Электроракетный двигатель богданова
Реферат
Использование: в двигателях для космических летательных аппаратов. Сущность изобретения: электроракетный двигатель содержит ускоритель 17 заряженных частиц, систему 4 электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку 1 магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя. Двигатель снабжен источником 5 плазмы, соединенным с каналами 6, 7 для прохода рабочего тела, внутренние стенки 8, 9 которых выполнены в виде электродов и образуют фигуры вращения, соосные катушке магнитного поля. Расстояние от стенок до оси не убывает в направлении выхода рабочего тела. Двигатель содержит нейтрализатор 32, хранилище ядерных зарядов, устройство выбрасывания ядерных зарядов, магнитная катушка соединена с системой накопления, хранения, коммутации и использования энергии магнитного поля для создания тяги. На выходе каналов для прохода рабочего тела установлена система электродов 11, 12, выполненных с возможностью создания электрического поля, параллельного оси двигателя. На верхней торцовой поверхности двигателя выполнен соосный катушке выступ 13, у основания которого расположен дополнительный источник 14 ионизирующего излучения, с двух сторон от которого расположены два электрода 15, 16, имеющие формы фигур вращения, соосных катушке. На боковой поверхности катушки установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны оси катушки и взаимно параллельны, каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником 26 плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником 23 излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. 11 з. п. ф-лы, 6 ил.
Изобретение относится к двигателям для космических летательных аппаратов и может быть использовано для летательных аппаратов, движущихся в атмосфере.
Изестен ядерный ракетный двигатель, содержащий ядерный реактор и систему подачи жидкого водорода [1] реактивная тяга, в котором создается путем нагрева жидкого водорода в ядерном реакторе за счет ядерной энергии топлива и выбрасывания нагретого газообразного водорода через сопла в окружающее пространство. Недостатками двигателя являются невозможность использования для создания реактивной тяги вещества внешней среды и малое содержание энергии на единицу массы рабочего тела, которое для жидкого водорода не превышает 107 Дж/кг. Известен химический ракетный двигатель [1] использующий для создания ракетной тяги химическую энергию сгорающего топлива. Недостатком его является малое количество энергии, заключенное в единице массы топлива, которое не превышает 1,2 107 Дж/кг. Известен электроракетный двигатель с ядерной энергоустановкой [1] использующий преобразование ядерной энергии топлива в тепловую энергию нагреваемого жидкого водорода, переходящую в электрическую, которая затем используется для создания реактивной тяги в электроракетном двигателе. Недостатком этого двигателя является малое количество энергии, заключенной в единице массы рабочего тела, при преобразовании ядерной энергии в электрическую, например для жидкого водорода эта величина не превышает 107 Дж/кг. Вследствие этого возникает необходимость брать с собой в момент старта большое количество жидкого водорода или ограничивать мощность ядерной энергоустановки мощностью системы повторного сжижения водорода. Известен электроракетный плазменный двигатель с рельсовым ускорителем [1] содержащий рельсы, ускоряемый снаряд, источник плазмы. В этом двигателе между двумя рельсами создается разность потенциалов, по ним течет электрический ток, замыкающийся через плазменную перемычку между рельсами. Токи, текущие через рельсы, создают магнитное поле, которое воздействует на ток, текущий через плазменную перемычку, силой Ампера, ускоряющей перемычку вдоль рельсов. Плазменная перемычка за счет этой cилы толкает перед собой ускоряемый снаряд и ускоряет его. Недостатками этого двигателя являются непредусмотренность ускорения вещества внешней среды в качестве рабочего тела, эрозия и разрушение рельсов во время работы и малая тяга, порядка 10 Н. Известен ядерный ракетный двигатель с взрывающимися ядерными зарядами малой мощности [2] содержащий металлическую камеру и устройство, выбрасывающее ядерные заряды малой мощности. Реактивная тяга в этом двигателе создается взрывами ядерных зарядов внутри металлической камеры. Недостатком этого двигателя является малая тяговооруженность, обусловленная большим весом металлической камеры, необходимым для того, чтобы она не испарялась в момент взрыва, а также большим весом сопутствующей системы радиационного охлаждения, вес которой в ядерных энергоустановках, начиная с мощностей порядка 100 МВт, является определяющим ограничением их мощности, превышая вес их остальных компонентов. Известен двигатель "Солнечный парус" [2] представляющий собой разворачиваемую на большой площади в космическом пространстве тонкую пленку с нанесенным на ее поверхность отражающим покрытием. Реактивная тяга в этом двигателе создается электромагнитным и корпускулярным излучением Солнца, которое падает на его поверхность, поглощается или отражается ею, передает ей при этом часть своего импульса и ускоряет ее. Недостатками этого двигателя являются сложность разворачивания и ориентации пленки в космическом пространстве, а также то, что реактивная тяга в этом двигателе быстро убывает с ростом расстояния до Солнца, уменьшаясь пропорционально квадрату этой величины. Известен индукционный электроракетный двигатель [1] содержащий источник плазмы, индукционную катушку и систему электропитания. Недостатками этого двигателя являются малая тяга, которая, как правило, не более 250 Н, и требование быстродействия смены токов в индукционной катушке, приводящее к быстрому ее нагреву. Известен электроракетный плазменный Холловский двигатель [3] содержащий систему электропитания, катушку магнитного поля, источник плазмы и ускоряющую систему электродов. В этом двигателе реактивная тяга создается ускорением плазмы в скрещенных электрическом и магнитном полях. Ускоряющий межэлектродный промежуток выбирается таким, чтобы при ускорении ионов электрическим полем они приобретали скорость, при которой их ларморовский радиус вращения превышал размер этого промежутка, и они, вращаясь в магнитном поле, из этого промежутка бы уходили, в то время как электроны дрейфуют перпендикулярно им из-за большего параметра Холла, поддерживая электронейт- ральность. Недостатком этого двигателя является малая тяга, например 0,65 Г при электрической мощности 22 кВт. Известен прямоточный электроракетный двигатель [4] содержащий катушку магнитного поля, источник ионизирующего излучения, ускоритель заряженных частиц и систему электропитания. В этом двигателе тяга создается путем ионизации встречного потока источником ионизирующего излучения и выбрасывания впереди двигателя ускорителем заряженных частиц вдоль магнитных силовых линий частиц одного знака электрического заряда. В результате происходит образование объемного электрического заряда во встречном потоке перед двигателем и электрическое заряжание корпуса двигателя зарядом противоположного знака. Эти заряды притягиваются друг к другу. Одновременно происходит растекание объемного заряда встречного потока и его релаксация за счет проводимости среды между объемным зарядом и корпусом двигателя. Магнитное поле катушки увеличивает время релаксации объемного заряда. Среда в области его существования за счет столкновения заряженных частиц с нейтральными преобретает ускорение в сторону двигателя и создает тем самым в течение времени релаксации объемного заряда реактивную тягу. Недостатком двигателя является малая тяга, 13,6 кГ. Задачей, стоящей перед изобретением, является увеличение тяги и обеспечение возможности использовать для ее создания дополнительных внешних источников рабочего тела. Указанная задача достигается тем, что электроракетный двигатель, содержащий ускоритель заряженных частиц, систему электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя, снабжен источником плазмы, соединенным с каналами для прохода рабочего тела, внутренние стенки которых, выполненные в форме электродов, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела, нейтрализатором, хранилищем ядерных зарядов, устройством выбрасывания ядерных зарядов, при этом катушка соединена с системой накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля, на выходе каналов для прохода рабочего тела установлена система электродов, выполненных с возможностью создания магнитного поля, параллельного оси двигателя, совпадающей с осью катушки, на верхней торцовой поверхности двигателя выполнен соосный катушке выступ, у основания которого расположен дополнительный источник ионизирующего излучения, с двух сторон от которого расположены два электрода, имеющие формы фигур вращения, соосных катушке, причем один из электродов расположен на верхней торцовой поверхности катушки, а другой на выступе, на боковой поверхности катушки с противоположных сторон от ее оси установлены две пары коаксиальных электродов, оси которых перпендикулярны оси катушки и взаимнопараллельны, а каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. Двигатель снабжен ядерной силовой установкой. Двигатель снабжен системой повторного сжижения водорода. Катушка выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, и размещена в гелиевом криостате с термоизоляцией. Источник плазмы соединен с устройством для засасывания вещества внешней среды, выполненным с возможностью охлаждения системы электропитания. Внешний электрод каждой пары коаксиальных электродов выполнен с возможностью экранировать внешнее магнитное поле в межэлектродном зазоре. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей вдоль оси двигателя и их соединения обратно. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. На торцовых поверхностях двигателя установлено по два наружных электрода, через межэлектродные зазоры которых проходит ось двигателя, выполненные с возможностью свободного пролета сквозь них частиц. Двигатель снабжен источником тугоплавких дисперсных частиц из материала с малой работой выхода. Источник тугоплавких дисперсных частиц выполнен в виде плазмохимического реактора. Электроракетный двигатель содержит по крайней мере два листа, присоединенных послойно к нижней торцовой поверхности двигателя, выполненных из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва, и систему, обеспечивающую возможность поочередного отсоединения листов от двигателя. Такое конструктивное решение позволяет увеличить тягу и обеспечивает возможность создавать ее за счет ускорения не только рабочего тела, взятого с собой в момент старта, но и дополнительных внешних источников рабочего тела. При движении в атосфере используется газ атмосферы, при движении в радиационных поясах частицы, образующие эти пояса, при движении в межпланетном пространстве плазма солнечного ветра. Применение индуктивного накопителя энергии при старте с планеты, обладающей атмосферой, позволяет снизить расход рабочего тела, взятого с собой в момент старта, до минимума и повысить удельное энергосодержание энергоустановки двигателя на единицу ее массы, включая массу взятого с собой рабочего тела и охлаждающих сжиженных газов. При этом энергосодержание индуктивного накопителя энергии на единицу массы его обмотки может быть достигнуто порядка 4 109 Дж/кг, исходя из параметров существующих на сегодняшний день индуктивных накопителей энергии на энергию 4,6 1013 Дж, причем, поскольку объем, а следовательно, и масса индуктивного накопителя энергии пропорциональна энергии в степени 3/5, то в перспективе эта зависимость позволяет, линейно увеличивая массу катушки магнитного поля, нелинейно более быстро поднимать ее удельное энергосодержание. При этом расходы энергии на охлаждение криостата пропорциональны площади его поверхности, а значит, объему и массе в степени 2/3. Поэтому расходы энергии на охлаждение криостата пропорциональны запасенной энергии в степени 2/5 и, следовательно, не могут принципиально ограничить величину запасенной энергии. При работе системы электропитания в режиме коммутации и использования для создания тяги энергии, запасенной катушкой, требуется меньшая мощность системы радиационного охлаждения, чем в случае ее работы в режиме перехода тепловой энергии ядерного реактора в электрическую, что позволяет снизить вес теплообменника-излучателя не менее чем на 60% при том же уровне электрической мощности. При этом может быть реализована возможность полетов на запасенной в катушке энергии с выключенным на время ядерным реактором от небесного тела к небесному телу, включая его в режиме большой мощности для накопления энергии магнитного поля на планетах, их спутниках или астероидах, используя для охлаждения ядерной силовой установки системы электропитания воду, лед и океаны сжиженного газа, например аммиака и метана. Это дает принципиальную возможность увеличить мощность энергоустановки и тяговооруженность двигателя во время полета в космическом пространстве, уменьшая выделение ею тепла, поскольку вес теплообменников-излучателей является определяющим при электрической мощности в ядерных энергоустановках более 100 МВт и превышает вес остальных их элементов, а проблема радиационного охлаждения на сегодняшний день развития космической техники является главным ограничением на мощность ядерных энергоустановок при работе в открытом космосе. Применение ядерных зарядов для создания реактивной тяги позволяет поднять удельное энергосодержание и рабочего тела, и топлива одновременно на единицу их массы до величины порядка 1011 Дж/кг, при этом преобразование ядерной энергии топлива в кинетическую энергию рабочего тела происходит вне двигателя в области создаваемого им магнитного поля, что ведет к уменьшению его нагрева. Дополнительно ядерные взрывы в магнитном поле создают мощные электрические поля, параллельные оси двигателя, которые вытягивают и ускоряют ионы и дисперсные тугоплавкие частицы, одновременно заряжая их положительным электрическим зарядом, причем в перспективе возможно использование этих полей для аккумулирования электрической энергии, использование ее для создания реактивной тяги и незначительного ускорения двигателя во внешних космических электрических полях, например полях магнитопаузы Земли. Двигатель имеет возможность создавать небольшую фотонную тягу от внешних источников электромагнитного излучения, например Солнца. Гамма-излучение ядерного взрыва позволяет вырабатывать и запасать двигателем электроэнергию путем выбивания гамма-квантами комптон электронов в расположенных вне двигателя конденсаторах. Двигатель имеет возможность создавать реактивную тягу в электропроводящей жидкости, например морской воде, что позволяет использовать его при приводнении космических кораблей для их самостоятельной буксировки. Двигатель может использоваться для систем кораблей многоразового использования типа "Спэйс Шатлл", челночных рейсов в атмосфере для вывода за ее пределы и возвращения из космоса космических кораблей. При этом возможна работа двигателя полностью на энергии катушки, запасаемой на Земле перед каждым полетом. Побочным эффектом работы двигателя в земной атмосфере является генерация озона за счет ионизации кислорода воздуха, что ведет к уменьшению озоновых дыр, в то время как использование традиционных химических ракетных двигателей наоборот выжигает озон и приводит к образованию локальных озоновых дыр в районах космодромов. Дополнительно двигатель позволяет уменьшить радиационное облучение полезного груза при прохождении радиационных поясов планет за счет отклонения частиц, составляющих эти пояса, магнитным полем катушки, а радиационное облучение полезного груза в момент взрыва ядерного заряда уменьшается за счет отделения полезного груза и удаления его на безопасное расстояние от катушки магнитного поля. Для старта и посадки космических кораблей, оснащенных двигателем, не требуются специально оборудованные космодромы, что очень значительно упрощает их эксплуатацию, делая полеты на них экономически более выгодными, чем полеты на кораблях с традиционными двигательными установками. Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами. На фиг. 1 изображен электроракетный двигатель, разрез в плоскости его оси; на фиг.2 тот же двигатель, вид серху; на фиг.3 тот же двигатель, основной вид; на фиг.4 он же, вид сбоку; на фиг.5 изображено отталкивающее устройство второго типа в момент разъединения частей двигателя с полезным грузом и с катушкой магнитного поля; на фиг.6 показана схема размещения электроизолированных, электроприводящих листов, при которой они в момент ядерного взрыва запасают электроэнергию. Катушка 1 магнитного поля (фиг,1) соосна с осью симметрии двигателя, выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, помещена в криостат 2 и соединена с системой запитки и коммутации энергии катушки магнитного поля, совпадающей с системой 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля. В катушке предусмотрена возможность создания магнитного поля вокруг всего двигателя и работы ее в качестве индуктивного накопителя энергии, включая возможность накопления, хранения и использования для создания тяги энергии ее магнитного поля. Криостат 2 выполнен с возможностью охлаждения катушки до температур, не превышающих 4,2 К, с последующей термоизоляцией и терморегулированием, например он снабжен криогенной установкой и содержит несколько вложенных друг в друга сосудов со сжиженными газами, у которых различные температуры кипения, окружающих сосуд с жидким гелием. Один из них содержит жидкий водород, и предусмотрена возможность использования этого сжиженного газа как рабочего тела для системы электропитания и источника плазмы. Система накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля соединена с системой 4 электропитания, выполненной в виде трехрежимной ядерной силовой установки, в которой предусмотрена возможность сжижения водорода, последующего повторного использования его для выработки электроэнергии или направления нагретого в ядерном реакторе водорода в источник плазмы, каналы для прохода рабочего тела и охлаждения топливно-энергетического цикла теплообменников- излучателем. Источник 5 плазмы установлен в области сквозного осевого отверстия катушки магнитного поля. Там же установлены каналы 6, 7 для прохода рабочего тела, соединенные с ним, внутренние стенки которых, выполненные в виде электродов 8, 9, 10, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела. На выходе каналов установлены электроды 11, 12, выполненные в виде колец, радиусы которых последовательно совпадают с радиусами наиболее близких к ним стенок каналов с возможностью создания в их межэлектродном зазоре электрических полей, параллельных оси двигателя. Корпус двигателя имеет осесимметричный выступ 13, соосный с осью двигателя, например выполненный в виде полусферы, расположенный со стороны катушки магнитного поля, противоположной выходу каналов для прохода рабочего тела. У основания выступа расположен дополнительный источник 14 ионизирующего излучения, например источник электронов, имеющий осесимметричное распределение ионизирующего излучения вдоль поверхности двигателя. Система электропитания выполнена таким образом, чтобы входящий в ее состав ядерный реактор имел возможность излучать часть своего ионизирующего излучения в виде нейтронов и гамма-квантов в ту же область. Дополнительный источник ионизирующего излучения расположен между электродами 15, 16, соосными катушке, выполненными из электроизолированных друг от друга сегментов с возможностью самостоятельного, автономного подвода электроэнергии отдельно к каждому сегменту. Электрод 15 имеет форму кольца, расположен над верхней поверхностью катушки и криостата, в который она помещена. Электрод 16 имеет форму поверхности вращения, расположен на поверхности выступа 13 в его нижней части. В верхней части выступа расположен ускоритель 17 заряженных частиц. При выборе знака ускоряемых частиц конкурируют два фактора. Желательно, чтобы это были положительно заряженные частицы, но ускорители ионов и позитронов технически более сложны и выбрасывают в процессе ускорения меньший суммарный электрический заряд, чем ускорители электронов. На выбор знака ускоряемых заряженных частиц оказывает существенное влияние величина электрического поля атмосферы. Ускоритель заряженных частиц выполнен с возможностью выбрасывать заряженные частицы вверх под углом к оси двигателя примерно равномерно вдоль кольца над верхней поверхностью криостата над электродом 15 с рассеиванием их дефокусирующими электродами на выходе из ускорителя, а также с возможностью направлять частицы в другом режиме работы вперед двигателя. Ускоритель может быть выполнен либо в виде ускорителя ионов, например изохронного циклотрона, либо в виде ускорителя позитронов, например микротрона с электрон-позитронным конвертером, либо в виде ускорителя электронов, например микротрона. Во всех случаях конструкция ускорителя заряженных частиц должна выгодно использовать магнитное поле катушки для создания в ускорителе поля нужной конфигурации. Так, в изохронном циклотроне вместо магнита установлены только спиральные ферромагнитные изохронные накладки, в микротроне вместо магнита установлены только ферромагнитные накладки с возможностью выравнивания между ними магнитного поля от его внешнего источника, в данном случае от катушки 1 магнитного поля. Выводное устройство ускорителя заряженных частиц имеет выходное окно из металлической мембраны, симметрично окружающее его в форме кольца. В выступе 13 размещено устройство 18 для засасывания вещества внешней среды, например насос с герметическими клапанами, соединенный каналами 19, 20 для прохода вещества внешней среды с источником 5 плазмы, выполненными с возможностью охлаждения системы 4 электропитания и с возможностью закрывать и открывать выходы этих каналов в источник 5 плазмы, например, с помощью клапанов. На боковой поверхности криостата 2 рядом с боковой поверхностью катушки, с противоположных сторон от оси двигателя установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны этой оси и взаимно параллельны. Внешний электрод каждой пары выполнен с возможностью экранирования внешнего магнитного поля в межэлектродном зазоре, например он выполнен из магнитомягкого материала. Катод выполнен эмиссионным. Вдоль оси коаксиальных электродов в межэлектродном зазоре выполнено сквозное отверстие с возможностью свободного пролета частиц сквозь него. Каждая пара коаксиальных электродов соединена с источником 23 излучения, выполненным с возможностью ионизовать газ атмосферы вдоль их оси. Например, он содержит источник 24 узконаправленного ионизирующего излучения, например, рентгеновского с энергией гамма-квантов 10 МэВ, и мощный СВЧ-генератор 25, выполненный с возможностью вызывать электрический пробой газа атмосферы около своего выходного отверстия, которое ограничено по периметру линиями распространения излучения источника 24 ионизирующего излучения, расстояние между выходными окнами которого меньше длины волны излучения СВЧ-генератора. Каждая пара коаксиальных электродов соединена с дополнительным источником 26 плазмы, выполненным с возможностью направлять плазму в межэлектродный зазор этих электродов. Вокруг боковой поверхности криостата, а следовательно и катушки, по его периметру расположен источник 27 ионизирующего излучения, например источник электронов, выполненный с возможностью ионизации газа атмосферы вокруг периметра криостата раздельно для каждого полупространства расположенных со стороны входа и со стороны выхода пар коаксиальных электродов, т.е. спереди и сзади от катушки по направлению движения двигателя. Поверхность двигателя в области расположения источника 27 ионизирующего излучения выполнена электроизолированной также, как и между электродами 15, 16. Она может быть выполнена из электроизолированных проводящих участков, например металлических мембран источников электронов, разделенных электроизоляцией, так, чтобы была исключена возможность протекания по ней поверхностных токов. Вне корпуса двигателя установлены наружные электроды 28, 29 с верхней стороны от катушки магнитного поля и наружные электроды 30, 31 с нижней стороны от нее, выполненные в виде сеток с возможностью свободного полета частиц сквозь них, создания электрического поля перпендикулярно оси двигателя, компактного хранения их либо в прижатом к поверхности двигателя состоянии, либо внутри него и разворачивания их в космическом пространстве снаружи двигателя так, чтобы внутри них оказывалась ось двигателя. Около сквозного центрального отверстия катушки с нижней стороны от нее установлен нейтрализатор 32, выполненный с возможностью отодвигаться от электродов 11, 12 вдоль оси двигателя, соединяясь с двигателем кабелем, рассстояние которого до оси двигателя в центральной части кабеля больше, чем на его концах. Рядом установлены устройство 33 выбрасывания ядерных зарядов, например катапульта, и хранилище 34 ядерных зарядов. Мощность используемых ядерных зарядов определяется из условия, что энергия ядерного взрыва должна быть много меньше магнитной энергии, запасенной в катушке. Например, при запасенной в катушке энергии 4 1015 Дж используются термоядерные заряды с энергией взрыва 10 кт. Более предпочтительными являются термоядерные заряды мощностью 100 кт, поскольку для них выше отношение энергии взрыва к весу ядерного заряда, но для них уже требуется катушка с запасенной магнитной энергией не менее 10 17 Дж. Энергия взрыва 10 кт эквивалентна примерно 4 1013Дж. В перспективе следует стремиться к увеличению мощности применяемых термоядерных зарядов и к росту накопленной в катушке энергии за счет увеличения ее размеров, поскольку и там возникает нелинейное увеличение отношения энергии к весу. Перспективным является также применение ядерных зарядов, мощность и вес которых максимально уменьшены за счет использования вещества с малой критической массой, в качестве которого можно рекомендовать калифорний 251, критическая масса которого в случае сферической симметрии делящегося вещества и водяного отражателя нейтронов составляет 10 г. В случае применения таких зарядов может быть использована катушка с уменьшенными размерами, массой и запасенной магнитной энергией. Делящееся вещество для создания ядерных зарядов можно получать непосредственно при работе ядерного реактора системы электропитания двигателя. Например, калифорний 251 может получаться при работе ядерного реактора на плутонии. Около сквозного осевого отверстия катушки установлен источник 35 тугоплавких дисперсных частиц из материала с малой работой выхода, температура плавления которых не менее 2000 К, работа выхода не более 3,5 эВ, размер не более 50 нм. В качестве материала таких частиц может быть рекомендован оксид кальция. Источник таких частиц может быть выполнен, например, в виде плазмохимического реактора или в виде устройства, выбрасывающего реагенты для плазмохимических реакций, ведущих к синтезу таких частиц, при нагреве этих реагентов излучением со спектром ядерного взрыва до температур, при которых часть реагентов превращается в плазму и протекает такая плазмохимическая реакция. Источник этих частиц выполнен с возможностью инжекции их вниз от двигателя вдоль его торцовой поверхности и по направлению к его оси. На нижней торцовой поверхности криостата 2 установлены листы 36, 37 из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва. Лист имеет толщину 25 мкм, из них 5 мкм приходится на нижний слой из материала, отражающего оптическое излучение, например из молибдена, выполненного в виде фольги, к которой просто прижаты другие два слоя: средний толщиной 15 мкм из материала, ослабляющего нейтронное излучение, например, берилия, на который напылен методом плазмохимического напыления верхний слой тугоплавкого материала с малой работой выхода, например оксида берилия, одновременно являющегося электроизолятором. Лист армирован высокопрочным материалом в виде сетки, например, из кремнехромомарганцовистой стали толщиной порядка 1 мм. Нижний слой более удален от двигателя, чем остальные. Листы крепятся к нижней поверхности криостата системой, обеспечивающей возможность поочередного отсоединения листов от двигателя, например она содержит держатели 38, 39, представляющие собой зажимы, часть которых держит, например, четные листы по отношению к произвольной послойной нумерации листов и заряжает их электрическим зарядом, выполненные с возможностью отпускать их по одному, часть держит нечетные, выполненные с возможностью заряжать их также электрическим зарядом и отпускать по одному. Держатели могут, например, держать сетку, которой армирован каждый лист в отдельности. Часть из них выполнена с возможностью держать и отпускать все четные листы, в то время как другая часть отпускает или соответственно держит все нечетные листы и наоборот так, чтобы крайний снизу лист оказывался свободным, а последующий ограничивал свободу перемещения остальным. В области нахождения зажимов в листах сделаны отверстия, площадь которых пренебрежимо мала по сравнению с площадью листов. Двигатель снабжен отталкивающим устройством 40, выполненным с возможностью обеспечения отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей двигателя вдоль оси двигателя и их соединения обратно. Отталкивающее устройство может быть выполнено также с возможностью обеспечения отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. Если между разъединяемыми частями двигателя нет механического контакта после разведения в стороны, кроме, возможно, нескольких тросов, то такое устройство называют отталкивающим устройством первого типа, но в этом случае между разъединяемыми частями может остаться электрический контакт в виде кабеля. Это устройство содержит сверхпроводящий соленоид 41, выполненный с возможностью запитки его токами в разные моменты времени противоположных направений, ускорители 42, 43 заряженных частиц, например резонансные ускорители электронов и ионов, отделяемые вместе с элементами двигателя, расположенными внутри сквозного отверстия катушки, и ускорители 44, 45 заряженных частиц, отделяемые вместе с другой частью, хотя бы один из которых является ускорителем электронов, причем хотя бы на одной из отделяемых частей должны быть ускорители частиц обоих знаков. Если между разъединяемыми частями двигателя механический контакт остается, то такое устройство называется отталкивающим устройством второго типа. Оно изображено на фиг.5 в момент разъединения частей 48, 49 двигателя, содержащих полезный груз и катушку магнитного поля соответственно. Отталкивающее устройство второго типа содержит заряжаемые пластины 50, 51, 52, соединенные подвижной оболочкой 53 друг с другом и с разъединяемыми частями двигателя, выполненной электроизолированной с возможностью растягиваться и сжиматься вдоль оси двигателя, например она может быть выполнена в виде гармошки или сильфона. Заряжаемые пластины выполнены с возможностью заряжаться электрическим зарядом как одного знака одновременно все, так и попеременно зарядами разных знаков. Заряжаемые пластины установлены вдоль оси двигателя, их плоскости перпендикулярны ей. Ориентировочная длина подвижной оболочки в растянутом состоянии примерно 200 м, средняя толщина примерно 0,1 мм. Подвижная оболочка выполнена из прочностного каркаса, на который натянута пленка. Предусмотрена возможность наполнения оболочки газом с высоким напряжением пробоя с возможностью в дальнейшем направлять его в источник 5 плазмы для создания тяги. Полезный груз 46, например каюты для экипажа, установлен внутри выступа 13 и окружен магнитным экраном 47, выполненным из магнитомягкого материала. На фиг. 6 изображена схема расположения электроизолированных, электропроводящих листов, при которой они во время ядерного взрыва запасают электроэнергию. К двигателю со стороны нижней торцовой поверхности катушки магнитного поля прикреплены электропроводящие, электроизолированные листы 55, 56, соединенные с системой, запасающей и использующей накопленную в них электроэнергию. Форма листов может быть разнообразной. Например, они могут быть параллельны друг другу и перпендикулярны оси двигателя. Они могут быть также выполнены в виде сегментов сфер, центры которых лежат на оси двигателя. Двигатель работает следующим образом. Катушка 1 магнитного поля запасает энергию магнитного поля, создает магнитное поле в области своего сквозного осевого отверстия и вне двигателя в окружающем его пространстве. Криостат 2 охлаждает ее до температуры, не превышающей 4,2 К, и поддерживает эту температуру. Криостат содержит рабочее тело для элементов двигателя, ускоряющих его, например жидкий водород и жидкий азот. Система 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля выполняет перечисленные функции по отношению к энергии, накопленной в катушке. Система 4 электропитания вырабатывает электроэнергию за счет топливно-энергетических циклов в ядерной силовой установке, запитывает выработанной электроэнергией катушку, перераспределяет энергию между всеми элементами двигателя, перераспределяет между элементами двигателя преобразованную магнитную энергию, запасенную в катушке, подает нагретое в своей ядерной силовой установке рабочее тело, например азот или водород, в источник 5 плазмы или непосредственно в каналы 6, 7 для прохода рабочего тела. Источник 5 плазмы дополнительно нагревает и ионизирует поступающее в него рабочее тело, например, потоками электронов малых энергий и направляет образованную плазму в каналы 6, 7 для прохода рабочего тела, в которых происходит их дальнейшее ускорение. Источник плазмы может также содержать систему подачи компонентов для химических