Способ получения фактора, стимулирующего образование колоний гранулоцитов
Реферат
Использование: изобретение относится к биотехнологии, в частности к получению фактора, стимулирующего образование колоний гранулоцитов с помощью технологии рекомбинантной ДНК. Сущность изобретения: способ получения полипептида или гликопротеина, обладающего активностью человеческого фактора, стимулирующего образование колоний гранулоцитов, предусматривает получение двунитевой КДНК, комплементарной к информационной РНК /мРНК/, кодирующей полипептид, обладающий указанной активностью, и хромосомного гена человека, кодирующего полипептид, обладающий активностью фактора, стимулирующего образование колоний гранулоцита, встраивание гена в вектор, трансформацию полученной рекомбинантной ДНК клеток реципиентов, выделение и очистку целевого продукта. 40 ил., 17 табл.
Изобретение относится к способу получения полипептида или гликопротеина, обладающих активностью фактора стимулирования образования колоний гранулоцитов G-CSF с использованием технологии рекомбинантных молекул ДНК.
Биологическим действием G-СSF, является их способность вызывать дифференциацию лейкемических клеток костного мозга и усиливать функции зрелых гранулоцитов, вследствие чего их использование в области лечения и предотвращения лейкемии является многообещающим. Предприняты попытки изолировать и очистить G-СSF из надосадочной жидкости клеточной культуры, но гомогенный G-СSF не был получен в больших количествах, поскольку продуцируется в низкой концентрации и после процедуры очистки получается в "следовых" количества из большого объема культуральной жидкости. На фиг.1 представлены последовательности различных зондов, IWQ, А и LC; на фиг.2 нуклеотидная последовательность вставки pHCS-1; на фиг. 3-5 нуклеотидная последовательность вставки КДНК в pBRG4; на фиг.6 аминокислотная последовательность предшественника человеческого Г-КСФ, выведенная на рBRG4 КДНК; на фиг.7 аминокислотная последовательность человеческого Г-КСФ, выведенная из рBRG4 КДНК; на фиг. 8-10 нуклеотидная последовательность вставки КДНК в рBRV2; на фиг.11 аминокислотная последовательность предшественника человеческого Г-КСФ, выведенная из pBRV2 КДНК, на фиг.12 аминокислотная последовательность человеческого Г-КСФ, выведенная из pBRV2 КДНК; на фиг.13-17 нуклеотидная последовательность человеческого хромосомного гена, кодирующего Г-КСФ; на фиг.18 сайты расщепления растриктазой pBRG4 или PBRV2 КДНК человеческого Г-КСФ; на фиг. 19 сайты расщепления растриктазой человеческого хромосомного гена, кодирующего Г-КСФ; на фиг.20 частично способ получения tac-промотор-содержащего вектора (+ VSЕ линия); на фиг.21-22 способ получения PL-промотор-содержащего вектора (+VSE линия); на фиг.23 cпособ получения trp промотор-содержащего вектора (+VSE линия); на фиг.24 частично способ получения tac-промотор-содержащего вектора (VSE линия); на фиг. 25-26 способ получения PL-промоторсодержащего вектора (-VSЕ линия), на фиг.27 способ получения trp промотор-содержащего вектора (-VSЕ линия); на фиг.28 cхематически структура рНGA410; на фиг.29 способы конструирования рекомбинантных векторов экспрессии рТN-G4, pТN-G4VA и рТN-G4VA на фиг.30-31 два способа конструирования рН GG4-dhfr; на фиг.32 способы конструирования pG4DR1 и pGDR2; на фиг.33 схематически структура рН GV2; на фиг.34 способы конструирования рекомбинантных векторов экспрессии рТN-V2, рТN-VA и рТN-VA на фиг. 35-36 два способа конструирования рекомбинантного вектора экспрессии рНGV2-dhfr; на фиг. 37 cпособы конструирования рV2DR1 и pV2DR 2; на фиг.38 схематически структура pML СЕЗ ; на фиг.39 схематически структура pТN CEЗ ; на фиг.40 cхематически по структуры pD26SVCEЗ и pDRCEЗ . Ген, кодирующий полипептид, обладающий активностью человеческого Г-КСФ (G-CSF), представляет собой ДНК (КДНК), которая является комплементарной и информационной РНК (ИРНК), которую получают в виде фракций 15-17S путем ценрифугирования в градиенте плотности сахарозы и которая кодируют полипептид, обладающий активностью человеческого Г-КСФ. Получили две линии КДНК. КДНК одной линии содержит полную последовательность или часть гена, кодирующего полипептид I или II (фиг.6 и 7). Более конкретно, эта КДНК имеет нуклеотидную последовательность, идущую от АТГ в нуклеотидных положениях 32-34, отсчитываемых от 5'-конца (фиг.3-5), до ЦЦЦ в положениях нуклеотидов 650-652, либо от АЦЦ в положениях 122-124 до ЦЦЦ в положениях 650-652. Альтернативно КДНК имеет нуклеотидную последовательность или ее часть, КДНК этой линии здесь ниже называют КДНК (+VSЕ). КДНК другой линии имеет весь или часть гена, кодирующего полипептид I или II, показанный на фиг. 6-7. Более конкретно, эта КДНК имеет нуклеотидную последовательность, идущую от АТГ в нуклеотидных положениях 31-33, отсчитываемых от 5' конца [см.фиг. 8-10] до ЦЦЦ и нуклеотидных положениях 640-642, либо от АЦЦ в положениях 121-123 до ЦЦЦ в положениях 640-642. Альтернативно КДНК может иметь нуклеотидную последовательность, показанную на фиг. 8-10, или ее часть КДНК этой линии здесь ниже называют КДНК (-VSЕ). Описанный выше ген можно получить следующими способами: сначала получают ИРНК, кодирующую Г-КСФ, из клеток млекопитающего животного или из других клеток хозяина, обладающих способностью продуцировать полипептид, имеющий активность Г-КСФ, затем ИРНК превращают в двухнитиевую КДНК любым известным способом; полученную библиотекой КДНК затем подвергают направленному отбору известными способами. Ген по настоящему изобретению также включает человеческий хромосомный ген, кодирующий полипептид, обладающий активностью Г-КСФ. Этот ген содержит всю или часть нуклеотидной последовательности, показанной на фиг. 13-17. Человеческий хромосомный ген можно получить из любого типа человеческих клеток, таких, как клетки, экстрагированные из печени или из почек, либо из малигнизированных клеток. Библиотеку человеческого хромосомного гена можно получить из человеческих клеток любым из известных способов [см. Maniatis et all, Cell, 15, 687(1978); and Manidtis et al. Molecular Cloning, Сold Spring Harbor Laboratory, р. 269, ff. (1982)] который проиллюстрирован ниже: экстрагируют человеческую хромосомную ДНК из таких источников, как печень эмбриона человека, фенолом или другими подходящими реактивами, частично или полностью переваривают экстрагированную ДНК подходящей рестриктазой, чтобы получить фрагмент ДНК подходящей длины, вставляют фрагмент ДНК в векторный фрагмент ДНК -фага с помощью Т4 ДНК-лигазы или других подходящих лигаз, при необязательном присоединении линкера, содержащего ограничительный сайт для подходящего фермента, такого, как ЕсоRI, затем получают частицы -фага способом укладки in vitro и трансформируют клетки хозяина, такого, как Е.coli, c помощью полученных частиц -фага. Примеры -фага, который можно использовать в качестве вектора в указанных способах, включают Charon 4А и ЕMBL-3 и ЕMBL-4. Клетка млекопитающего, которую можно использовать в качестве источника ИРНК, представляет собой штамм клеток, например выведенный из клеток рака ротовой полости человека, СНU-2 депонированный в Национальной коллекции культур микроорганизмов или C.N.С.M. под инвентарным номером I-483). Получение и РНК можно осуществить одним из способов, которые уже были предложены для клонирования генов ряда других физиологически активных протеинов: например, всю РНК получают сначала путем обработок поверхностно-активным веществом и фенолом в присутствии рибонуклеозного ингибитора такого, как комплекс ванадила рибонуклеозида [см. Berger аnd Birkenmeier, Biochemistry, 18- 5143(1979)] или центрифугированием в градиенте плотности CsCl с последующей обработкой гуанидинтиоцианатом [см. Chirgwin et al. Biochemistry, 18,5294(1979)] затем получают поли(A+) РНК(ИРНК), подвергая всю РНК периодической адсорбционной или аффинной хроматографии на колонке олиго (dТ) целлюлозы или на поли-U-cефарозе, при использовании сефарозы 2В в качестве носителя. Поли(А+) РНК можно далее фракционировать подходящим способом, таким, как центрифугирование в градиенте плотности сахарозы. Способность полученной таким образом иРНК кодировать полипептид, обладающий активностью Г-КСФ, можно подтвердить с помощью ряда способов: например, ИРНК транслируют в протеин и проверяют его физиологические активности, альтернативно, определяют подлинность этого протеина с помощью антитела анти-Г-КСФ. Более конкретно, иРНК вводят в овоциты Хenopus Laevis для осуществления трансляции [см. Gurdon et al. Nature, 233, 177(1972)] либо можно провести трансляционные реакции с ретикулоцитами кролика или с зародышами пшеницы [Schleif and Wensink, "Practical Methods in Molecular Biology". Springer-Verlag, NY (1981)] Активность Г-КСФ можно попытать, применяя, применяя способ культивирования на мягком агаре с использованием клеток костного мозга, и методика проведения этого способа уже описана [Metcalf, "Hemopoietic Colonies", Springer-Verlag, Berlin, Неidelberg, NY 1977)] Однонитевую КДНК синтезируют с помощью полученной таким образом иРНК, которую используют в качестве матрицы, затем из этой однонитевой КДНК синтезируют двухнитевую КДНК и двухнитевую КДНК вставляют в подходящий вектор ДНК, чтобы получить рекомбинантную плазмиду. Эту рекомбинантную плазмиду можно использовать для трансформации подходящего хозяина, скажем Еscherichia coli, с тем, чтобы получить библиотеку КДНК. Двухнитевую КДНК получить из иРНК одним из следующих двух способов: иРНК обрабатывают обратной транскриптазой с олиго(dТ), который является комплементарным к поли-(А)-цепи на 3' -конце, используемом в качестве затравки, либо синтезируют олигонуклеотид, который соответствует части аминокислотной последовательности протеина Г-КСФ, и синтезируют КДНК, которая является комплементарной к ИРНК, путем обработки обратной скриптазой, причем используют в качестве затравки синтезированный олигонуклеотид. Двухнитевую КДНК можно также получить следующими способами: иРНК разлагают и удаляют путем обработки щелочью, и полученную однонитевую КДНК обрабатывают сначала реверстранскриптазой или ДНК-полимеразой I (например, фрагментном Кленоу(Klenow), затем S1 нуклеазой, альтернативно ИРНК можно непосредственно обработать РН-азой Н и ДНК-полимеразой (например, Е. сoli полимеразой I). Для более подробной информации см. Maniatis et al. "Molecular Clonig", Сold Spring Harbor Laboramory (1982); и Gubler and Нoffman, Gene, 25, 263 (1983). Полученную таким образом двухнитевую КДНК вставляют в подходящий вектор, в такой, как например, один из плазмидных векторов ЕК-типа, типичными представителями которого являются pS CIOI, рDF 41, Сol Е1, рMB9, pBR322, pBR327 и рАСYC1, либо один из фаговых векторов, типичными примерами которых являются gt, c, gt 10 и gtWЕS, а после этого рекомбинантный вектор используют для трансформации штамма Е.coli (например, Х1776, НB101, ДН1 или С600) с тем, чтобы получить библиотеку сДНК (см.например, "Molecular Cloning", выше). Двухнитевую КДНК можно присоединить к вектору следующими способами: конец КДНК снабжают присоединяемым концом путем прикрепления подходящего синтезированного химическим способом фрагмента ДНК, и вектор ДНК, который был отщеплен рестриктазой, присоединяют к указанной КДНК посредством обработки ДНК-лигазы фаза Т4 в присутствии АТФ. Альтернативно прикрепляют звенья dC, dG (или dТ, dА-звенья) соответственно двухнитевой сДНК и к вектору ДНК, который расщепляют рестриктазой, и подвергают ренетурации раствор, содержащий оба вида ДНК (см.выше "Molecular Cloning"). Клетку хозяина можно трансформировать полученной таким образом рекомбинантной ДНК любым из известных способов. Если клеткой хозяином является Е.Coli, то можно использовать способ, разработанный Нanahan [J. Mol. Biol. 166, 557(1983)] где рекомбинантную ДНК добавляют к компетентной клетке, полученной в присутствии CaCl2, MgCl2 или RbCl. Направленный отбор клеток, несущих нужный ген, можно осуществить с помощью ряда способов, которые включают: плюс-минус способ, используемый при клонировании КДНК интерферона [Тaniguchi et al. Proc. Jpn. Асаd. 55, сер. В. 464 (1979)] способ анализа гибридизации трансляции [Nagata et al. Nature, 284, 316(1980)] и способ гибридизации колонии или пятна с использованием олигонуклеотидного зонда, синтезированного химическим образом на основе аминокислотной последовательности белка, обладающего активностью человеческого Г-КСФ [Wallace et al. Nucleic Acids Res. 9, 879(1981); и Benton Davis, Science, 196, 180(1977). Фрагмент, включающий клонируемый таким образом ген, кодирующий полипептид, обладающий активностью человеческого Г-КСФ, встраивали в подходящий вектор ДНК с целью трансформации других прокариотических или эукариотических клеток хозяина (Proc. Natl. Acad. Sei, USA82, July 1985, рр 4360-4364) (прототип). Е. сoli можно трансформировать рBR 322, которая представляет собой вектор, способный к репликации в Е. соli [см. Bolivar, Gene, 2, 95 (1975)] Этот вектор содержит гены, резистентные как к ампициллину, так и к тетрациклину, и любое из свойств можно использовать для идентификации трансформированных клеток. Примеры промотора, который нужен для генетической экспрессии в прокариотных хозяевах, включают промотор -лактамазного гена [Сhang et al. Nature, 275, 615 (1978)] лактозный промотор [см. Goeddel et al. Nature 281, стр. 544(1979)] и триптофанный промотор [см. Goeddel et al. Nucleic Acid Res. 8, 4057 (1980)] и т.д. Любой из этих промоторов можно использовать при получении полипептида, обладающего активностью человеческого Г-КСФ, по настоящему изобретению. Эукариотический микроорганизм, такой как Saccharomусеs сerevisiae, можно трансформировать вектором, таким как плазмида YRp7 [см. Stinchcomb et al. Nature, 282, 39, (1979)] Эта плазмида имеет ген ТКP1 в качестве селекционного маркера для дрожжевых штаммов, лишенных способности продуцировать триптофан, поэтому трансформанты можно отобрать путем выращивания в отсутствии триптофана. Примеры промотора, который можно использовать для экспрессии гена, включают кислый фосфатазный промотор гена [Miyanohara et al. Proc. Natl. Acad. Sci. USA, 80,1 (1983)] и алкокгольдегидрогеназный промотор гена [Valenzuela et al. Nature, 298, 347 (1982)] Для трансформации клеток млекопитающих, таких как клетки СOS, клетки яичника китайского хомяка (СНО), клетки С-127 и клетки Hela можно использовать, например pSV2-gpt [см. Milligan and Berg; Proc. Natl. Асаd. Sci. USA, 78, 2072(1981)] Векторы, используемые для трансформации этих клеток, содержат сайт инициации, селективный маркер, промотор, положение которого предшествует положение экспрессуемого гена, сигнал полиаденилирования и т.д. Для экспрессии гена в клетках млекопитающих можно использовать промоторы ретровируса, вируса полиомы, аденовируса, обезьяньего вируса 40 (SV 40) и т.д. Если используют промотор SV 40, то нужную экспрессию гена можно легко осуществить по способу Маллигана с сотр. (Mulligan et al. описанному в Nature, 277,108(1979). Сайты инициацини, которые можно использовать, получают из SV 40, полиомного вируса, аденовируса, вируса бычьей папилломы (BPV) и т.д. Используемые селективные маркеры включают ген фосфортрансферазы (АРН (3') II или I, ген тимидинкиназы, ген Е.coli хanthine гуанинфосфорибозилтрансферазы (Ecogpt), ген дигидрофолатредуктазы (DHFR) и т.д. Эукаристические гены обычно проявляют полиморфизм, как это известно для гена человеческого интерферона [см. Nishi et al. J. Biochem. 97,153 (1985)] при этом либо изменение в нуклеотидной последовательности не приводит к какому-либо изменению в аминокислотной последовательности, либо изменения в аминокислотной последовательности не затрагивают функциональную активность белка. Активностью Г-ГКС также может обладать полипептид с делецией, добавлением или замещением одной или более аминокислот в последовательности, показанной на фиг.6, 7 и 11 и 19. Ниже описан способ получения фактора в соответствии с изобретением. (I) Получение зонда. Гомогенный протеин человеческого КСФ получали очисткой из поверхностного слоя культуры опухолевых клеток линии CНU-2 и определили ее аминокислотную последовательность от N-типа. Фрагменты получили путем разложения бромоцианом и обработкой трипсином, и аминокислотные последовательности этих фрагментов также были определены [пример 3(I), (II) и (III)] На основании определенных аминокислотных последовательностей были синтезированы три нуклеотидных зонда (А), (LC) и (IWQ), имеющие последовательности, показанные на фиг.1 (пример 4). Зонд (А) был смешанного типа и состоял из 14 последовательных нуклеотидов. Зонд (IWQ) состоял из 30 последовательных нуклеотидов с деоксиинозином и представлял собой зонд такого типа, который используют при клонировании человеческого холецистокининового гена [Таkahashi et al. Proc. Natl. Асаd. Sci. USA 82, 1931 (1985)] Зонд (LC) представлял собой 24-нулеотидный зонд, который был синтезирован из нуклеотидов в 32-39 положениях от N-конца аминокислотной последовательности, показанной в примере 3(I), на основе нуклеотидной последовательности, показанной на фиг.3-5. Химический синтез нуклеотидов можно осуществить путем применения усовершенствованного фосфотриэфирнго способа к твердофазному методу, и это было рассмотрено Hapaнгом (Narang) [Tetrahedron, 39,3-22(1983)] Можно также использовать зонды на основе аминокислотных последовательностей, в положениях, которые отличны от используемых в вышеупомянутых зондах. (2) Построение библиотеки КДНК. Клетки СНU-2 были гомогенизированы после добавления гуанидинтиоцианатного раствора, и всю РНК получили центрифугированием в градиенте плотности, CsCl. Поли (А+) РНК выделили из всей РНК с помощью колоночной хроматографии на олиго (dТ)-целлюлозе. После этого, синтезировали однонитевую КДНК с помощью реверстранскриптазы, и добавили рибонуклеазу Н и Е. cоli ДНК-полимеразу I, чтобы получить двухнитевую сДНК. Цепь dC присоединили к полученной двухнитевй сДНК, которую присоединили к вектору рВ R 322, к которой прикрепили цепь dG в сайте отщепления Pst-I; полученную рекомбинантную ДНК использовали для трансформации штампа Е.cоli Х1776, и построили библиотеку кДНК рВ R 322-линии (примеры 5 и 6). Аналогичным способом двухнитевую КДНК присоединили к вектору gt 10 с помощью линкера Есo RI и построили библиотеку КДНК линии -фага (пример 7). (3) Направленный отбор. Клоны библиотеки кДНК рВ R322-линии, фиксировали на фильтровальной бумаге Ватман S41, и путем гибридизации колоний с зондом (IWQ) меченным 32, можно было отобрать единственный клон. Последующее исследование методом пятен по Саузерну [Southern. J. Mol. Biol. 98,503(1975)] показало, что этот клон также гибридизуется с зондом (А). Нуклеотидную последовательность этого клона определили дидезоксиметодом [Sanger, Science, 214, 1205 (1981)] Нуклеотидная последовательность полученной вставки КДНК показана на фиг. 2, где можно видеть, что эта вставка состоит из 308 пар оснований, включая зонды (IWQ) и (А), и имеет открытую рамку считывания, кодирующую 83 аминокислоты, последовательность которых показанав примере 3 (III) pB R 322-производное, содержащее эти 308 пар оснований pHCS-1 (пример 8). Фрагмент ДНК, содержащий 308 пар оснований полученный из рНСs-I, пометили радиоактивной меткой по способу меченной трансляции (см. там же Molecular Cloning), и, используя этот фрагмент в качестве зонда, осуществили направленный отбор gt 10 библиотеки КДНК с помощью гибридизации пятен [Benton and Davis, Science, 196, 180(1977)] чтобы получить пять клонов. С помощью того же способа, который описан выше, определяли нуклеотидную последовательность клона, который, как считали, содержит КДНК [фиг. 3-5] Эта вставка КДНК имела единственную большую открытую рамку считывания. Как показано на фиг. 3-5, можно вывести аминокислотную последовательность, кодируемую этой кДНК. Сравнение с N-концевой аминокислотной последовательностью Г-КСФ протеина, приведенной в примере 3(1), обнаружил, что эта кДНК содержала нуклеотидную последовательность, которая соответствовала как сигнальному пептиду, кодируемому 90 пар оснований, начиная с последовательности АТГ в нуклеотидных положениях 32-34 от 5'-конца и кончая последовательностью ГЦЦ в положениях 119-121, так и полному Г-КСФ полипептиду, кодируемому 531 парами оснований, начиная с последовательности АЦЦ в положениях 122-124 и кончая последовательностью ЦЦЦ в положениях 650-652. Поэтому полипептид с аминокислотной последовательностью l, приведенной на фиг. 6-7, cостоял из 207 аминокислот, а рассчитанным молекулярным весом 22292, 67D. Полипептид с аминокислотной последовательностью II состоял из 177 аминокислот, его молекулярная масса была рассчитана в размере 18986, 74 D (пример 9). Следует отметить, что АТГ в положениях 32-34 или в положениях 68-70 можно также считать сайтом инициации протеина. Штамм Х1776 Escherichia coli, содержащей pB R 322, который имел эту КДНК (+VSE) в сайте ЕсoRI был отдан на хранение в Институт исследования ферментации бюро промышленных наук и технологии (Fermentation Research Institute, the Agencу оf Industrial Science and Technology (FERM ВР-954). На фиг.18 показаны сайты рестрикции данной ДНК. Эту КДНК лигировали с рB R327 Соберон с сотр. [Soberon et al. Gene, 9,287(1980)] в сайте ЕсоRI и полученную плазмиду называют здесь ниже pBRG4. Полученную таким образом pBRG4 обработали рестриктазой ЕсоRI, чтобы получить фрагмент ДНК, содержащий КДНК, длиной примерно 1500 пар оснований. Этот фрагмент пометили радиактивной меткой способом меченой трансляции (см. там же Molecular Cloning) и, используя в качестве зонда этот фрагмент ДНК, меченный радиоактивной меткой, еще раз провели направленный отбор библиотеки gt 10 КДНК клонов с помощью гибридизации пятна (см. Benton and Davis). В этом способе гибридизации пятна приготавливают два листа нитроцеллюлозной фильтровальной бумаги со связанной ДНК -фага, один из этих листов используют для вышеуказанной гибридизации пятна, а другой подвергают гибридизации пятна с уже описанным зондом (LC). Отобрали фаги, которые оказались положительными для обоих зондов. Отобрали клон, который имел "полномерную" кДНК, и нуклеотидная последовательность вставки кДНК, определенная дидезокси-способом, показана на фиг. 8-10. Эта кДНК имели единственную большую открытую рамку считывания, была определена аминокислотная последовательность, которую можно кодировать эта кДНК, показанная на фиг. 8-10. Сравнение с N-концевой аминокислотной последовательностью Г-КСФ протеина, показанной в примере 3(1), открыло, что эта КДНК содержала нуклеотидную последовательность, которая соответствовала как сигнальному пептиду, кодируемому с помощью 90 пар оснований, начиная с последовательности АТГ в положениях нуклеотидов 31-33 от 5'-конца и кончая последовательностью ГЦЦ в положениях 118-120, так и законченному Г-КСФ полипептиду, кодируемому с помощью 522 пар оснований, начиная с последовательности АЦЦ в положениях 121-123 и кончая последовательностью ЦЦЦ в положениях 640-642. Поэтому полипептид с аминокислотной последовательностью l, показанной на фиг. 11 и 12, состоял из 204 аминокислот, и было рассчитано, что его молекулярный вес составлял 21977,35 дальтонов. Полипептид с аминокислотной последовательностью ll состоял из 174 аминокислот, было рассчитано, что его молекулярный вес составлял 18671,42 дальтонов (пример 10). Следует отметить, что АТГ в положениях 58-60 или в положениях 67-69 также можно рассматривать как сайт инициации протеина. Штамм Х1776 Еsherichia coli, несущий pBR322, которая имела эту КДНК (-VSЕ) в сайте ЕсоRI был отдан на хранение в Институт исследования ферментации бюро промышленных наук и технологии (Fermentation Research Institute, the Agency of Iнdustrial Science and Technology (FERM BP-955). На фиг.18 показаны сайты рестрикции данной ДНК. Эту КДНК лигировали с pBR327 в сайте ЕсoRI, чтобы получить плазмиду, которую здесь ниже называют плазмидой pBRV 2. (4) Направленный отбор библиотеки человеческого хромосомного гена. Библиотеку человеческого хромосомного гена, полученную в соответствии со способами, описанными Манятисом и сорт. (Maniatis et al. Molecular Cloning, там же), подвергали направленному отбору с указанной выше рНСS-I. Зонды, которые можно использовать при направленном отборе, включали: pHCS-I фрагмент ДНК длиной 308 пар оснований, pBRG4 фрагмент ДНК длиной примерно 1500 пар оснований pBRV 2 фрагмент ДНК длиной примерно 1500 пар оснований, фрагмент ДНК подходящей длины, содержащий часть одного или нескольких из этих фрагментов ДНК, а также вышеуказанные олигонуклеотидные зонды [т.е. (IWQ), (А) и (IC). Здесь ниже описан случай использования фрагмента ДНК pHCS-I. Этот фрагмент ДНК пометили радиоактивной меткой 32P в соответствии с методом меченой трансляции [см. Roop et al. Сеll, 15, 431 (1978)] Используя в качестве зонда полученный 32Р меченый фрагмент, библиотеку человеческого хромосомного гена подвергли направленному отбору с помощью гибридизации пятен (см. там же Benton and Davis) c тем, чтобы получить десять с лишним клонов. После выделения ДНК из клонов с помощью известных способов получили карту рестрикции [Fritsch et al. Сеll, 19, 959 (1980)] Используя тот же зонд ДНК, осуществляли гибридизацию по Саузерну (см. там же Southern), было найдено, что фрагмент ДНК длиной примерно 4 тысячи оснований, вырезаемый с помощью ЕсoRI и ХhoI, может потенциально содержать участок, кодирующий человеческий полипептид Г-КСФ. Поэтому, фрагмент ДНК примерно 4 тысячи оснований вставили в рBR327 и сайт ЕcoRI, используя линкер ЕcoRI, с тем, чтобы получить pBRCE3 . Используя эту плазмиду в качестве ДНК с определенной последовательностью оснований, определяли дидезокси-способом нуклеотидную последовательность участка примерно 3 тысячи оснований этого фрагмента ДНК длиной примерно 4 тысячи оснований. В результате было найдено, что указанный фрагмент ДНК является геном, кодирующим полипептид человеческого Г-КСФ (рис.5). Штамм Х1776 Е.coli, несущий pBRCЕ3 (т.е. плазмида pBR327, имеющую указанный фрагмент ДНК примерно 4 тысячи оснований, вставленный в сайт ЕсoRI) был отдан на хранение в Институт Исследования Ферментации Бюро промышленных наук и технологии (Fermentation Research Institute, the Аgency of Industrial Science and Тесhnolohgy (FE RM ВР-956). Сравнение вставки pBRG4 кДНК, показанной на фиг.3-5, и вставки pB RV2 кДНК, показанной на фиг.8-12, показано, что обсуждаемый фрагмент ДНК содержал пять экзонных частей, и он кодировал аминокислотные последовательности, выведенные из pB RG4 и pB RV 2. На фиг.19 показаны сайты рестрикции полученного гена. Этот фрагмент ДНК содержал хромосомный ген человеческого Г-КСФ, либо предшествующий участок, транскрибируемый в иРНК человеческого Г-КСФ, вместе с нуклеотидной последовательностью, принимающей участие в управлении транскрипцией [Benoist and Chambon, Nature, 290, 304 (1981), и Breathnack and Chambon, Ann. Rev. Biochem. 50, 349 (1981)] (5) Построение рекомбинантного вектора для экспрессии в Е.coli. А/ Рекомбинантный вектор линии +VSЕ. Из плазмиды pB RG4, полученной в (3) (пример 9), вырезали фрагмент кДНК полипептида Г-КСФ с помощью рестриктазы, и построили рекомбинантный вектор с помощью одного из следующих способов: (I) используя ренатурированный синтетический линкер, фрагмент связали с фрагментом, полученным из tac-промотор-содержащей рКК223-3 (Pharmacia Fine Chemicals) (пример 12 и рис.8); (II) три фрагмента, полученные из PL-промотор-содержащей PL-ламбда (Pharmacia Fine Chemicals), связали с ренатурированным синтетическим линкером, и продукт связывания и фрагмент кДНК подвергли стадиям повторного получения, чтобы построить рекомбинантный вектор (пример 13, фиг. 21-22) или (III) используя, ренатурированный синтетический линкер, фрагмент связали с фрагментом, полученными из trp-промотор-содержащей плазмиды pOYI (пример 14 и фиг.23), (В) Рекомбинантный вектор линии-VSЕ. Тем же способом, какой описан выше, построили три рекомбинантных вектора, используя плазмиду pBRV2 (пример 10), показанную в примере 19 и на фиг. 24, 25, 26, 27. (6) Получение трансформантов Е.coli и их выращивание и экспрессия Используя три рекомбинантных вектора каждой из линий +VSE и -VSЕ, штамм Е. coli DН1, N 4830 или JM 105 трансформировали при обработке хлоридом кальция или хлоридом рубидия, описанной в Molecular Cloning там же (примеры 12,13,14 и 19). Каждый из полученных трансформантов культивировали в среде Луриа (Luria), содержащей ампициллин, причем затем проводили индуцирование, как это нужно, чтобы осуществить экспрессию (примеры 15 и 20). (7) Выделение и очистки полипептида Г-КСФ из Е.coli и его аминокислотный анализ. Культуральный раствор трансформантов подвергали центрифугированию, чтобы получить клеточный осадок после центрифугирования. Собранные клетки обработали лизоцином и после лизиса посредством циклического замораживания и оттаивания получили поверхностный раствор. Альтернативно клетки обрабатывали хлоридом гуанидия, центрифугировали, и получали поверхностный раствор. Поверхностный раствор подвергали гель-фильтрации на колонке Ultrogel АСА54 (LKB), и активные фракции были сконцентрированы с помощью ультрафильтрационного устройства. Затем водный раствор трифторуксусной кислоты, содержащий н-пропанол, добавляли к концентрату, и после выдерживания во льду, смесь отцентрифугировали и абсорбировали на колонке с обращенной фазой С18. После элюирования проверили фракции на их активность. Активные фракции собрали и подвергали тем же способам очистки, какие описаны выше. Очищенные фракции были высушены вымораживанием, и порошок растворили и подвергли высоко разрешающей жидкостной хроматографии с разделением по размерам. Полученные полипептиды подвергали SDS-полиакриламидному гельэлектрофорезу, и единственная полоса подтверждала наличие нужного полипептида (Г-КСФ) (примеры 16 и 20). Полученный таким образом полипептид проявлял активность человеческого полипептида Г-КСФ (примеры 17 и 20). Полипептид Г-КСФ анализировали методом аминокислотного анализа с помощью автоматического аминокислотного анализатора "Хитачи 835" (Hitachi, Ltd). Для анализа N-концевых аминокислот использовали газофазный определитель последовательности (для разложения по Эдману), хроматограф высокоэффективной жидкостной хрома- тографии и колонку Ultrasphere-ODS (примеры 18 и 21). (8) Построение рекомбинантных векторов для клеток животных. Рекомбинантные векторы (производные BPV) для использования в хозяйских клетках С 127 и N IН3ТЗ были построены для каждой КДНК линии +VSE и -VSЕ и для хромосомного гена. Рекомбинантные векторы (с dhar) для использования с клетками СНО также были построены для каждой КДНК линии +VSE и -VSЕ для хромосомного гена. Также были построены рекомбинантные векторы для использования в клетках СoS. Описаны показательные примеры, а для более подробного описания следует ссылаться на соответствующие рабочие примеры. (А) Построение рекомбинантных векторов линии +VSЕ Фрагмент кДНК (+VSЕ), полученный в (3), вставили в вектор pdKCR, чтобы получить плазмиду pНGA 410, (пример 22, фиг.28), которую частично переваривали с помощью Есо RI, а затем обрабатывали ДНК-полимеразой I (фрагмент Кленова), чтобы получить тупые концы. К ДНК прикрепили линкер Hind III, затем ее обработали Hind III, и Т4 ДНК лигазой, обработанную ДНК использовали для трансформации штамма ДНI Е. coli с применением хлорида рубидия (см. там же Molecular Cloning). Полученную плазмиду назвали рН GA 410 (Н) (фиг.29). рафии и колонку Ultrasphere-ODS (примеры 18 и 21). (8) Построение рекомбинантных векторов для клеток животных. Рекомбинантные векторы (производные BPV) для использования в хозяйских клетках С 127 и N IН3ТЗ были построены для каждой КДНК линии +VSE и -VSЕ и для хромосомного гена. Рекомбинантные векторы (с dhfr) для использования с клетками СНО также были построены для каждой КДНК линии +VSE и -VSЕ для хромосомного гена. Также были построены рекомбинантные векторы для использования в клетках СoS. Описаны показательные примеры, а для более подробного описания следует ссылаться на соответствующие рабочие примеры. (А) Построение рекомбинантных векторов линии +VSЕ Фрагмент кДНК (+VSЕ), полученный в (3), вставили в вектор pdKCR, чтобы получить плазмиду pНGA 410, (пример 22, фиг.28), которую частично переваривали с помощью Есо RI, а затем обрабатывали ДНК-полимеразой I (фрагмент Кленова), чтобы получить тупые концы. К ДНК прикрепили линкер Hind III, затем ее обработали Hind III, и Т4 ДНК лигазой, обработанную ДНК использовали для трансформации штамма ДНI Е. coli с применением хлорида рубидия (см. там же Molecular Cloning). Полученную плазмиду назвали рН GA 410 (Н) (фиг.29). pН GA 410(Н) обработали SalI и после получения тупых концов ее обработали еще раз Hind III и выделили фрагмент Hind III Sal I. Плазмиду pdBPV-1, имеющую трансформированный фрагмент вируса бычьей папилломы, обработали Hind III и Pvu II, и выделили большой фрагмент ДНК и присоединили к отдельно приготовленному фрагменту Hind III Sal I. Соединенные фрагменты использовали для трансформации штамма DHI Е. соli, чтобы получить плазмиду pTN-G4, которая имела рН GA 410 выведенную СSF кДНК (фиг.29, пример 23) (CSF-КСФ, Прим. перев.). Любую из плазмид, рН GA 410, или рН GA 410 (Н), в сочетании с плазмидой pAdD26SVpA использовали для построения рН GG4-dhfr, который представлял собой рекомбинантный вектор (+VSЕ для использования с клетками CHO (фиг. 30, 31, пример 26). Фрагмент ДНК длиной 2 тыс. оснований, содержащий ген dhfr, выделили из pAdD26SVpA путем обработки с ЕсoRI и BamНI1 выделенный фрагмент вставили в рНGA 410(Н) в сайт Hind III c тем, чтобы построить pG4DR1 и pG4DR2 (фиг.32, пример 25). (В) Конструирование рекомбинантных векторов линии-VSЕ. Фрагмент КДНК (-VSЕ), полученный в (3), вставили в вектор pdKCR, чтобы получить плазмиду рН GV2 (пример 28), которую частично переваривали с Есо RI с последующей обработкой ДНК-полимеразой I (фрагмент Кленоу), чтобы получить тупые концы. Линкер Hind III присоединили к ДНК, которую последовательно обработали Hind III и Т4 ДНК-лигазой. Обработанную ДНК использовали для трансформации штамма DH1 Е. сoli с применением хлорида рубидия (см. там же Melecular Cloning). Полученную плазмиду назвали рН GV2(Н) (фиг.34). Плазмиду рН GV2 (Н) обработали Sal I после получения тупых концов, ее обработали ее раз Hind III и выделили фрагмент Hind III Sal I. Плазмиду pdBPV-1, имеющую трансформированный фрагмент вируса бычьей папилломы, обработали Hind III и Pvu II и отделили больший фрагмент ДНК и присоединили к отдельно приготовленному фрагменту Hind III Sal I. Присоединенные фрагменты использовали для трансформации штамма DН1 Е.соli, чтобы получить плазмиду рTN V2, которая имела рН GV-2, выведенную КСФ-кДНК (фиг.34, пример 29). Аналогичными способами либо плазмиду рН GV2, либо плазмиду рН GV2(Н), в сочетании с плазмидой рАdD 26SV pA использовали для построения рН GV2-dhfr, которая представляла собой рекомбинантный вектор (-VSЕ) для использования с клетками СНО (фиг.35, 36, пример 31). Фрагмент ДНК примерно 2 тыс. оснований, содержащий ген dhfr, выделили из pAdD 26 SV pA обработкой с помощью ЕсoRI и BamН 1, и выделенный фрагмент вставили в рН GV2(Н), в сайт Hind III c тем, чтобы построить pV2DR1 и pV2DR2 (фиг.37, пример 31). (С) Построение рекомбинантных векторов, содержащих хромосомный ген. Плазмиду pBRCE3 которую получили в (4) и которая содержала хромосомный ген, показанный на фиг. 13-17, обработали ЕсоRI. Плазмиду pSVН+K+, описанную Baner J1 et al. in Cell, 27, 299(1981), обработали Kpn I, чтобы удалить глобиновый ген. Затем плазмиду подвергали частичному перевариванию с Hind III c тем, чтобы удалить часть позднего гена SV40. Фрагменты повторно соединили, чтобы получить вектор экспрессии pML-Е+. Этот вектор обработали рестриктазой, Есо RI и подвергали дефосфорилированию щелочной фосфатазой (Takara Shuzo Co. Ltd.), чтобы получить вектор ДНК, который был связан с вышеуказанным фрагментом хромосомной ДНК с помощью Т4 ДНК-лигазы (Takava Shuzo Co. Ltd.), чтобы получить pMLCЕЗ , которая представляла собой рекомбинантный вектор для клеток СОS (пример 34). Как показано на фиг.31, эта плазмида содержала энхансер гена SV 40, начало репликации SV40, начало репликации pBR322 и -лактамазный ген (Ampr) pBR322 и человеческий Г-КСФ хромосомный ген, расположенный за энхансером SV 40. Вектор экспрессии для клеток С127 построили следующими способами. Фрагмент ДНК, содержащий хромосомный ген КСФ, вырезали с помощью подходящей рестриктазы из pML CEЗ которая представляла собой вектор экспрессии для клеток СOS. Этот фрагмент присоединили с помощью Т4 ДНК лигазы к фрагменту присоединили с помощью Т4 ДНК лигазы к фрагменту ДНК, содержащему оrigin вируса бычьей папилломы (BPV) и фрагмент ДНК, содержащий ранний промотор SV40. Полученная рТ NCЕ3 представляла собой вектор экспрессии, который имел х