Сотовый блочный катализатор восстановления оксидов азота аммиаком
Реферат
Изобретение относится к катализаторам для очистки отходящих газов от оксидов азота. Сущность изобретения: сотовый блочный катализатор содержит оксид молибдена 1,0-5,0 и/или сульфат ванадила 0,9-9,9; цемент 3,0-7,0 и/или глину бентонитовую 8,0-15,0; асбест 5,0-40,0 и диоксид титана - остальное. 2 табл.
Изобретение относится к области защиты окружающей среды и может быть использовано для очистки отходящих газов от оксидов азота методом селективного каталитического восстановления (СКВ) в химической промышленности и энергетике.
Известен сотовый блочный катализатор восстановления оксидов азота в отходящих газах /1/, включающий оксид ванадия, оксиды вольфрама и молибдена, диоксид титана и металлзамещенный цеолит. В цеолит входят следующие ионы металлов: иттрий, лантан, церий, неодим, медь, кобальт, марганец, железо в количестве 1-42 мас% преимущественно 6-36 мас. Катализатор имеет следующий состав,мас. Оксид ванадия 0,5 Оксид вольфрама или молибдена 1,5 Диоксид титана 48,0 Металлзамещенный цеолит 50,0 В отдельных случаях добавляют до 1 мас. глины. Активность катализатора достаточно высока. Степень конверсии NO 86% при температуре 350oС и объемной скорости дымовых газов 10.000 ч-1. Известны сотовые блочные катализаторы СКВ в отходящих газах /2-4/. Катализаторы имеют следующий состав, маc. Оксид ванадия 2,0-3,0 Оксид вольфрама 7,0-10,0 Диоксид кремния 0 -18,0 Диоксид титана Остальное Активность катализаторов: степень конверсии NO (87-93)% при температуре (350-380)oС и объемной скорости отходящих газов (5,500-20,000) ч-1. Удельная производительность катализаторов составляет 2,0 12,2 л NО/м2ч. Основным недостатком вышеперечисленных катализаторов являются невысокие прочностные свойства (механическая прочность, трещиностойкость, вибропрочность и долговечность при термоциклировании) вследствие отсутствия в составе катализатора термостойкого связующего. Кроме того, состав катализаторов многокомпонентен, а процесс получения многостадиен, что повышает стоимость катализаторов. Сотовый катализатор процесса СКВ /5/ состоит из следующих компонентов, мас. Сульфат ванадила 14,0 (7,8 в пересчете на V2О5) Портландцемент 50,7 Диатомитовая земля 27,5 Асбест хризотиловый 7,8 Удельную производительность A рассчитываем по формуле л NO/м2ч, где СNO концентрация NO в л/нм3; Vs объемная скорость, ч-1,Sгеом. геометрическая поверхность сотового катализатора, м2/м3. Основным недостатком катализатора является его недостаточно высокая активность в реакции СКВ: степень конверсии NО составляет 31% при температуре 350oС и объемной скорости 4000 ч-1. Удельная производительность катализатора невысока и составляет 2,1 л NO/м2ч. Блочный сотовый катализатор по заявке /6/ ( прототип) включает в себя следующие компоненты: Оксид вольфрама (молибдена) 8,9 Оксид ванадия 0,6 Диоксид титана 79,8 Стекловолокно 10,7 Оксиды вольфрама ( молибдена) и ванадия являются основными каталитически активными компонентами. Диоксид титана и стекловолокно являются носителями. Стекловолокно, кроме того, играет роль армирующего наполнителя, который придает катализатору трещиностойкость. В состав катализатора при его формировании вводятся различные органические вещества, выполняющие роль связующих при низких температурах ( поливиниловый спирт и термопластичная смола). При термообработке в окислительной атмосфере основная часть их должна выгорать. Катализатор обеспечивает степень конверсии NО -97% при температуре 380oС и объемной скорости 4700 ч-1. Удельная производительность катализатора составляет 2,1 л NO/м2ч. Указанный катализатор имеет ряд существенных недостатков: невозможность работы при высоких температурах в газах, содержащих повышенные концентрации кислорода, в связи с выгоранием органического связующего в катализаторе и снижением его прочности; недостаточно высокая жаростойкость, особенно в присутствии паров воды, вследствие взаимодействия их с армирующим компонентом- стекловолокном и его разрушением; высокая стоимость катализатора, так как велика суммарная доля активных компонентов и дорогостоящего носителя- диоксида титана и стекловолокна. низкая удельная производительность катализатора. Суть заявляемого изобретения сводится к тому, что сотовый блочный молибден и/или ванадий содержащий катализатор на основе диоксида титана дополнительно содержит цемент и/или глину и асбест при следующем соотношении указанных компонентов, мас. Оксид молибдена 1,0 5,0 Сульфат ванадила 0,9 9,0 Диоксид титана ( анатаз) 23,1 -82,1 Пoртланд-цемент-400 (ГОСТ 101 78-85) 3,0 7,0 Глина бентонитовая ( ГОСТ 7032-75) 8,0 -15,7 Асбест хризотиловый ( ГОСТ 17871-83) 5,0 -40,0 Соединения молибдена и ванадия в составе катализатора являются основными каталитически активными компонентами. Диоксид титана носитель. Как цемент, так и глина играют роль термостойких связующих, позволяющих использовать катализатор при высоких концентрациях кислорода в газовом потоке. При одновременном их введении используется композиционное связующее, повышающее пластичность формуемой массы. Асбест служит армирующим компонентом, придающим блочному катализатору трещиностойкость и жаростойкость при работе в газовых потоках, содержащих пары воды. Введение цемента, глины и асбеста в формуемые массы в указанном соотношении позволяет получать блочно-сотовые катализаторы на основе производимого отечественной промышленностью сернокислого диоксида титана, который без дополнительной обработки плохо формуется в блоки. При получении катализатора из данного вида сырья блоки катализаторов, в том числе по составу прототипа, без введения указанных компонентов имеют низкую прочность, дефекты формы и трещины. Цемент, глина и асбест являются,кроме того, носителями, не снижающими активность каталитически активных компонентов и стойкими к действию каталитических ядов, в частности диоксида серы. Степень конверсии оксидов азота на катализаторах, включающих в свой состав цемент, глину и асбест достаточно высока, удельная производительность достигает до 9,0 л NО/м2ч, а прочность составляет 50-80 кгс/см2. Основным достоинством этих компонентов является их невысокая стоимость и большая доступность по сравнению с веществами, входящими в состав прототипа Таким образом, совокупность указанных признаков в заявляемом блочно-сотовом катализаторе позволяет понизить стоимость катализатора за счет введения более дешевых компонентов и улучшить его механические характеристики, не снижая активности катализатора. Это подтверждается следующими примерами. Пример 1. В лопастной смеситель загружают 2,66 кг порошкообразного гидратированного диоксида титана, полученного по сульфатной технологии, и приливают водный раствор активного компонента, приготовленный растворением 0,20 кг (NH4) Mo7O244H2O в 0,78 дм3 воды. Смесь перемешивают 30 мин. Влажный порошок сушат при температуре 110oС - 3 часа и прокаливают при температуре 450oС 3 часа. Полученный продукт измельчают в шаровой мельнице до частиц размером менее 0,4 мм. Получают вещество I. В лопастной смеситель загружают 2,37 кг вещества I, 0,47 кг порошкообразной бентонитовой глины, 0,16 кг хризотилового асбеста и тщательно перемешивают. Затем в смеситель добавляют 0,99 кг 6% но го раствора водорастворимого полимера ( например, оксид полиэтилена), воду в количестве 0,18 дм3 и перемешивают в течение 45 мин. Полученную пасту экструзией формуют в цилиндрические блоки о ячейкой квадратной формы и режут струной до выбранной длины. Блоки сушат в токе воздуха при температуре (20 -60)oС в течение 15 часов, при 110oС 6 часов, прокаливают при 450oС 3 часа. После термообработки блоки имеют диаметр 45 мм и длину 150 мм, размер ячеек 3 х 3 мм, толщину стенки 1,5 мм. Второй активный компонент на блок вышеуказанного размера наносят пропиткой из раcтвора полученного путем растворения 0,20 кг VOSO43H2O в 5,7 дм3 воды. Пропитку проводят при комнатной температуре в течение 30 мин. Затем блок сушат и прокаливают по описанному выше режиму. Получают образец состава, мас. оксид молибдена 5,0; сульфат ванадила 0,9 (в пересчете на V2O5 0,5), диоксид титана 74,1; глина бентонитовая 15,0; асбест 5,0. Для испытаний на активность блока вырезают фрагмент диаметром 28 мм и высотой 25 мм. Условия испытаний. Состав газового потока: NО 500 ppm, NH3 - 500-550 ppm, SO2 2000 ррm, O2 4 H2> 10 CO2 12 N2 остальное по балансу. Объемная скорость газа 4700 ч-1, температура 380oС. Активность образца определяют по формуле , где степень конверсии, Co исходная концентрация NО, ррm; Спр концентрация NO за слоем катализатора, ррm. После определения первоначальной активности проводят процесс ускоренного отравления образца. Для этого концентрацию NО и NH3 в газовом потоке повышают до 5000 ppm, SO2 до 10000 ppm. Периодически делают замеры активности на первоначальном составе газа. Результаты приведены в табл. 1 и 2. Активность катализатора (пример 1) при ускоренном отравлении Из приведенных в табл.1 данных следует, что полученный катализатор практически не снижает своей активности при работе в газовом потоке, содержащем отравляющие компоненты. Пример 2. В лопастной смеситель загружают 1,90 кг порошкообразного гидратированного диоксида титана и приливают водный раствор активного компонента, полученного путем растворения 0,27 кг VOSO43Н2<О в 0,43 дм3 H2O. Смесь перемешивают в течение 30 минут. Влажный порошок сушат, прокаливают, измельчают аналогично примеру 1. Получают вещество 2. В лопастной смеситель загружают 1,95 кг вещества 2, 0,47 кг порошкообразной бентонитовой глины, 0,69 кг хризотилового асбеста и тщательно перемешивают. Затем в смеситель добавляют 0,96 кг 6%-ного раствора водорастворимого полимера ( см. пример 1), воду в количестве 0,40 дм3 и перемешивают в течение 45 мин. Полученную пасту формуют, сушат и прокаливают аналогично примеру 1. Получают образец состава, мас% сульфат ванадила -6,7 ( в пе ресчете на V2O5- 3,7), диоксид титана 58,3, глина бентонитовая15,0; асбест 20,0. Активность образца определяют аналогично примеру 1. Пример 3. Полученный по сульфатной технологии порошкообразный гидратированный диоксид титана прокаливают при температуре 450oС в течение 3 часов. В лопастной смеситель загружают 1,14 кг прокаленного порошка, 0,47 кг порошкообразной бентонитовой глины, 1,24 кг хризолитового асбеста и тщательно перемешивают. Затем в смеситель добавляют 0,90 кг 6%-ного раствора водорастворимого полимера, воду в количестве 0,20 дм3 и перемешивают в течение 45 минут. Полученную пасту формуют, сушат и прокаливают аналогично примеру 1. Получают блочно-сотовый носитель. Активный компонент наносят на носитель пропиткой из раствора, полученного путем растворения 1,83 кг VOSO43H2O в 5,50 дм3 Н2O. Пропитку, сушку, прокаливание проводят аналогично примеру 1. Получают образец состава, мас% сульфат ванадила 9,9 ( в пересчете V2O5 5,5), диоксид титана 35,1, глина бентонитовая 15,0, асбест 40,0. Для испытаний на активность используют блоки диаметром 45 мм и длиной 150 мм. Условия испытаний: отходящие газы дизельной установки. Состав газового потока: NО (500-1500) ррm,NН3-(500-1650) ррм, SO2 60-120 ppm, O2-15 об. H2O 8 об% CO2-8 об% углеводороды 300 мг/м3, сажа 90 мг/м3. Объемная скорость газа 4700ч-1, температура 380oС. Замеры активности проводили периодически в течение 1000 ч работы катализатора. Результаты определeний активности приведены в табл.2. Пример 4. В смеситель загружают 2,52 кг порошкообразного гидратированного диоксида титана и приливают к нему водный раствор активного компонента, полученный путем растворения 0,05 кг пapамолибдата аммония в 0,70 дм3 Н2О. Смесь перемешивают, сушат, прокаливают, измельчают аналогично примеру 1. Получают вещество 3. В смеситель загружают 1,90 кг порошкообразного вещества 3 и приливают к нему водный раствор второго активного компонента, полученный растворением 0,32 кг VOSO43H2O в 0,42 дм3 H2O. Смесь перемешивают, сушат,прокаливают, измельчают аналогично примеру 1. Получают вещество 4. В смеситель загружают 1,95 кг вещества 4; 3,38 кг порошкообразной бентонитовой глины, 0,09 кг цемента, 0,62 кг асбеста и тщательно перемешивают. Затем в смеситель добавляют 1,00 кг 6%-ного раствора водорастворимого полимера, воду в количестве 0,30 дм3 и перемешивают. Полученную пасту формуют, сушат и прокаливают аналогично примеру 1. Получают образец состава, мас% оксид молибдена 1,0, сульфат ванадила - 7,2 ( в пересчете на V2O5 4,0), диоксид титана56,8, глина бентонитовая 12,0, цемент 3,0, асбест 20,0 Активность образца определяют аналогично примеру 1. Результаты определений в табл.2. Пример 5. В смеситель загружают 2,07 кг гидратированного оксида титана и приливают водный раствор, содержащий 0,32кг VOSO43H 2O и 0,42 дм3 H2O.Смесь перемешивают, сушат, прокаливают, измельчают аналогично примеру 1. Получают вещество 5. В смеситель загружают l,95 кг вещества 5, 0,25 кг бентонитовой глины, 0,21 кг цемента, 0,62 кг асбеста и тщательно перемешивают. Затем в смеситель добавляют 1,0 кг 6%-ного раствора водорастворимого полимера, воду в количестве 0,30 дм3 и перемешивают. Полученную пасту формуют, сушат и прокаливают аналогично примеру 1. Получают образец состава, мас. сульфат ванадила- 7,2 ( в пересчете на V2О5 -4,0), диоксид титана 57,8, глина бентонитаваz -8,0, цемент 7,0, асбест -20,0. Активность образца определяют аналогично примеру 1. Результаты определений приведены в табл.2. Как видно из данных табл.2, катализаторы предлагаемого состава имеют активность не ниже, чем у прототипа, при этом активность практически не снижается при воздействии на катализаторе оксидов серы в присутствии аммиака. Заявляемый катализатор получен в виде опытных натрий и испытан на реальных отходящих газах котла ДЕ и на установке очистки газов дизеля мощностью 500 м3/ч. Предполагается использование данного катализатора в промышленных масштабах при комплектации дизельгенераторов с системой очистки.Формула изобретения
Сотовый блочный катализатор восстановления оксидов азота аммиаком, включающий оксид молибдена и/или соединение ванадия и диоксид титана, отличающийся тем, что в качестве соединения ванадия катализатор содержит сульфат ванадила и дополнительно содержит цемент и/или глину и асбест при следующем соотношении компонентов, мас. Оксид молибдена 1,0 5,0 Сульфат ванадила 0,9 9,9 Цемент 3,0 7,0 Глина бентонитовая 8,0 15,0 Асбест 5,0 40,0 Диоксид титана ОстальноеРИСУНКИ
Рисунок 1, Рисунок 2