Способ формирования антифрикционного и антиобледенительного покрытия (варианты)
Реферат
Использование: изобретение относится к способам борьбы с обледенением и триботехники и может быть использовано для нанесения и формирования на защищаемых поверхностях антиобледенительных и антифрикционных покрытий. Сущность изобретения: в первом варианте перед нанесением низкоэнергетического покрытия наносят подслой с наполнителем из частиц сферической формы. Сушку производят в магнитных или электростатических полях. Во втором варианте перед нанесением низкоэнергетического покрытия поверхность обрабатывают электронным пучком или лазерным лучом. Сушку производят в магнитных или электрических полях, направленных перпендикулярно к поверхности покрытия. 7 ил.
Изобретение относится к способам для борьбы с обледенением и триботехники, особенно для ненагруженных узлов трения, таких как звуковая катушка громкоговорителя, движущаяся вдоль сердечника и т.д.
При нанесении и формировании на защищаемых поверхностях низкоэнергетических антиобледенительных покрытий применяют сложные технологии, включающие химическое травление, плазменное или электросатическое напыление, нагрев до высоких температур в процессе сушки /1/. Недостаток этого способа заключается в том, что покрытия имеют малый срок службы, низкую эффективность. Кроме того, известен способ формирования антифрикционного и антиобледенительного покрытия, заключающийся в том, что низкоэнергетическое покрытие наносят на металлическую кровлю в два слоя с промежуточной сушкой в 24 часа /2/. Недостаток этого способа заключается в том, что в силу своего рельефа поверхности имеют большую поверхность контакта со льдом /для антиобледенительных покрытий/ или с сопряженной поверхностью /для антифрикционных покрытий/. В результате прочность адгезионного контакта со льдом не может быть получена меньше 2 кПа, а динамический коэффициент трения ниже 0,2. Технической задачей способа является формирование антифрикционного и антиобледенительного покрытия, обладающего долговечностью и эффективностью, за счет получения рельефа с оптимальной шероховатостью. Поставленная задача решается тем, что в способе формирования антифрикционного и антиобледенительного покрытия, включающем очистку поверхности, нанесение слоев грунтовки, нанесение низкоэнергетического покрытия и сушку, согласно изобретению, перед нанесением низкоэнергетического покрытия наносят подслой с наполнителем из частиц сферической формы радиусом от 10-1 до 10-3 мкм. Для улучшения поверхностных и эксплуатационных свойств покрытия сушку производят в магнитных или электростатических полях, направленных перпендикулярно к поверхности покрытия. Это позволяет образовать оптимальные текстуру и структуру поверхностного слоя, а также повысить устойчивость гидрофобной пленки к воздействию внешних факторов /вода, солнечная радиация и т.д./, на 20-40% понизить Fтг удельную свободную поверхностную энергию и сделать поверхности более однородными по удельной свободной поверхностной энергии. За счет нанесения подслоя наполнителя с частицами заданных форм и размеров осуществляется фиксация на поверхности моно- или полимолекулярного слоя низкоэнергетического покрытия. В варианте изобретения поставленная задача решается также тем, что в способе формирования антифрикционного и антиобледенительного покрытия, включающем очистку поверхности, нанесение слоев грунтовки, нанесение низкоэнергетического покрытия и сушку, согласно изобретению, перед нанесением низкоэнергетического покрытия поверхность обрабатывают электронным пучком или лазерным лучом. Для улучшения поверхностных и эксплуатационных свойств покрытия сушку производят в магнитных или электростатических полях, направленных перпендикулярно к поверхности покрытия. Данное решение имеет изобретательский уровень, так как оно для специалиста явным образом не следует из уровня техники. На фиг. 1 дана зависимость адгезионной прочности льда от свободной поверхностной энергии подложки. Из чего следуете, что оптимальными поверхностными свойствами обладают кремнеорганические покрытия Fтг 20-30 и перфторированные Fтг 9-16 полимерные покрытия. На фиг. 2 показано влияние изменения рельефа поверхности низкоэнергетических покрытий через изменения величины площади истинного контакта со льдом /Sкoнт. / по отношению к Sгеом. характерному для обычных антиобледенительных покрытий, где а покрытие на основе полиэтилгидросилоксана; б покрытие на основе перфторалкана; А/А* относительная адгезионная прочность. За счет изменения рельефа можно получить улучшение антиобледенительных свойств в несколько раз. На фиг. 3 показана схема контакта воды с низкоэнергетическим покрытием, где а поверхность с замкнутыми макроскопическими порами; б - низкоэнергетическая поверхность из высокодисперсных частиц; в пористое низкоэнергетическое покрытие с высокодисперсной структурой; 1 вода; 2 - полости и углубления, заполненные воздухом; 3 профиль истинной поверхности твердого тела; 4 поры и капилляры; 5 материал конструкции или покрытия; 6 низкоэнергетическое покрытие; 7 высокодисперсные частицы /фторопарафин, цеолиты и т. д./; 8 переходный слой; 9 заполнитель пор и капилляров. На фиг.4 показан график зависимости краевого угла смачивания от концентрации отвердителя в краске. На фиг. 5 показан график зависимости поверхностных свойств покрытий от напряженности электрического поля. На фиг. 6 даны схемы конструкции антиобледенительных и антифрикционных покрытий. Способ формирования антифрикционного и антиобледенительного покрытия заключается в следующем: на обезжиренную, очищенную от загрязнений и ржавчины поверхность наносятся два слоя грунтовки ЭП-00-10 /ГОСТ 10277-76/, после ее высыхания наносят 1-3 слоя ЭП-5162 с заполнителем /20-80%/, частицы наполнителя сферической формы радиусом от 10-1 до 10-3 мкм, в качестве заполнителя могут быть использованы частицы из окиси кремния, но возможно использование частиц металлов, их окислов, а также полимерные порошки /политетрафторэтилен, полиэпоксиды, и т.д./ указанных выше размеров. Выбор наибольших размеров частиц обусловлен тем, что, если брать наполнитель больших размеров, то вода будет заполнять полости и после замерзания заклинивается в них, что увеличивает адгезионную прочность за счет того, что частично адгезионный контакт будет разрушаться по этим ледовым включениям, кроме того, из-за этого покрытие будет быстрее изнашиваться. Выбор наименьших размеров частиц обусловлен оптимизацией , т.к для более мелких частиц Sконт будет возрастать и стремиться к Sгеом, а это приводит к увеличению адгезионной прочности /см. фиг.2/. После высыхания пленки наносят низкоэнергетическое покрытие, производят сушку. Грунтовка обуславливаете, с одной стороны, высокую прочность адгезии покрытия к защищаемой конструкции в целом, а с другой стороны, обеспечивает экранирование силового поля подложки, не позволяя ему влиять на повышенна адгезионной прочности льда или другой контактирующей поверхности с защищаемой. Низкоэнергетическое покрытие обеспечивает минимальную энергетику взаимодействия защищаемой поверхности либо со льдом,либо с другой контактирующей поверхностью будучи ориентировано гидрофобными радикалами наружу. Тaкая ориентация оптимальна в тонких слоях приблизительно 102 мкм, поэтому использования низкоэнергетических полимеров в виде единого покрытиям, с одной стороны, не позволяет оптимизировать гидрофобные свойства покрытия по минимальной величине удельной свободной энергии, а с другой, снижает прочность контакта покрытия с грунтом, ухудшая антикоррозионную защиту изделия в целом. Используя принцип локальности свойств, им экспериментально доказано, что гидрофобный полимер в низкоэнергетическом покрытии следует использовать в виде подслоя. Также способ формирования антифрикционного и антиобледенительного покрытия заключается в следующем: на обезжиренную, очищенную от загрязнений и ржавчины поверхность наносят два слоя грунтовки ЭП-00-10 /ГОСТ 10277-76/, после ее высыхания поверхность обрабатывают лучом лазера или электронным пучком, затем наносят слой низкоэнергетического покрытия, после чего производят сушку. Как в первом, так и во втором способе сушку производят в магнитных или электростатических полях, направленных перпендикулярно к поверхности покрытия /фиг. 4.5/. Это позволяет образовать оптимальную текстуру и структуру поверхностного слоя. На фиг.4 показана зависимость краевого угла смачивания от концентрации отвердителя в краске ЭП-5162 для поверхностей, гидрофобизированных перфторированным полимером /Т=140oС/ под воздействием постоянного электрического поля /U 1,8 кВ/. На фиг.5 показана зависимость краевого угла смачивания от напряженности постоянного или переменного /0/ электрического поля, приложенного перпендикулярно поверхности образца в процессе сушки гидрофобизатора. Эффективность свойств за счет воздействия поля и температуры повышается на 40% и более. Сушку можно производить как при комнатной температуре, так и при Т 100-150oC. В качестве низкоэнергетического покрытия могут быть рекомендованы следующие составы /в в.ч./ 1. Полиэтилгидроксилоксановая жидкость 8-12 Аминопропилтриэтоксисилан 0,02-0,09 Уайт-спирт Остальное 2. Полиперфторолефин /УПИ/ 7-10 Аминопропилтриэтоксисилан 0,015-0,07 Фреон 113 Остальное Помимо эпоксидного покрытия на основе эмали ЭП-5162 с грунтом ЭП-0010 могут быть рекомендованы десятки различных полимерных покрытий. Среди них в качестве примера могут быть рекомендованы: Грунтовка ВЛ-02 Грунтовка ФЛ-03К Эмаль ПФ-115-пентафталевая Грунтовка ФЛ-03К Эмаль ПФ-167 Грунтовка ВЛ-02 Эмаль УР-41 полиуретановая. На фиг. 3 наглядно показаны факторы, уменьшающие поверхность контакта от Sист. Sгeом. до Sист. 0,1 Sгеом. Работа адгезии при этом снижается не только за счет уменьшения поверхности контакта, но и за счет уменьшения адгезионной прочности из-за высокой напряженности льда на шероховатых поверхностях. На фиг. 6 даны схемы конструкции антиобледенительных и антифрикционных покрытий, где а показало футирование защищаемой конструкции низкоэнергетическим покрытием; б гидрофобизация поверхности линейными полимерными цепочкам, фиксированными за счет сил Ван-дер-Ваальса на поверхности; в ориентированная пленка из молекул, сшитых между собой и химически связанных с антикоррозионным слоем покрытия; 10 материал конструкции; 11 антикоррозионными подслой; 12 гидрофобная пленка. Наиболее эффективен способ /в/, когда для одного и того же гидрофобизатора достигается минимальность среднего значения удельной свободной поверхностной энергии, высокая однородность этой величины по поверхности конструкции и максимальная продолжительность срока службы покрытия.Формула изобретения
1. Способ формирования антифрикционного и антиобледенительного покрытия, включающий очистку поверхности, нанесение слоев грунтовки, нанесение низкоэнергетического покрытия и сушку, отличающийся тем, что перед нанесением низкоэнергетического покрытия наносят подслой с наполнителем из частиц сферической формы радиусом от 10-1 до 10-3 мкм. 2. Способ по п.1, отличающийся тем, что сушку производят в магнитных или электростатических полях, направленных перпендикулярно к поверхности покрытия. 3. Способ формирования антифрикционного покрытия, включающий очистку поверхности, нанесение слоев грунтовки, нанесение низкоэнергетического покрытия и сушку, отличающийся тем, что перед нанесением низкоэнергетического покрытия поверхность обрабатывают электронным пучком или лазерным лучом. 4. Способ по п.3, отличающийся тем, что сушку производят в магнитных или электрических полях, направленных перпендикулярно к поверхности покрытия.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6