выход целевого соединения 230 мг.

Масс-спектр (FAB): 739 (М+Н)+, 681, 639, 569, 539.

П р и м е р 2.2. 2S, 5S-диамино-1,6-дифенил-3,4-0-изопропилиденгексан-3R, 4R-диол.

2,3 г 2S, 5S-диазидо-1,6-дифенил-1,6-0-изопропилиденгексан-3R, 4R-диола растворяли в 50 мл метанола и приготовленный раствор подвергали гидрированию в течение 2 ч при нормальном давлении в присутствии примерно 0,2 г палладия на угле (10%). Катализатор затем отфильтровывали и после упаривания раствора остаток подвергали хроматографическому разделению на силикагеле (подвижная фаза: смесь дихлорметана и метанола при соотношении 99:1). Выход 1,33 г.

Масс-спектр (FAB): 341 (М+Н)+ ЯМР (270 мГц, ДМСО<D>): 1,29 (м, 4Н); 1,37 (с, 6Н); 2,71 (двойной д, 12 Гц, 5 Гц, 2Н); 2,870 (м, 2Н); 3,32 (м, 2Н); 3,95 (с, 2Н); 7,12-7,33 (м, 10Н).

П р и м е р 2.3. 2S, 5S-диазидо-1,6-дифенил-3,4-0- изопропилиденгексан-3R, 4R-диол 8,5 г 2R, 5R-ди-(4-нитрофенилсульфонилокси)-1,6- дифенил-3,4-0-изопропилиденгексан-3S, 4S-диола растворяли в 300 мл ДМФ и приготовленный раствор нагревали в течение 4 ч при 50oC примерно 9,2 г NaN3 и 6,3 г 18-крон-6. Большую часть растворителя отгоняли затем в вакууме, остаток растворяли в эфире и проводили экстракцию водным раствором NaHCO3. После промывки водой органическую фазу высушивали и упаривали. Остаток подвергали хроматографическому разделению на силикагеле (подвижная фаза: cмесь толуола и н-гектана в соотношении 2:5-2:3). В результате получали 2,37 г целевого соединения.

ЯМР (270 мГц, ДМСО<D>): 1,48 (с, 6Н); 2,92-3,12 (м, 4Н); 3,74 (двойной д, 10 Гц, 5 Гц, 2Н); 4,15 (с, 2Н); 7,21-7,30 (м, 10Н).

П р и м е р 2.4. 2R, 5R-ди-(4-нитрофенилсульфонилокси) -1,6-дифенил-3,4-0-изопропилиденгексан-3S, 4S-диол.

5,6 г 2R, 5R-диокси-1,6-дифенил-3,4-0-изопропилиденгексан-3R, 4R-диола, 7,9 г 4-диметиламинопиридина растворяли в 300 мл хлороформа. К приготовленному раствору добавляли при комнатной температуре 14,5 г п-нитробензолсульфонилхлорида и перемешивали смесь в течение 3 ч при 50oС. После этого ее разбавляли метиленхлоридом и экстрагировали последовательно растворами бикарбоната, KHSO4 и NaCl. После высушивания органической фазы ее упаривали. Выход: 11,8 г.

Масс-спектр (FAB): 713 (М+Н)+, 697, 510.

ЯМР (270 мГц, ДМСО < D6 >): 1,42 (с, 6Н); 2,87 (двойной д, 15 Гц, 9 Гц, 2Н); 3,11 (двойной д, 15 Гц, 3 Гц, 2Н); 4,41(c,2H); 5,07 (дм, 9 Гц, 2Н); 6,95-7,11 (м, 10Н); 7,73 (д, 9 Гц, 4Н); 8,18 (д, 9 Гц, 4Н).

П р и м е р 2.5. 2R, 5R-диокси-1,6-дифенил-3,4-0- изопропилиден-3R, 4R-диол 1,12 г 1,2R-5R,6-диэпокси-3,4-0-изопропилиден-3R-4R-диола добавляли в атмосфере аргона при -78oC к раствору 36 ммоль (С6Н5)2 СuLi в 60 мл сухого эфира. После этого удаляли охлаждающую баню и при перемешивании нагревали смесь до комнатной температуры. Затем ее смешивали с 250 мл этилацетата и трижды экстрагировали смесью 25%-ного аммиака и хлорида аммония. Фазу этилацетата промывали раствором NaCl, высушивали и упаривали. Остаток подвергали очистке с помощью хроматографии на силикагеле (подвижная фаза: смесь дихлорметана и этилацетата при соотношении (97:3)-(90:10). В результате получали 1,86 г целевого соединения.

Масс-спектр (FAB): 343 (М+Н)+, 327, 285, 267.

ЯМР (270 мГц, ДМСО<D>): 1,39 (с, 6Н); 2,58 (двойной д, 13 Гц, 9 Гц, 2Н); 3,43 (двойной д, 13 Гц, 3 Гц, 2Н); 3,68 (м, 2Н), 3,83 (м, 2Н); 5,05 (д, 6 Гц, 2Н); 7,14-7,32 (м, 10Н).

П р и м е р ы 3-5. 3) N,N'-бис-(трет.-бутоксикарбонил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол.

4) N,N'-бис-(третбутоксикарбонил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диол.

5) N,N'-бис-(трет.-бутоксикарбонил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4S-диол.

17 г третбутоксикарбонил-L-фенилаланина растворяли в 500 мл сухого тетрагидрофурана и охлаждали раствор до 0oС в атмосфере аргона. Затем к нему добавляли в течение примерно 20 мин 1 л 0,1 М. раствора SmI2 в тетрагидрофуране и перемешивали смесь в течение 30 мин при комнатной температуре, подкисляли 0,1 н. водным раствором НСl до рН 1-2, разбавляли ЕЕ, отделяли органическую фазу и проводили из нее экстракцию 0,1 н. НСl, дважды раствором Na2S2O3 и дважды водой. После высушивания над MgSO4 ее упаривали и подвергали хроматографии на силикагеле (подвижная фаза: смесь этилацетата и петролейного эфира при соотношении 1:2).

Фракцию, содержащую 3R, 4R-изомер, перекристаллизовывали из смеси этанола и воды.

Из фракции, содержавшей 3S, 4S- и 3R, 4S-изомеры, 3S, 4S-изомер можно было получать путем кристаллизации из смеси дихлорметана, изопропилового эфира и гептана. Для получения 3R, 4S-изомера меточный раствор подвергали хроматографическому разделению на силикагеле R Р18 (подвижная фаза; смесь ацетонитрила и воды при соотношении 4:6).

Выход: 3R, 4R-изомер 1,61 г; 3S, 4S-изомер 1,00 г; 3R, 4S-изомер 0,71 г.

Rf: силикагель, смесь ЕЕ и гексана при соотношении 1:2; 3R, 4R-изомер 0,18; 3S, 4S-изомер 0,41; 3R, 4S-изомер 0,39.

Масс-спектр (FAB): 501 (М+Н)+, 401, 345, 327, 301 - 3R, 4R-изомер; 501 (М+Н)+, 401, 345, 327, 301 - 3S, 4S-изомер; 501 (М+Н)+, 401, 345, 327 - 3R, 4S-изомер.

1Н-ЯMP (270 мГц, ДМСO<D>) представлен в табл.2.

Идентификацию 3R, 4S-изомера осуществляли по двойному набору сигналов, 3R, 4R- и 3S, 4S-изомеры различали путем сравнения с синтетическими образцами, полученными из D-маннита (см. пример 3.1). Определение констант сочетания после отщепления третбутоксикарбонильных групп и перевода изомеров с помощью фосгена в двойную 2-оксазолидиноновую систему давало согласующие результаты.

П р и м е р 3.1. Определение стереоконфигурации изомеров в соответствии с примерами 3-5.

N, N'-бис-(трет.-бутоксикарбонил)-2S, 5S-диамино-1,6-дифенил-гексан-3R, 4R-диол 140 мг 2S,5S-диамино-1,6-дифенил-3,4-0- изопропилиденгексан-3R,4R-диола растворяли в смеси 5 мл 1 н. НСl в метаноле и 5 мл 5 н. НСl в диоксане и перемешивали раствор в течение 4 ч при комнатной температуре. Летучие компоненты отгоняли в вакууме. Остаток высушивали в глубоком вакууме и полученный 2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диолдигидрохлорид (масс-спектр (FAB): 301 (М+Н)+ cвободного основания) без дополнительной очистки использовали на последующей стадии.

45 мг 2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диолдигидрохлорида растворяли в 5 мл сухого дихлорметана и перемешивали в течение 3 ч при комнатной температуре с 40 мкл триэтиламина и 75 мг дитретбутилового эфира пироугольной кислоты. Смесь затем разбавляли дихлорметаном и подвергали ее экстракции растворами KHSO4, NаHCO3 и NaCI. После высушивания над безводным Na2SO4 органическую фазу упаривали и остаток очищали с помощью хроматографии на силикагеле, используя в качестве подвижной фазы смесь ацетонитрила и DCM в соотношении 1:8. Выход 23 мг.

Масс-спектр (FAB): 501 (М+H)+, 401, 345, 327, 301.

Полученное соединение было идентичным наиболее полярному из изомеров в соответствии с примерами 3-5.

П р и м е р 6. N,N'-бис-(третбутоксикарбонил-L-фенилаланил-L- валил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диол 38 мг N,N'-бис-(третбутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диола обрабатывали в течение 30 мин 5 н. HCl в диоксане. Летучие компоненты удаляли в вакууме и остаток высушивали. Полученный таким образом N, N'-бис-(L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диол-дигидрохлорид вместе с 40 мг третбутоксикарбонилфенилаланина, 22 мг гидроксибензотриазола и 51 мг тетрафторбората 2-(1Н-бензотриазолил-1)-1,1,3,3- тетраметилуронил (ТБТУ) растворяли в 1 мл сухого диметилформамида. К раствору добавляли 60 мкл этилдиизопропиламина и перемешивали смесь в течение 15 мин при комнатной температуре. Диметилформамид отгоняли, остаток растворяли в этилацетате и экстрагировали последовательно растворами KHSO4, NaHCO3 и водой. После высушивания над MgSO4 органическую фазу концентрировали, причем при этом происходило выпадение кристаллического осадка, который отфильтровывали, промывали эфиром и получали в результате 30 мг целевого соединения.

Масс-спектр (FAB): 1015 (М+Na)+, 993 (М+H)+, 893, 793.

ЯМР (270 мГц, ДМСО < D6 >): 0,79 (м, 12Н); 1,28 (с, 18Н); 1,85 (м, 2Н); 2,68-2,82 (м, 4Н); 2,85-3,03 (м, 4Н); 3,37 (м, 2Н); 4,00-4,13 (м, 4Н); 4,21 (м, 2Н); 4,66 (д, 7 Гц, 2Н); 7,03 (д, 7Гц, 2Н); 7,05-7,34 (м, 2OН); 7,62 (д, 7Гц, 2Н); 7,68 (д, 8Гц, 2Н).

П р и м е р 7. N,N'-бис-(третбутоксикарбонил-L- фенилаланил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4S-диол.

Целевое соединение синтезировали по способу, аналогичному описанному в примере 6, используя в качестве исходного соединения N,N'-бис-(требутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4S-диол.

Масс-спектр (FAB), 1015 (М+Na)+, 993 (М+H)+, 893, 793.

ЯМР (270 мГц, ДМСО < D6 >): 0,68-0,85 (м, 12Н); 1,28 (с, 9Н); 1,30 (с, 9Н); 1,75-2,03 (м, 2Н); примерно 2,5-3,30 (м, 8Н); примерно 3,3-3,51 (м, 2Н); 4,05-4,30 (м, 5Н); 4,43 (м, 1Н); 4,74 (д, 4 Гц, 1Н); 5,32 (д, 7 Гц, 1Н); 6,93-7,35 (м, 22Н); 7,61 (д, 8 Гц, 1Н); 7,67 (д, 7 Гц, 1Н); 7,85 (д, 8 Гц, 1Н); 7,92 (д, 7 Гц, 1Н).

П р и м е р 8. N,NI-бис-(требутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диол.

164 мг N, N'-бис-(требутоксикарбонил)-2S, 5S-диамино-1,6-дифенилгексан-3S, 4S-диола обрабатывали в течение 1,5 ч при комнатной температуре 10 мл 5 н. НСl в диоксане. Летучие компоненты затем удаляли в вакууме и остаток высушивали. Полученный таким образом 2S, 5S-диамино-1,6-дифенил-гексан-3S, 4S-диол дигидрохлорид растворяли вместе с 178 мл третбутоксикарбонил-L-валина и 0,56 мл NEM в 15 мл сухого диметилформамида. К полученному раствору добавляли при -5oC 0,53 мл 50%-ного раствора ангидрида н-пропил-фосфоновой кислоты (АПФ) в этилацетате, перемешивали смесь в течение часа при 0oC и затем в течение ночи при комнатной температуре, растворитель отгоняли, в ротационном испарителе, остаток растворяли в этилацетате и подвергали экстракции водой, растворами NaHCO3 и KHSO4 и снова водой. После высушивания над безводным Na2SO4 органическую фазу упаривали в вакууме. При обработке остатка диэтиловым эфиром выпадал кристаллический осадок продукта, который перекристаллизовывали из смеси этанола и воды. Выход 59 мг.

Масс-спектр (FAB): 699 (М+H)+, 599, 499.

П р и м е р 9. N,N'-бис-(третбутоксикарбонил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R,4S-диол.

Синтез осуществляли таким же образом, как и в примере 8, используя в качестве исходного соединения N,N'-бис-(третбутоксикарбонил)-2S, 5S-диамино-1,6-дифенилгексан-3R,4S-диол.

Масс-спектр (FAB): 699 (М+H)+, 599, 499.

П р и м е р 10. N,N'-бис-(L-лизил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол-тетрагидрохлорид.

Синтез осуществляли таким же образом, как и в примере 2, из соединения в соответствии с примером 11.

Масс-спектр (FAB, LiI), 761 (М+Li)+, 755 (М+Н)+, 737.

П р и м е р 11. N,N'-бис-(N < третбутоксикарбонил>-L-лизил-L-валил) 2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол-дигидрохлорид.

36 мг N,N'-бис-(<N -бензилоксикарбонил-N -третбутоксикарбонил>L-лизил-L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диола, синтезированного таким же образом, как и в случае примера 1, из N-бензилоксикарбонил-N-требутоксикарбонил-L-лизина и N,N'-бис-(L-валил)-2S, 5S-диамино-1,6-дифенилгексан-3R, 4R-диол дигидрохлорида гидрировали в присутствии палладиевого катализатора на активированном угле в среде метанола, рН раствора при этом с помощью раствора НСl в метаноле поддерживали равным примеров 3-4. После отфильтровывания катализатора и концентрир