Атомно-эмиссионный многоканальный спектрометр

Реферат

 

Использование: атомно-эмиссионный спектральный анализ состава веществ. Сущность изобретения: спектрометр содержит источник возбуждения спектра, полихроматор, узел преобразования светового сигнала, многоканальный фотодетектор с блоком его управления и блок управления спектрометром. Изобретение позволяет варьировать набор регистрируемых спектральных линий. 1 ил.

Изобретение относится к атомно-эмиссионному спектральному анализу химического состава веществ.

Известен атомно-эмиссионный многоканальный спектрометр, включающий источник возбуждения спектра, входную щель, пару световодов, многоканальный фотоприемник, диспергирующий элемент, блоки: управления, сопряжения и сравнения [1] Недостаток известного спектрометра заключается в отсутствии возможности предварительного выбора и обработки только тех участков многоканального фотоприемника, на которые попадают спектральные линии анализируемых элементов.

Наиболее близким к предлагаемому является атомно-эмиссионный многоканальный спектрометр, содержащий источник возбуждения спектра, полихроматор, многоканальный фотодетектор, включающий набор щелей, за каждой из которых установлен одноканальный фотодетектор, преобразующий проходящий через щель свет в электрический сигнал. Фотодетекторы подключены к блоку сопряжения, который соединен с блоком управления спектрометра [2] Недостаток этого спектрометра заключается в отсутствии возможности изменения положения щелей с целью перестройки на другие аналитические линии определяемого химического элемента или на линии других химических элементов.

Технический результат изобретения заключается в обеспечении настройки атомно-эмиссионного многоканального спектрометра на любой набор аналитических линий химических элементов, расширение номенклатуры одновременно определяемых элементов и повышение точности анализа.

Для этого у атомно-эмиссионного многоканального спектрометра, включающего источник возбуждения спектра, полихроматор, узел преобразования светового сигнала с фотодетектором, установленным в фокусной полости полихроматора, подключенный к входу блока управления спектрометром, в узел преобразования светового сигнала введены блоки управления соответственно узла преобразования светового сигнала и фотодетектора и последовательно соединенная цепь из усилителя, аналого-цифрового преобразователя и оперативно-запоминающего устройства, фотодетектор выполнен многоканальным с входом, подключенным к его блоку управления, и выходом, подключенным к усилителю, при этом блок управления узлом преобразования светового сигнала первым выходом подключен к блоку управления фотодетектором, вторым к блоку управления спектрометром, первым входом к выходу оперативно-запоминающего устройства, а вторым входом к выходу блока управления спектрометром.

На чертеже изображена блок-схема спектрометра.

Атомно-эмиссионный многоканальный спектрометр содержит источник 1 возбуждения спектра, в качестве которого может быть взят генератор дуги спектра ИВС-28, полихроматор 2, например спектрограф ДФС 452, узел 3 преобразования светового сигнала с многоканальным фотодетектором 4, представляющим собой линейку фотодиодов, установленным в фокусной плоскости полихроматора 2 и подключенным к выходу блока 5 управления фотодетектором. К выходу многоканального фотодетектора 4 последовательно подключен усилитель 6, аналого-цифровой преобразователь 7 и оперативно-запоминающее устройство 8. Блок 9 управления узлом 3 преобразования светового сигнала, например микропроцессор 1816 ВЕ 48, подключен первым выходом к блоку 5, вторым к блоку 10 управления спектрометром, который представляет собой ЭВМ, например IBМ РС АТ. Выход оперативно-запоминающего устройства 8 подключен к первому входу блока 9, второй вход которого подключен к выходу блока 10.

Спектрометр работает следующим образом.

Свет от источника 1 возбуждения спектра попадает в полихроматор 2 и разложенный по длинам волн проектируется на многоканальный фотодетектор 4. Блок 10 управления спектрометром через блок 9 управления узлом 3 преобразования светового сигнала подает на блок 5 управления многоканальным фотодетектором 4 сигнал старта времени накопления светового сигнала на многоканальном фотодетекторе 4. По окончании времени накопления сигналы со всех каналов фотодетектора 4 последовательно усиливаются усилителем 6, оцифровываются в аналого-цифровом преобразователе 7 и запоминаются в оперативно-запоминающем устройстве 8. В блоке 10 управления спектрометром содержится информация о спектральном положении аналитических линий определяемых элементов. Эта информация передается в блок 9 управления узлом 3 преобразования светового сигнала в виде номеров каналов многоканального фотодетектора 4, в которые будут попадать спектральные линии исследуемого объекта.

Затем блок 9 считывает из оперативно-запоминающего устройства 8 и передает в блок 10 значения сигналов только тех каналов, которые были заранее заданы от блока 10 управления спектрометром.

Таким образом возможно формирование любого набора регистрируемых спектральных линий.

Формула изобретения

АТОМНО-ЭМИССИОННЫЙ МНОГОКАНАЛЬНЫЙ СПЕКТРОМЕТР, содержащий источник возбуждения спектра, полихроматор, узел преобразования светового сигнала с многоканальным фотодетектором, установленным в фокусной плоскости полихроматора, подключенный к входу блока управления спектрометра, отличающийся тем, что спектрометр содержит блок управления узла преобразования сигнала, узел преобразования светового сигнала содержит дополнительный блок управления фотодетектора и последовательно соединенные усилитель, аналого-цифровой преобразователь и оперативно-запоминающее устройство, причем фотодетектор выполнен с входом, подключенным к блоку управления фотодетектора и выходом, подключенным к усилителю, при этом блок управления узлом преобразования светового сигнала первым выходом подключен к блоку управления фотодетектора, вторым к блоку управления спектрометром, первым входом к выходу оперативно-запоминающего устройства, а вторым входом к выходу блока управления спектрометром.

РИСУНКИ

Рисунок 1