Двухканальная система преобразования угла
Реферат
Изобретение относится к измерительной технике и может быть использовано одновременно как для дистанционной передачи угла поворота вала датчика, так и для преобразования угла поворота вала в код. Изобретение позволяет исключить взаимное влияние точного и грубого отсчетов датчика в двухканальной системе преобразования угла и повысить точность преобразования. Это достигается тем, что в двухканальную систему преобразования угла, содержащую двухотсчетный датчик с совмещенными на одном магнитопроводе обмотками, первый источник возбуждения, канал следящей системы дистанционной передачи угла, блок преобразования электрических сигналов датчика в код, введены второй источник возбуждения и делитель частоты. 2 ил.
Изобретение относится к измерительной технике и может быть использовано одновременно как для дистанционной передачи угла поворота вала датчика, так и для преобразования угла поворота вала в код.
Известна следящая система дистанционной передачи угла поворота вала датчика, образующая первый канал преобразования [1] и содержащая приемник, двигатель и выявитель рассогласования, вырабатывающий сигнал управления двигателем по методу сравнения амплитуд (трансформаторный режим) или по методу сравнения фаз (фазовый режим). Синхронизирующее напряжение подается на вход датчика и обмотку возбуждения двигателя. Одновременно при подключении к датчику преобразователя осуществляется преобразование угла в код, т.е. образуется второй канал преобразования. Точность такой системы находится в пределах 1.3 угл. мин, что в большинстве случаев удовлетворяет требованиям потребителей, однако точность по каналу преобразования угла в код не лучше 10.20 угл.мин, что является недостатком такой системы преобразования. Известна двухканальная система преобразования угла, содержащая двухотсчетный датчик, обмотки грубого и точного отсчета которого выполнены в одном магнитопроводе, выход грубого отсчета датчика соединен со входом канала следящей системы дистанционной передачи угла, выходы грубого и точного отсчетов датчика соединены со входами блока преобразования электрических сигналов датчика в код [2] Недостатком такой системы преобразования угла является возникновение погрешности как в грубом отсчете (ГО), так и в точном отсчете (ТО) датчика из-за взаимного влияния обмоток ГО и ТО, размещенных на одном магнитопроводе, в результате чего точность следящей системы дистанционной передачи угла ухудшается до 30.60 угл.мин. Технический результат изобретения заключается в исключении взаимного влияния точного и грубого отсчетов датчика двухканальной системы преобразования угла. Для этого в двухканальную систему преобразования угла, содержащую двухотсчетный датчик, обмотки грубого и точного отсчетов которого выполнены на одном магнитопроводе, выход грубого отсчета датчика подсоединен к входу канала следящей системы дистанционной передачи угла, синхронизирующий вход которого соединен с входом грубого отсчета датчика, выходы грубого и точного отсчетов датчика подсоединены к входам блока преобразования электрических сигналов датчика в код, первый источник возбуждения, выход которого соединен с входом точного отсчета датчика, введены второй источник возбуждения и делитель частоты, вход делителя частоты соединен с выходом первого источника возбуждения, выход делителя частоты соединен с входом второго источника возбуждения, выход которого соединен с входом грубого отсчета датчика. На фиг. 1 приведена структурная схема двухканальной системы преобразования угла (ДСПУ); на фиг.2 пример выполнения канала следящей системы дистанционной передачи угла (ССДПУ) в трансформаторном режиме. ДСПУ содержит первый 1 и второй 2 источники возбуждения, делитель 3 частоты, двухотсчетный датчик 4, канал 5 следящей системы дистанционной передачи угла, блок 6 преобразования электрических сигналов датчика в код. Канал ССДПУ 5 содержит приемник 7 и двигатель 8. ДСПУ работает следующим образом. При применении в качестве датчика 4 синусно-косинусного вращающегося трансформатора сигналы U1 и U2 с выхода ГО датчика 4 поступают по двум линиям связи в канал 5 ССДПУ на косинусный и синусный входы приемника 7: U1 Vsin sin t + Ug1, U2 Vcos sin t + Ug2, где , V частота и амплитуда напряжения источника 2 возбуждения; угол поворота ротора датчика 4; Ug1, Ug2 дополнительные составляющие сигналов ГО датчика 4, обусловленные влиянием включенного ТО датчика 4 и вызывающие погрешность ГО. В свою очередь, Ug1 и Ug2 можно представить в виде: Ug1 V1(N , ) sinN t, Ug2 V2(N , ) sinN t, где V1(N , ), V2(N , ) амплитуда дополнительных составляющих сигналов ГО датчика 4, являющиеся функциями N , , N , частота источника возбуждения 1; N коэффициент деления делителя 3 частоты. На выходной обмотке приемника 7, выполняющего функцию выявителя рассогласования, вырабатывается сигнал рассогласования: Up U1cos + U2sin Vsin( )sin t + V(N , , ) sinN t, где угол поворота ротора приемника 7, V(N , ) приведенная амплитуда дополнительных составляющих сигнала ГО датчика 4, являющаяся функцией N , , . Сигнал рассогласования поступает на управляющую обмотку двигателя 8, на обмотку возбуждения которого подается синхронизирующее напряжение с входа ГО датчика 4. Так как вращающий момент двигателя 8 возникает на частоте синхронизации , совпадающей с частотой источника возбуждения 2, то вторая составляющая сигнала рассогласования V(N , , )sinN t воспринимается как временная гармоника с кратностью N и не создает вращающего момента. Следовательно, только первая составляющая сигнала рассогласования будет определять вращающий момент двигателя 8, который, вращая приемник 7, приведет его в согласованное состояние: Vsin ( ) 0, откуда . Таким образом, устраняется влияние ТО на ГО. Отметим, что в случае подключения входов ГО и ТО датчика 4 к одному источнику возбуждения, что характеризуется N 1, уже и ошибка дистанционной передачи угла определилась бы из решения уравнения: Vsin ( ) + V( , , ) 0. Для реальных уровней дополнительных составляющих сигналов ГО датчика 4, достигающих 1.2% напряжения возбуждения, погрешность канала ССДПУ 5 составила бы: - 30.60 что является недопустимым. Блок 6 использует оба отсчета ГО и ТО датчика 4, преобразуя в выходной код К, и ГО необходим только для однозначности отсчета. Требования к точности ГО невысоки и точность блока 6 определяет только ТО. Поэтому необходимо уменьшать влияние уже ГО на ТО. В рассматриваемой структуре это обеспечивается тем, что частота возбуждения ГО в N раз меньше частоты возбуждения ТО. При увеличении N частота возбуждения ГО понижается и величина наводки из ГО в ТО уменьшается. Одновременно с увеличением N в канале ТО облегчается фильтрация проникших наводок из канала ГО благодаря разнесению частот возбуждения ГО и ТО. Следовательно, влияние ГО на ТО также резко ослаблено, что в целом обеспечивает повышение точности как канала 5 ССДПУ, так и блока 6.Формула изобретения
ДВУХКАНАЛЬНАЯ СИСТЕМА ПРЕОБРАЗОВАНИЯ УГЛА, содержащая двухотсчетный датчик, обмотки грубого и точного отсчетов которого выполнены на одном магнитопроводе, выход грубого отсчета датчика подсоединен к входу канала следящей системы дистанционной передачи угла, синхронизирующий вход которого соединен с входом отсчета датчика, выходы грубого и точного отсчетов датчика подсоединены к входам блока преобразования электрических сигналов датчика в код, первый источник возбуждения, выход которого соединен со входом точного отсчета датчика, отличающаяся тем, что в нее введены второй источник возбуждения и делитель частоты, вход делителя частоты соединен с выходом первого источника возбуждения, выход делителя частоты соединен с входом второго источника возбуждения, выход которого соединен с входом грубого отсчета датчика.РИСУНКИ
Рисунок 1, Рисунок 2