Способ симметрирования трехфазной нагрузки

Реферат

 

Сущность изобретения: измеряют комплексы фазных токов несимметричной нагрузки и напряжение сети. Вычисляют проводимость симметрирующего элемента по приведенной формуле. Симметрирующий элемент имеет активно-реактивный характер. В зависимости от знака вычисленной реактивной составляющей симметрирующий элемент может быть как активно-емкостным, так и активно-индуктивным. Симметрирующий подключается на фазное напряжение трехфазной сети.

Изобретение относится к электротехнике и может быть использовано для симметрирования трехфазных нагрузок и сетей, несимметрия которых обусловлена эксплуатацией однофазных и трехфазных несимметричных нагрузок.

Известны способы симметрирования несимметричных трехфазных сетей и нагрузок [1,2] . Эти способы сводятся в основном к симметрированию системы несимметричных токов и напряжений при помощи либо рационального распределения (равномерного) нагрузок по фазам, либо при помощи управляемых и неуправляемых емкостных и индуктивных симметрирующих устройств в зависимости от характера графика нагрузок.

Наиболее близким к предлагаемому способу по технической сущности является способ [3], в основу которого положено известное уравнение по определению обратной составляющей токов, напряжений и т.п.

Недостатки указанных способов заключаются в том, что они сложны требуют больших экономических затрат, обусловленных применением трехфазных симметрирующих устройств при симметрировании трехфазных сетей.

Цель изобретения - упрощение симметрирования несимметричных трехфазных нагрузок и сетей. Данный способ позволяет быстро и без особых затрат определить величину симметрирующего элемента для любой заранее выбранной фазы и, включив его лишь в эту фазу, исключить обратную ее составляющую в целом всей несимметричной трехфазной сети. Полученные величины симметрирующего элемента, в которых участвуют при их определении параметры всех трех фаз, предопределяют наиболее экономичную конструкцию симметрирующего элемента.

Цель достигается тем, что при этом способе симметрирования трехфазной нагрузки, заключающемся в измерении величин и аргументов фазных токов несимметричной нагрузки, напряжения трехфазной сети, вычислении величин проводимостей симметрирующих элементов и подключении симметрирующих элементов к трехфазной сети с вычисленными величинами проводимостей, которые вычисляют по следующей формуле: g1 jb1= (+)+j(-)-/, (1) где g1, b1 - активная и реактивная составляющие проводимостей симметрирующего элемента, подключаемого к выбранной фазе 1 (А); U - напряжение трехфазной сети; , , - комплексы фазных токов несимметричной нагрузки, индекс 2 означает опережающую фазу, а индекс 3 - отстающую фазу по отношению к выбранной фазе 1, к которой подключается симметрирующий элемент.

Обобщенное уравнение (1) в комплексной форме в развернутом виде будет иметь вид: (2) или аналогично (1) (3) Найденный симметрирующий элемент может быть либо активно-емкостным, либо активно-индуктивным; это зависит от величины и характера нагрузок в фазах. Обобщенные формулы всегда дают возможность определить альтернативные значения симметрирующих элементов по отношению к выбранной фазе. Абсолютные значения величин, найденных при помощи обобщенных формул (1) и (3), всегда будут равны | I1 | = | I2 | = | I3 |, |g1b1|= |g2b2|= |g3 b3|; комплексные их значения не равны g1jb1g2jb2g3jb3.

В процессе конструирования симметрирующего элемента величину элемента, вычисленную при помощи обобщенной формулы (1) и подлежащую включению в выбранную фазу для исключения обратной составляющей, следует проверить при помощи известной формулы составляющей обратной последовательности I2= IA+a2IB+aI.

Изобретение иллюстрируется следующими примерами.

1. Замеренные токи в фазах и их отстающие фазовые углы IA=I1=1940A; IB=I2=862A; IC=I3=1117A; UA=UB=UC=220B.

2. Симметрирующую токовую нагрузку определяют по формуле (1) I = I=(I2+I3)+j(I2-I3)-I1= (3,76-j7,04+10,56-j3,19)+ +j(3,76-j7,04-10,56+j3,19)-14,55+j12,21 = -4,06+j1,2 A, I= 4,2316A. Как видно из результата, полученная величина с отрицательным знаком перед действительной частью комплексного числа не имеет смысла.

Можно получить альтернативное значение симметрирующего элемента по обобщенной формуле (1) для другой выбранной фазы, например фазы В (2) I = I=(I3+I1)+j(I3-I1)-I2= (10,56-j3,19+14,55-j12,21)+ +j(10,56-j3,19-14,55+j12,21)-3,76+j7,04=0,99-j4,2 A, I = 4,2376A.

Для фазы С (3) I = I=(I1+I2)+j(I1-I2)-I3= (14,55-j12,21+3,76-j7,04)+ +j(14,55-j12,21-3,76+j7,04)-10,56+j3,19=3,07+j2,91 A, = 4,2343A.

Таким образом, для симметрирования трехфазной сети (нагрузки) необходимо включить фазу В активно-индуктивный симметрирующий элемент, либо в фазу С - активно-емкостный g2-jb2= = 0,0045-j0,0187 Cм; g3+jb3= = 0,014+j0,013 Cм.

Включенные в фазу В активно-индуктивный симметрирующий элемент, либо в фазу С - активно-емкостный, должны привести к симметрированию несимметричную трехфазную сеть (нагрузку), т.е. геометрическая сумма фактической величины комплексного значения тока в фазе В (С) и величины симметрирующего элемента приведут составляющую обратной последовательности к нулю. Проверка производится по величине числителя, полученного обобщенной формулой (1).

По фазе В I2= (IB+a2IC+aIA) = (I2+(I-jI)+a2I3+aI1) = = (3,76-j12,21+(0,99-j4,12)+(- -j)(10,56-j3,19) + + (- +j)(14,55-j12,21) = 0.

По фазе С I2= (IC+a2IA+aIB) = (I3+(I+jI)+a2I1+aI2) = = (10,56-j3,19+(3,07+j2,91)+(- -j) (10,56-j3,19) + + (- +j)(14,55-j12,21) = 0. Как следует из примеров, полученные симметрирующие элементы: активно-индуктивный, включенный в фазу В, либо активно-емкостный, включенный в фазу С, в обоих случаях приводят трехфазную сеть (нагрузку) к нулю.

Формула изобретения

СПОСОБ СИММЕТРИРОВАНИЯ ТРЕХФАЗНОЙ НАГРУЗКИ, заключающийся в измерении величин и аргументов комплексов фазных токов несимметричной нагрузки, измерении напряжения трехфазной сети, вычислении величин проводимостей симметрирующих элементов и подключении симметрирующих элементов к трехфазной сети с вычисленными величинами проводимостей, отличающийся тем, что, с целью упрощения, вычисления величин проводимостей производят по следующему выражению: где U - напряжение трехфазной сети; - комплексы фазных токов несимметричной нагрузки; индекс 2 - опережающая фаза; индекс 3 - отстающая фаза по отношению к выбранной фазе 1, к которой подключается симметрирующий элемент с активной g1 и реактивной b1 составляющими проводимости, причем если реактивная проводимость b1 > 0, то элемент является емкостным, а если b1 < 0, - то индуктивным.