Способ получения тилозина

Реферат

 

Использование: генетическая инженерия, в частности, к способу получения тилозина в результате культивирования штаммов трансформированной рекомбинантной плазмидной ДНК. Сущность изобретения: способ получения тилозина предусматривает культивирование штамма Streptomyces fradiae, трансформированного рекомбинантной плазмидной ДНК pHJ 2280 или pH I2 311 или pH I2 315 содержащей гены биосинтеза тилозина tyl C, tyl D, tyl E, tyl F, или tyl H, или tyl K, tyl L или tyl M. 7 ил. 5 табл.

Изобретение направлено на способ получения тилозина, предусматривающий трансформацию стрептомицетов последовательностью ДНК, содержащей гены блосинтеза антибиотика.

Изобретение является одним из первых и очень важных промышленных разработок технологии рекомбинантной ДНК для практического использования в продуцирующих антибиотик организмах, таких как стрептомицеты.

Большинство технологий рекомбинантной ДНК, применяемой для стрептомицетов и других продуцирующих антибиотики организмов, ограничивались разработкой векторов клонирования. Первыми примерами таких технологий являются описание патента США N 4 332 898 Reusser U.S. и патентов США N N 4273875; 4332900; 4338400; и 4340674 Manis и др.

Трансформация стрептомицетов не была описана ни в одной из ранних публикаций. Усовершенствованные векторы, проявляющие значительно большие возможности для использования в продуцирующих антибиотики организмах, были описаны, например, Feyerman и др. патент США N 4513086, и Nakatsukasa и др. патенты США N 4513085 и 4416994. Эти усовершенствованные векторы включают сигнальные гены, которые являются отбираемыми в стрептомицетах и могут использоваться для трансформации многих важных штаммов Streptomyces, и составляют средства, необходимые для проведения более сложных экспериментов генного клонирования.

Об одном таком эксперименте недавно сообщалось Hopwood и др. 1985 г, в журнале Nature 314, 642. Хотя Hopwood и др. сообщали о продуцировании новых гибридных антибиотических пигментов, в данной публикации ничего не говорится об увеличении способности к продуцированию антибиотика или об эффективности биосинтеза данной клетки хозяина, но говорится о переносе генов биосинтеза актинородинового пигмента от одного штамма Streptomyces к другому.

Известен также способ получения тилозина путем культивирования штамма Streptomyces fradiae в питательной среде, выделение и очистку целевого продукта (А.С. СССР N 755837, кл. С 12 N 15/00, 15.08.80 прототип).

Согласно данному изобретению используются гены биосинтеза тилозина, которые увеличивают способность продуцировать антибиотик. Один такой ген кодирует фермент, макроцин 0 метилтрансфераза, катализирует конечный этап биосинтеза тилозина. Трансформация продуцирующих тилозин микроорганизмов геном, кодирующим макролин-0-метилтрансферазу, обозначаемым как tyl F. приводит в результате к улучшенному пути биосинтеза тилозина ввиду повышенных содержаний генного продукта tyl F в трансформированных клетках. Было клонировано небольшое количество генов биосинтеза антибиотиков. Способы выделения генов биосинтеза антибиотиков уже были разработаны, но один особенно предпочтительный способ выделения генов был описан Baltz и др. патентная заявка США, номер серии 742 349, 07.06.85, (Эквивалента Европейской патентной заявке N 86304239, 6), которая рассматривается здесь как ссылочный материал. Отвечающие данному изобретению гены биосинтеза антибиотика тилозина, используемые в описываемых примерах первоначально выделялись из библиотеки , построение которой в основном соответствует методике, описанной Fishman и др. 1985, J. Bacteriology 166, 199-206.

Способ поясняется фиг. 1-7.

На фиг. 1 показано схематическое воспроизведение пути биосинтеза тилозина, каждая стрелка показывает этап, который катализируется одним или несколькими генными продуктами биосинтеза тилозина. Ген (гены), ответственный за каждую конверсию, показан над каждой стрелкой. Каждое обозначение генотипа может относиться к классу генов, который способствует образованию одного и того же фенотипа. Для осуществления данного изобретения используется целый ряд векторов экспрессии. Эти векторы включают один или несколько генов биосинтеза тилозина и могут быть получены из библиотеки Северной Региональной Научно-Исследовательской Лаборатории (NRRL). Пеория, Иллинойс, 61604.

В тал. 1 представлено краткое описание каждой из плазмид, используемых для осуществления способа данного изобретения.

Описывается ряд штаммов Streptomyces fradial, которые имеют гены биосинтеза мутанта тилозина, и, следовательно, образуют значительно меньше тилозина, чем штамм, от которого они образованы. В табл. 2 дается краткое описание этих мутантных штаммов.

На фиг. 2 РНJL 280 показана рестрикционная и функциональная карта плазмиды; на фиг. 3 рНJL 284 рестрикционная и функциональная карта плазмиды; на фиг. 4 рHJL 309 рестрикционная и функциональная карта плазмиды; на фиг. 5 рНJL311 рестрикционная и функциональная карта плазмиды; на фиг. 6 рНJL 315 рестрикционная и функциональная карта плазмиды; на фиг. 7 хромосомная организация генов биосинтеза тилозина.

Плазмиды рНJL280, рНJL284 и рНJL315 были использованы для трансформации Streptomyces fradial GS15 и Streptomyces fradiae GS28. Штаммы GS15 и GS28 были получены от S.fradiae С4 путем мутагенеза нитрозогуанидином. S.fradiae C4 был получен от S.fradiae T59235 (АТСС 19609) путем мутагенеза. Штамм GS 15 почти не образует тилозина и штамм GS 28 дает очень маленькие концентрации тилозина по сравнению с штаммом С4. Пониженная способность к продуцированию тилозина у штаммов GS15 и GS28 или отсутствие этой способности вообще является результатом мутаций, влияющих на ген tyl F, который кодирует макроцин-0-метилтрансферазу (МОМТ). Фермент МОМТ, который требуется для превращения макроцина в тилозин путем биосинтеза тилозина, очень часто присутствует в количествах, ограничивающих скорость реакции, в продуцирующих тилозин штаммах. Плазмиды рНJL280, рНJL284 и рНJL315 устраняют это ограничение реакции посредством увеличения как числа копий гена биосинтеза так и концентрации макроцин-0-метилтрансферазы, доступной для синтеза тилозина. Согласно этому ферментация S. fradiae GS 15/рНJL280, S.fradiae GS 6515/рНJL 284, S. fradiae GS 15/рНJL 315, S.fradiae GS 28/рНJL 284, S.fradiae GS28/рНJL280 и S.fradiae GS 28/рНJL 315 в течение 72 ч приводит в результате примерно к 2-6 кратному увеличению продуцирования микроцин-0-метилтрансферазы по сравнению с той, которая образуется в случае штамма С4 и к 120 кратному увеличению по сравнению с той, которая образуется в случае штамма GS28.

Плазмида рНJL280 использовалась также для трансформации: (1) Streptomyces fradiae GS 16; S.fradiae GS 48, (3) S.fradiae GS 76 и (4). S.fradiae GS 88, которые продуцируют тилозин ниже точки обнаружения и получены путем мутагенеза штамма С4. Нетрансформированные штаммы GS16, GS48, GS76 и GS88 продуцируют соответственно дефектный фермент или ограничивающее скорость реакций количество (1) tyl E, деметилмакроцин-0-метилтрансферазы, фермента; (2) фермента tyl D, который необходим для добавления или биосинтеза-6-деокси-Д-аллозы; (3) фермента tyl H, который необходим для окисления С-23 метилового положения тилактона; и (4) фермента tyl J. Нетрансформированные штаммы GS 16, GS48, GS76 и GS88 соответственно имеют тенденцию к накоплению деметилмакроцина, демицинозилтилозина, 23 деоксидемицинозилтилозина и демицинозилтилозина, а не желаемых тилозиновых антибиотических соединений.

Плазмиды рНJL280 обеспечивают также средство увеличения эффективности биосинтеза тилозина не только за счет недефектного гена, но также за счет увеличения числа воспроизведения генов биосинтеза tylD, tylE, tylH и tylJ, а также за счет увеличения внутриклеточного количества продукта, определяемых этими генами. Концентрация имеющегося генного продукта tyl E таким образом увеличивается, приводя в результате к повышенному количеству фермента, способного вызывать конверсию деметилмакролина в макроцин и в тилозин в процессе биосинтеза тилозина.

Аналогично этому концентрация имеющихся генных продуктов tylD, tylH и tylJ также увеличивается, приводя в результате к продуцированию повышенных количеств ферментов, способных обеспечивать ввод -6-деокси-D-аллозы и С-23 окисления предшественников тилозина. Ферментация Streptomyces fradiae GS 16/рНJL280, S. fradiae GS 48/рНJL280, S.fradiae GS76 рНJL280 и S.fradiae GS 88/рНJL280 в течение 144-168 ч приводит в результате к выходам тилозина, которые значительно выше выходов в случае нетрансформированных мутантных штаммов, продуцирующих небольшое количество тилозина. Такие трансформированные штаммы имеют более высокие концентрации специфических ферментов, кодируемых плазмидой рНJL280, чем родственный штамм С4, и таким образом служит дополнительным примером осуществления настоящего изобретения. Плазмида рНJL280 может использоваться для повышения способности к продуцированию тилозина любого организма, в котором генные продукты tylD, tylE, tylF, tyl Н или tylJ)(или любая их комбинация) присутствуют в количествах, ограничивающих скорость реакции биосинтеза тилозина.

Плазмида рНJL284 была использована для трансформации Streptomyces fradiae GS 52, мутантного штамма, продуцирующего небольшое количество тилозина, образованного от штамма С4, который продуцирует ограничивающие скорость реакции количества фермента, необходимого для биосинтеза или добавления микарозы к де-0-метил-лактеноцину. Таким образом, реакция биосинтеза тилозина Streptomyces fradiae GS 52 приводит к образованию десмикозина, а не желаемого антибиотика тилозина. Плазмида рНJL284 обеспечивает средство повышения эффективности синтеза за счет недефектного гена биосинтеза и за счет увеличения числа воспроизведения гена биосинтеза tylС. Концентрация имеющегося генного продукта tylC в трансформированном штамме таким образом увеличивается, приводя в результате к повышенному продуцированию фермента, способного обеспечивать желаемую реакцию присоединения. Таким образом, ферментация Streptomyces fradiae GS 52/рНJL284 в течение 144-168 ч приводит в результате к продуцированию такого количества тилозина, которое значительно превышает количество нетрасформированного мутантного штамма и которое приводит в результате к более высоким концентрациям фермента tylС, чем концентрации в родственном штамме С4. Плазмида рНJL284 используется также в способе данного изобретения с целью увеличения способности Streptomyces fradiae GS88, мутанта tylJ, продуцировать тилозин, и таким образом она может быть использована согласно данному способу для повышения способности продуцирования тилозина любого организма, в котором генные продукты tyl C, tylF или tyl J (или любая их комбинация) присутствуют в количествах, ограничивающих скорость реакции биосинтеза тилозина.

Плазмида рНJL309 содержит гены биосинтеза tylL и tylM, была использована в способе данного изобретения для повышения способности к продуцированию тилозина организма Streptomuces fradiae GS 33, Mутанта tyl L и GS 62, мутанта tyl М. Плазмида рНJL309 может использоваться также в способе данного изобретения для повышения способности продуцирования тилозина любого организма, в котором генные продукты tyl L или tyl M (или оба) присутствуют в количествах, ограничивающих скорость реакции биосинтеза тилозина.

Плазмида рНJL311 содержит гены биосинтеза tyl C, tyl F, tyl H, tyl J и tyl K, и таким образом она использована в способе данного изобретения с целью повышения способности к продуцированию тилозина у организма Streptomyces fradiae GS 52, мутанта tyl GS; 88, мутанта tyl J; GS 15 и GS 28, которые оба являются мутантами tyl F и GS 85 мутанта tyl K. Плазмида рНJL 311 может использоваться также в способе данного изобретения для повышения способности к продуцированию тилозина у любого организма, в котором генные продукты tyl C, tyl F, tyl H, tyl J или tyl K (или любая их комбинация) присутствуют в количествах ограничивающих скорость реакции биосинтеза тилозина.

Плазмида рНJL315 содержит гены биосинтеза tyl D, tyl E, tyl F, tyl Н и tyl J и таким образом она использовалась в способе данного изобретения для повышения способности к продуцированию тилозина у организма Streptomuces fradiae GS 48, мутанта tyl D; GS 88, мутанта tyl J; GS 16. мутанта tyl E. GS 76, двойного мутанта tyl D, tyl H; и GS 15 и GS 28, которые оба представляют собой мутанты tyl F. Плазмида рНJL315 может быть также использована в способе данного изобретения для повышения способности к продуцированию тилозина у любого организма, в котором генные продукты tyl D, tyl E, tyl F, tyl H или tyl J (или любая их комбинация) присутствуют в количествах, ограничивающих скорость реакции биосинтеза тилозина.

Данные результаты показывают, что векторы, отвечающие настоящему изобретению, могут увеличивать способность к продуцированию антибиотика у образующего антибиотик организма за счет более высокой концентрации фермента или другого генного продукта, который является ограничителем скорости реакции в процессе биосинтеза антибиотика, по сравнению с нетрансформированным организмом.

Для устранения возможности отрицательного влияния рекомбинантной плазмиды (либо автономно реплицируемой, либо интегрированной) на продуцирование тилозина можно использовать способность Streptomuces fradiae поглощать предшественники тилозина из питательной среды культивации и превращать их в тилозин. В одной ферментации продуцирующего тилозин штамма, который был трансформирован плазмидой рНJL280 и культивирован для получения интегрантов, лишь субпупуляция ( 18%) клеток была стойкой к тиострептону, что указывает на присутствие последовательности плазмида рНJL280. Однако эта субпупуляция содержит множество копий генов для двух ограничивающих скорость реакций ферментов, деметил-макроцин-0-метилтрансферазы (ДМОМТ) и макроцин-0-метилтрансферазы (МОМТ), и следовательно имеет повышенную концентрацию (примерно 9-кратную) этих двух ферментов, и в состоянии превращать все номинальное накопление диметилмакроцина и макроцина в тилозин (см. табл. 5).

Таким образом, можно получить специфические штаммы S.fradiae, содержащие множество копий, ограничивающих скорость реакции генов и высокое содержание ферментов для действия их как трансформаторов аккумулированных предшественников в тилозин. Эти штаммы трансформаторов могут использоваться различными путями: (1) штамм трансформатор может быть введен в ферментер совместно с нормальным продуцирующим штаммом при низком отношении штамма трансформатора к продуцирующему штамму; (2) штамм трансформатор может быть введен в среду ферментации в более позднем цикле для превращения в промежуточные продукты (3) штамм трансформатор может находиться в отдельном "реакторе", в который будет добавляться питательный бульон ферментации от продуцирующего штамма или (4) штамм трансформатора может быть иммобилизован на колонке, через которую может быть пропущен бульон ферментации от продуцирующего штамма. Для специалистов в данной области должно быть ясно, что популяции отдельного продуцирования и трансформации устраняют отрицательные влияния, которые иногда рекомбинантные плазмиды оказывают на продуцирование антибиотиков в случае высокопродуцирующих штаммов.

Тилозин состоит из 16 членного разветвленного лактона (тилонолид), к которому подсоединены три молекулы сахара (микароза, микаминоза и мициноза). Данный лактон образован от двух ацетатов, пяти пропионатов и бутирата путем конденсации молекулы пропионил-S-коэнзима А с двумя молекулами малонил-S-коэнзина А, четырьмя молекулами метилмалонил-S-коэнзима А по схеме, аналогичной схеме биосинтеза жирной кислоты.

Образование лактона, биосинтеза присоединение сахара и конверсия полученных в результате промежуточных соединений в тилозин катализируются рядом ферментов. Клонирующие гены, которые кодируют такие ферменты, обеспечивают модифицикацию и увеличение эффективности процесса биосинтеза тилозина и которые могут быть использованы при осуществлении способа данного изобретения, включают, например, гены tyl C, tyl D, tyl E, tyl F, tyl J, tyl K, tyl L и tyl М.

Из этой группы ген tyl F является предпочтительным ввиду того, что кодированный таким путем фермент макроцин-0-метилтрансфераза является ограничителем скорости реакции в процессе биосинтеза тилозина для большинства продуцирующих тилозин штаммов. Макроцин аккумулируется до неприемлемых концентраций в условиях оптимальной ферментации Streptomyces fradiae ввиду ограничивающих скорость реакции этапов, катализированных генным продуктом tyl F, фермент tyl F катализирует конверсию макроцина в тилозин, как представлено на фиг. 1. Чрезмерное продуцирование генного продукта tyl F макроцин-0-метилтрансферазы приводит в результате к более эффектному процессу биосинтеза тилозина, что определяется по повышенному выходу антибиотика и пониженной стоимости ферментаций.

Для специалистов в данной области должно быть ясно, что настоящее изобретение не ограничивается использованием плазмид рНJL280, рНJL284, рНJL309, рНJL311 или рНJL315. Гены биосинтеза антибиотиков, содержащиеся в этих векторах, могут быть экспрессированы всей группой или по отдельности и клонированы в различные подходящие векторы. Так, например, расщепление плазмиды рНJL280 ферментами BamHI и Bgl 11 дает пять фрагментов BamHI-BamHI размерами 10,3 кб 6,54 кб 2,3 кб 1,7 кб 1,0 кб; два фрагмента BamHI-BglII размерами 2,9 кб и 2,0 кб; и один фрагмент BglII-BglII размером 0,2 кб. Фрагмент 2,9 кб BamHI-BglII плазмиды рНJL280 содержит ген tylF. Расщепление плазмиды рНJL280 ферментами BglII и EcoRI генерирует четыре фрагмента фрагмент 11,24 кб ЕсоRI-EcoRI; фрагмент 11,5 кб BglII-EcoRI; фрагмент 4,0 кб ЕсоRI-BglII и фрагмент 2,0 кб BglII-BglII; фрагмент 4,0 кб EcoRI-BglII плазмиды рHJL280 содержит ген типа tyl E.

Расщепление плазмиды рНJL284 ферментами BamHI и ЕсоRI генерирует три фрагмента BamHI-BamHI размерами 9,7 кб 2,3 кб и 1,0 кб; и четыре фрагмента ЕсоRI-BamHI размерами 6,24 кб, 4,3 кб, 2,3 кб и 1,1 кб. Фрагмент 2,3 кб BamHI-EcoRI плазмиды рНJL284 содержит ген tyl F. Расщепление плазмиды рНJL284 ферментом EcoRI генерирует два фрагмента размерами 16,4 кб и 10,54 кб фрагмент 16,4 кб содержит гены tyl F, tyl C, tyl J.

Фрагмент 1,7 кб EcoRI-BamHI плазмиды рНJL311 включает ген tylK фрагмент 18,5 кб ЕсоRI, а также фрагмент 8,3 кб BamHI-КрnI плазмиды pHJL309 содержит гены tyl L и tyl M.

Любой из указанных выше содержащих ген tyl фрагментов может быть лигирован с другими векторами, образуя векторы, используемые согласно настоящему изобретению. Эти другие векторы включают, например, те векторы, которые описаны в патентах США NN 4 468 462; 4 513 086; 4 416 994; 4 503 155; и 4 513 185, а также плазмиды pIJL101, pIJL350, pIJL702 (АТСС 39155), SСР2Х (NRRL 15041), рНJL192, рНJL197, рН198, рНJL210, рНJL211, рНJL400, рНJL401, рНJL302, pIJ922, pIJ903, рIJ941, pIJ940 и pIJ916. Эти векторы воспроизводятся в Streptomyces fradiae и других продуцирующих тилозин штаммах и таким образом используются для клонирования, отвечающих данному изобретению генов биосинтеза антибиотиков.

В качестве примеров штаммов Streptomyces, которые могут использоваться для осуществления целей данного изобретения, являются S.fradiae, S.fradiae GS 52, S.fradiae GS 48, S.fradiae GS 16, S.fradiae GS 28, S.fradiae GS 15, S.fradiae GS 76.

Из числа Streptomyces штаммы, S.fradiae GS 16, S.fradiae GS 15 и S.fradiae GS 28 являются предпочтительными, особенно для трансформации плазмидой pHJL280. Streptomyces fradiae является хорошо известным микроорганизмом, и некоторые штаммы уже могут поставляться без особых ограничений из Северной Региональной Научно-Исследовательской лаборатории (NRRL). Пеория, Иллюнойс 61604 и из АТСС под соответствующими регистрационными номерами NRRL 2702, NRRL 2703 и АТСС 19609.

Рекомбинантные плазмиды, описанные в данной патентной заявке, включают каждая один из несколько генов биосинтеза антибиотиков. Если не считать часть полицистрона, то каждый ген биосинтеза антибиотика обычно включает (1) стимулятор, который направляет транскрипцию гена (2) последовательность, которая при транскрипции в информационную РНК направляет трансляцию транскрипта; (3) кодирующую белок последовательность, ии (4) завершитель транскрипции. Каждый из этих элементов используется независимо и посредством технологии рекомбинантной ДНК может служить для образования огромной разновидности рекомбинантных генов. Так, например, кодирующая белок последовательность гена tyl F может быть связана со стимулятором, активирующей трансляцию последовательностью и с завершающей транскрипцию последовательностью от не Streptomyces fradiae гена, образуя рекомбинантный ген, который функционирует в хозяине, из которого выделены последовательности не S.fradiae. Такой новый ген может быть использован для продуцирования гибридного антибиотика при вводе его в организм, который продуцирует антибиотик или антибиотический промежуточный продукт, который не обнаруживается в синтезе тилозина, но который служит в качестве субстрата для нового генного продукта. Аналогично этому стимулятор и другие регуляторные элементы гена tyl F могут быть связаны с кодирующей последовательностью гена биосинтеза нетилозинового антибиотика, образуя гибридный ген, который будет функционировать S.fradiae. Так, индивидуальные элементы каждого из генов биосинтеза антибиотиков описанных плазмид включают очень важный компонент данного изобретения.

Так, например, данные ряда на нуклеотидной последовательности tylF позволили идентифицировать стимулятор tyl F, который является очень важным аспектом данного изобретения. Данная последовательность (представлена для удобства лишь одна цепь этой последовательности) показана ниже. Стимулятор и активирующая трансляцию последовательность гена tyl F сохраняются в данной последовательности между остаточными группами 1 и 207. Данная последовательность завершается началом кодирующей зоны гена tyl F.

Дополнительная генная последовательность для гена tyl F. В частности ген tyl F в целом, включающий стимулятор и активирующую трансляцию последовательность, о которых упоминалось выше, имеет указанную ниже последовательность: 5'-TTC GCG GGA G ATG CTG A CGG GGG TCGCC AGC AGC C CGG ACG T TCT GGC GGAGA TCA GCC A CCG GCG C CGT CCC ACGCT CGG CCC CGA TCG GCCT CCG CGGA GGG CGT ACT GCT CGAG GGC TGGG GAC AGG GGG CGA CGCC AGG CGGC TGC GCC CTG CGG CCGT CGG TGGT TGG CGC CTG CGG GACA GAA TC CCT TTT GTG GGC GGG CCCC CGG ACGG ACA CGA GCT GCG GTCA ACG AACA CCG TGT GTG CCC ACCA CGA ACTG ACC GGT TGT CAG GGCC CGT GGAC GGG CTC GGC GGC GGCG GGC GGGA CCT TGA ACC CGC GCGG GCT CCGT TCC GGC GCC CGC GGAT AGC GTGT CCT CAC CTC CGG CCCG CGT CC CGC CGG GAC CCA CCT CCCG ACC CCGA GCC GAT CCC GCT AGGA GGA CCTG GCA CCT CCG GAC CGCC CGC GATC TAC VAL ALA PRO SER RO ASP HIS ALA ARG P LEU TYR ATC CTG CTG AAG AGTC GTCG AAC GTC TAC GAG GCCC ILE GLU LEU U LYS LYS VAL L SER ASN VAL ILE R GLU ASP PRO ACC CATG GCG GGG ATC ACC GGCG TCG TTAC CGG ACG THR S VAL ALA GLY MET E THR ASP ALA SER E ASP ARS THR SER CGT GAG AGGC GAG GAAC CCC ACG GCC CAC AATG ATC GG G GLU SER GLY GLU P TYR PRO THR VAL A HIS THR MET ILE Y CTC AAG CGT GAC AAT CCAC CGG TGTC GCG GAC GTG GAG LEU LYS ARG LEU P ASN LEU HIS ARG S LEU ALA ASP L VAL GLU GCGC GTC CCGT GAC TTC GAG ACC GGTG TGC CGCG CCG ASP GLY VAL O GLY ASP PHE ILE U THR GLY VAL CYS G ALA PRO TGC TTC GCC CGGA CTG CTAC GCG TAC CAG GCC GCGC CYS ILE E ALA ARG GLY LEU ASN ALA TYR GLY ALA ASP ARG ACC GTGG GTC GCC TCC TTC CGGC TTT CCAG CTG ACC THR TRP VAL ALA ASP PHE GLN GLY PHE GLU LEU THR GLY TCC GAC CCCG CTG GGTC GAG ATC CTC CAC CTAC AAC GA ASP HIS PRO LEU VAL GLU ILE ASP HIS GLN TYR ASN GCC GTG GAC CCC ACC AGAG GAG ACTG CGG GAG TTC GCC ALA VAL ASP LEU THR SER GLU GLU VAL ARG GLU ASN ALA CAC GGG CTC GAC GAC GTC CGT TTG GCG GGG TTC ARG TYR GLY LEU ASP ASP ASN ARG PHE LEU ALA TRP PHE AAG ACC ATG CCT GCG CCG AAG CAG GCG GTG AGC LYS ASP MET PRO ALA ALA VAL LYS GLN LEU VAL MET ARG CTG GAC GAC TCC GGC GCC ATG GAT GTC GAC AGC LEU GLY ASP SER TYR ALA THR MET ASP LEU ASP SER LEU TAC GAG CTG TCG CCC GGT TAC ATC GTC GAC TAC TG GLU ARG LEU SER GLY GLY TYR VAL VAL ASP ASP TYR ATC CCG GCC CGC GAG CGC ACG ACC GCG ACC TCG GCA ILE PRO ALA CYS GLU ARG CYS THR SER ALA THR GLY ALA TCG ACA CGC ACC GGA ACC GCC ACG CTA TTG GCA SER ALA THR SER THR GLY SER ALA ARG ALA LEU ALA ALA CAG CTG AGT CCC GCC CGG CCC GAC AGC AGG AAT GLN ARG SER ARG SER ALA GLU PRO ASP GLU ARG ARG TYR GCG AGC GAC GCG GCT CGG CGA GGG AGG GGT GAT ALA HIS ASP ALA PRO ARG HIS GCC GGA GCA TCC GGG GCG CGG GTT CCA CTG GTT CC GAG CCA GCC TTC CGG CTG ACC GGC TCC TTC GTG CCG CTC GTC AAC GCG TGT GGA AAG GCG CTG CGT CCA CTT CCG AGG TAC CGG GCG GCC AAG AGC GGC GGT GCA GGC CGG TGT GGT CGT CGA CGC GCT GTC GAG GTC GTC G' где А представляет собой группу дезоксиаденила. G группу деоксигуанила, С группу деоксицитидила и Т тимидиловую группу. Данный структурный ген, как указывалось выше, начинается с группы 541 и продолжается до группы 1371, заканчиваясь стоп кодоном, расположенным у группы 1372. Аминокислотная последовательность данного структурного гена tyl F это последовательность, которая указана под соответствующей нуклеотидной последовательностью. Ввиду вырождения данного генетического кода могут быть получены последовательности, эквивалентные тем, которые специально указаны выше, которые кодируют тот же самый генный продукт tyl F. Этот способ получения таких эквивалентных последовательностей должен быть знаком для специалистов в данной области. Однако данная специфическая последовательность никак не должна рассматриваться как ограничение настоящего изобретения.

Штаммы Streptomyces fradiae могут быть культивированы рядом способов с использованием различных сред. Предпочтительными углеводными источниками в среде культивации являются, например, меласса, глюкоза, декстран и глицерил, предпочтительными азотными источниками являются, например, соевая мука, смеси аминокислот и пептоны. Питательная среда содержит также неорганические соли, которые включают выпускаемые промышленностью соли, способные образовывать йоны фосфатов, хлоридов сульфатов и т.д. натрия, калия, аммония, кальция. При необходимости для роста и образования других микроорганизмов вводятся основные микрокомпоненты. Такие микрокомпоненты вводятся как случайные примеси в добавление к другим составляющим компонентам питательной среды. Штаммы S.fradiae выращиваются в аэробных условиях с широким пределом величины рН примерно от 5,5 до 8, при температуре в пределах примерно от 25оС до 37оС. В частности, тилозин может быть получен путем культивации продуцирующих тилозин штаммов, например S.fradiae таких как штаммы, содержащие векторы, отвечающие настоящему изобретению. Используемая питательная среда может быть любой из числа различных сред, поскольку данный организм способен потреблять многие источники энергии. Однако, из соображений экономичности продуцирования максимальных выходов антибиотика и легкости извлечения антибиотика предпочтительны определенные среды культивации. Среда, которая особенно полезна для продуцирования тилозина, включает ассимилируемый источник углерода, такой как глюкоза, сахароза, фруктоза, крахмал, глицерин, меласса, декстрин, бурый сахар, кукурузная дробина, и т.д. Предпочтительными источниками углерода являются глюкоза и крахмал. Кроме того, питательная среда культивации включает источник ассимилируемого азота, такой как льняная мука, отстой брожения, рыбная мука, мука семян хлопка, овсяная мука, пшеничная мука, мука соевых бобов, мясной экстракт, пептоны (мяса или сои), казеин, смеси аминокислот, т.д. Предпочтительными источниками азота являются мука соевых бобов, казеин и кукурузная дробина.

Положительный эффект достигается при вводе в питательную среду минеральных солей, например, солей, обеспечивающих ионы сульфата, хлорида, фосфата, карбоната, ацетата и нитрата натрия, калия, аммония, кальция, магния, кобальта, а также источников факторов роста, таких как барда и дрожжевой экстракт.

В питательную среду для роста микроорганизмов, используемых согласно настоящему изобретению, должны быть введены также основные микрокомпоненты, обеспечивающие рост и развитие других микроорганизмов. Такие микрокомпоненты обычно вводятся как случайные примеси в добавление к другим составляющим компонентам среды.

Начальная величина рН среды культивации может изменяться в широких пределах. Однако установлено что желательная величина рН питательной среды находится в интервале примерно от 5,5 до 8,0 и предпочтительная величина рН составляет примерно от 6,5 до 7,0. Как установлено для случая других организмов, величина рН среды постепенно увеличивается в ходе периода роста организма, и в течение этого времени образуется тилозин, и может достигаться величина рН примерно от 7,2 до 8,0 или более и конечная величина рН зависит по крайней мере частично от начальной величины рН среды, буферных систем, присутствующих в питательной среде, и от периода времени, в течение которого происходит рост организма.

Аэробные условия культивации с погружением являются условиями выбора продуцирования больших количеств тилозина. Для получения относительно небольших количеств могут использоваться взбалтываемые колбы и поверхностная культура в склянках, но для получения больших количеств предпочтительны аэробные условия погружения культуры в стерильные емкости. Среда в этой стерильной емкости может быть инокулирована спорулированной суспензией. Однако ввиду задержки роста в случае использования спорулированной суспензии в инокулуме растительная форма культуры является предпочтительной для исключения яв