Способ извлечения металлов (его варианты) и отвал

Реферат

 

Назначение: относится к области восстановления металлов, в том числе золота и серебра, из биоокисленных серусодержащих руд, имеющих низкое содержание металлов. Сущность изобретения: формируют макрочастицы из частиц руды и инокулирующего агента, содержащего серуокисляющие бактерии. Дополнительно макрочастицы могут содержать агломерирующее средство, стойкое к действию кислот и бактерий. Из макрочастиц строят отвал. В отвале происходит биоокисление руды и выщелачивание металлов. 6 с.п. ф-лы, 18 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к восстановлению металлов, в том числе золота и серебра, из биоокисленных руд, содержащих сульфидную и/или элементарную серу, таких как сульфидсодержащие выщелачиваемые пиритные, арсенопиридные руды, огнеупорные углеродистосульфидные руды, прошедшие предварительную обработку и подвергаемые последующей обработке хвосты, бедные руды, ранее считавшиеся отходами, которые, однако, имеют довольно высокое содержание металлов, а также покрывающие руды, которые имеют относительно низкое содержание металлов и могут считаться пустой породой.

Известны способы, в которых предусматривается механическое увеличение доступа бактерий биоокисления к руде. Эти способы (1) предлагают перемешивание руды в чанах, шламе, обеспечивая циркуляцию в емкостях или перегруппировку и перемешивание материала, включая рыхление, формирование шлама, передвижение материала, использование чанов с мешалками и соответствующее формирование и использование материала породы.

Однако при обработке больших количеств материала пустой породы и материала хвостов, обычные соображения, приемлемые для высококачественной руды, содержащей благородный металл, не приводят к успеху. При обработке пустой породы по экономическим соображениям осуществляют одноразовое формирование отвала, то есть на глубину, размеры и доступность для реагента и так далее. Кроме того, для биоокисления время индуцирования биоокислителей, циклы роста, биоцидная активность, жизнеспособность бактерий и другие факторы становятся важными, поскольку доступность реакции, размер частиц, осаждение, уплотнение становятся по экономическим соображениям необратимыми после формирования отвала и не могут восстанавливаться, за исключением очень небольшого объема. Для процесса биоокисления характерны проблемы, связанные с уплотнением отвалов, каналообразованием, недостатком питания, двуокиси углерода или кислорода, неравноценным распределением бактерий биоокислителя.

Известен способ извлечения металлов из руд, включающий формирование отвалов, биоокисление сульфидных руд в отвале и извлечение восстановленных металлов (2).

Недостатки известного способа аналогичны предыдущему способу.

В основу настоящего изобретения положена задача разработать способ биоокисления руды, содержащей сульфидную и/или элементарную серу, для восстановления металлов путем подбора соответствующих условий восстановления металла, диспергированного в руде или окклюдированного в ее матрице, который позволил бы увеличить выход благородных или недрагоценных металлов из руд при повышении его экономичности.

Задача решается тем, что предлагается способ биоокисления руды, содержащей металл и материал матрицы, в которой сера находится в состоянии окисления восстановления от нуля или менее, но не более, а точнее в виде сульфидной и/или элементарной серы, а также глину и/или мелкие частицы пыли, предусматривающий использование кислотоустойчивого совместимого с биоокислительными микробами водорастворимого винилового полимера, полученного ступенчатой полимеризацией в качестве агломерирующего средства, который согласно изобретению включает: произвольное регулирование pН руды до значения pН менее 2,5, отдельно и вместе с частичной агломерацией в кислотном растворе; образование макрочастиц из частиц руды с вкраплением, состоящим из микробных агентов (агента), способных по крайней мере частично окислить серу; образование отвала (груды) из указанных макрочастиц; биоокисление серы в матрице и восстановление необходимого количества металла или из биоокисляющего раствора или специального выщелачивателя для определенного металла.

Термин "руда" или "рудный материал", употребляемый здесь, включает не только руду как таковую, но также концентраты, хвосты и пустую породу, где, однако, имеется достаточное содержание металла, оправдывающее восстановительную обработку.

Извлекаемые металлы относятся к: группе IВ Периодической системы элементов (медь, серебро, и золото); группе IIВ (цинк); группе IVA (германий и свинец, в частности свинец); группе VA (мышьяк и сурьма); группе VIA (хром, молибден, вольфрам, в частности вольфрам); группе VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, палладий, платина, особенно никель, палладий и платина, и металлы из группы актиноидов (уран).

Из всех перечисленных металлов предпочтительными являются медь, серебро, золото, цинк, кобальт, никель и уран. Золото наиболее необходимый метал из указанных.

Материал матрицы, кроме необходимого содержания серы, может содержать одно или более неорганических металлосерных соединений, содержащих необходимое количество серы и металла, из упомянутых выше.

Металл может присутствовать в материале руды в виде: 1) металла, например золота, диспергированного и заключенного в матрице; 2) соединения, например в виде окиси металла, диспергированного или заключенного в матрице; 3) в виде компонента материала матрицы, например сульфида металла.

По способу согласно изобретению облегчается доступ к металлам в процессе восстановления в том смысле, что биоокисление серы дает возможность проведения дальнейшей восстановительной обработки элементов металла или соединения, а также делает этот металл растворимым, а значит, доступным для восстановительного процесса.

Способ согласно изобретению предпочтителен для восстановления золота из руд, имеющих содержание сульфидной серы и небольшое содержание золота, и в частности там, где материал матрицы содержит железосерное соединение. Особый интерес представляют огнеупорные пиритовые и арсенопиритовые золотые руды с низким содержанием золота.

Изобретение в особенности применимо для рудных материалов с высоким содержанием глины и мелких частиц. Частицы глины могут мигрировать в отвале и, разбухая и попадая в протоки между частицами руды, закупоривать эти протоки. Мелкие частицы (50 мас. 200 мешей) также могут мигрировать и, скопившись, закрыть проходы для просачивания в отвале. Это создает зоны низкой просачиваемости для рабочих жидкостей. Такие руды оказываются труднодоступными для обработки в отвалах выщелачивателями, а также для других видов обработки, поскольку глина и частицы уплотняют и закупоривают каналы для жидкости в отвале, мешая циркуляции рабочей жидкости в них. Это ухудшает равномерную обработку частиц, составляющих отвал, так как рабочая циркулирующая жидкость доходит до этих частиц неравномерно, оставляя некоторую часть без питания и, следовательно, необработанной. Поэтому снижается эффективность экстрагирования, увеличиваются время промывки и расход выщелачивателя.

Эффективность агломерации способствует предотвращению миграции глин и/или частиц из макрочастиц в отвал, в результате чего увеличивается сопротивление потоку раствора.

Мерой эффективности агломерации может служить скорость просачивания раствора.

При испытании скорости просачивания цилиндрическая колонка загружается испытуемым образцом и измеряется скорость просачивания.

Каждый образец приготавливается так, чтобы сохранить постоянные условия от образца к образцу, например содержание влаги, размеры частиц, макрочастиц, соотношение глин и/или частиц пыли и твердых частиц, площадь поверхности и т.д. причем единственная разница заключается в наличии или отсутствии и в количестве агломерирующего средства, проходящего испытание. Это позволяет точно сравнить различные способы агломерации. Колонка загружается определенным объемом приготовленного образца до заданной высоты. Фильтрующий раствор вводится до определенного уровня и циркулирует в колонке в течение определенного времени, сохраняя высоту столба на заданном уровне. По прошествии определенного времени измеряется скорость просачивания. Снижение скорости указывает на то, что глина и пыль отделились от своих макрочастиц и закупорили протоки.

Другой мерой эффективности агломерации для предотвращения передвижения глин и частиц пыли является прямое измерение количества глин и мельчайших частиц на разных уровнях в искусственном отвале. Оборудование и процесс такие же, как при испытании скорости фильтрации, за исключением того, что вместо измерения скорости просачивания в конце определенного отрезка времени берутся образцы на определенных глубинах в колонке, и каждый образец анализируется на содержание глин и/или мельчайших частиц. Процентное содержание их на каждой глубине по отношению к общему количеству указывает на отклонение от равномерного распределения, то есть содержатся ли они в своих макрочастицах или отделились от них.

Что касается настоящих отвалов в поле, эффективность агломерации для предотвращения этой миграции обычно определяется наблюдением за образованием участков отвала, где визуально можно определить накопившийся промывочный раствор.

Под термином "частицы" понимаются отдельные частицы руды непосредственно после добычи и образовавшиеся после первичного или вторичного дробления и измельчения; термин "макрочастицы" означает тело или форму, состоящую из отдельных частиц, покрытых надлежащим образом агломерирующим агентом, как было описано выше, до, совместно или после смачивания частиц инокулирующим раствором, содержащим бактерии, или агломерирующим агентом, как описано выше, используемым по той же системе, как и инокулирующий раствор, но формирующий частицы из раствора, содержащего серную кислоту, инокулирующим раствором, содержащим отдельные бактерии специального штамма или смесь бактерий. Такое построение или формирование макрочастиц, а также построение отвала создают благоприятные условия для реактанта, то есть распределения биомассы, диспергирования и доступа к: а) количествам металла в руде, находящегося, например, в небольших количествах; б) к сульфиду и металлу, содержащимся в небольших концентрациях в руде. Ни одна из ссылок не касается экономичного способа, улучшающего начальное формирование отвала для удобства биоокислительного процесса, и разработки эффективного способа цианирования для восстановления благородного металла после того, как произошло биоокисление в изначально правильно сформированном отвале.

Основным аспектом изобретения является стадия биоокисления руды в форме макрочастиц, включая этапы предварительной и последующей обработки, касающейся биоокисления. Последующая стадия восстановления металла для извлечения благородных и/или недрагоценных металлов из биоокисленного рудного тела становится более целесообразной, поскольку макрочастицы руды формируются с самого начала, особенно микрочастицы руды, имеющие высокое содержание глины, и используется кислотно- и бактериально-устойчивое средство агломерации описанного типа с бактериальной оболочкой, что в результате улучшенного окисления делает руды чрезвычайно поддающимися для дальнейшего восстановления, например, цианидом или другим экстрагирующим агентом для извлечения нужного количества металла (металлов) из таких биоокисленных руд. Далее, соответствующие агенты агломерации согласно изобретению облегчают биоокисление и, главным образом, дальнейшие процессы извлечения.

В соответствии с изобретением предлагается комбинация этапов, которые делают возможной обработку руд, особенно рудных материалов с низким содержанием благородного металла, которые до сих пор считались пустой породой, не годных к восстановлению из них благородных металлов из-за показателей, ограничивающих возможность обработки, что относится к рудам с высоким содержанием глины, в которых затруднена проницаемость, и при биоокислении золотых руд, имеющих низкое, среднее и высокое содержание глины и низкое содержание серы. Низкое содержание серы имеет место в рудах, имеющих приблизительно менее 0,2-0,3 мас. сульфида.

Однако, несмотря на то, что изобретение описывает случаи с низким содержанием серы при восстановлении драгоценных металлов, например золота, оно также имеет ценность для руд с высоким содержанием серы. Руды с низким содержанием глины это те, в которых содержание глины приблизительно менее 5 мас. среднее содержание глины в руде приблизительно менее 20 мас. высокое содержание глины в рудах около 30 мас. и более.

Таким образом, в соответствии со способом согласно настоящему изобретению отходы пустой породы с содержанием золота 2,0 граммов на тонну руды, даже до 0,6 грамма на тонну руды, можно экономично обработать для его восстановления.

Предпочтительным является содержание золота выше 0,6 грамма на тонну руды.

Естественно, данное изобретение применимо для руды с более высоким содержанием золота, но для руд с высоким содержанием золота имеется целый ряд других способов и средств для успешного его восстановления, поэтому это изобретение может быть одним из них.

Таким образом, считается целесообразным в соответствии с данным изобретением обрабатывать хвосты, пустую породу, перекрывающие породы и уже использованные материалы отвалов, если количество благородного металла в таких рудных телах находится в пределах около или выше 0,6 грамма или его монетный эквивалент при наличии золота с серебром или одного серебра; если руда обрабатывается на кислотной стороне pН, при значении pН от 1,5 и выше; если руда содержит глинистые материалы в количестве приблизительно более 10 мас. и если руда была агломерирована соответствующими кислотоустойчивыми агломерирующими агентами.

Далее, было обнаружено, что усовершенствования, описываемые здесь, делают способ чрезвычайно пригодным для низкокачественных руд при обработке в груде или отвале и обеспечивают значительные результаты, несмотря на присутствие глины в руде при обработке их данным способом.

Например, данное изобретение предполагает правильную агломерацию распределением мелкозернистого и крупнозернистого рудного материала со значительным содержанием глины с сопутствующим правильным распределением бактерий биоокислителя.

Понятно, что в рудном теле, содержащемся в отвале, частицы имеют различные размеры и разное расположение, что также является предметом изобретения с точки зрения обеспечения доступа к участкам, которые раньше считались "мертвыми" в отвале, и теперь к ним обеспечен доступ в результате данного изобретения.

Эти рудные макрочастицы, правильно сформированные и распределенные в отвале, обеспечивают преимущества, поскольку агломерированный инокулированный биоокислительный материал входит в контакт с отдельными частицами и/или меньшими частицами и располагается соответствующим образом на больших частицах, образуя нужные структуры. Следует заметить, что агломерация только агломерирующим агентом является единственно приемлемым способом формирования макрочастиц. Внутри таких образовавшихся макрочастиц или на их поверхностях образуется соответствующая устойчивая флора, которая способствует правильному распределению бактерий биореактанта по всему рудному телу в отвале, образованном из всевозможных, даже нежелательных, очень небольших частиц, например глины и мелких частиц "шлама" различного состава и в примесях с более крупными частицами. Одни и те же или разные бактерии могут быть теперь введены в нужное место, определяемое температурой, pН, биоцидностью, доступом, насыщением водой и другими факторами. Далее, это изобретение также касается правильного формирования макрочастиц агломерацией из раздробленных рудных пород в процессе образования отвала с одновременной обработкой рабочей жидкостью, содержащей бактерии, нужные для определенных слоев отвала.

Другие различные особенности формирования инокулированных макрочастиц в соответствии с этим изобретением будут описаны в связи с формированием отвала и распределением бактерий биоокислителя по массе руды и отвала.

В добавление к вышесказанному стадии предварительной обработки могут включать обработку серной кислоты для нейтрализации или частичной нейтрализации руды с высокой поглощаемостью кислоты (таким образом также частично агломерируя руды), после чего следуют обработка агломерирующим средством и дальнейшая инокуляция и формирование макрочастиц, и распределение бактерий биоокислителя по массе руды по мере ее переработки для отложения на отвале.

В соответствии с изобретением формирование макрочастиц, покрытие их поверхности и распределение биоокислителя в них происходят очень успешно.

Эти преимущества обеспечивают чрезвычайно благоприятный доступ бактерий в сульфидную матрицу руды в частицах различных размеров, а также быстрый рост и размножение бактерий.

По данному изобретению способ предусматривает обработку арсенопиритов и тому подобных руд и разрабатывает последующую или дополнительную обработку биоокислительными выщелачивающими растворами, таким образом давая возможность выбирать оптимальный вариант обработки для каждого отдельного вида руды.

Из-за возможности получения смешанных макрочастиц руды и бактерий биоокислителей в отвале, возможности послойного формирования отвала, а также возможности добавления различных видов бактерий в различных точках формирования макрочастиц, способ помогает проектировать пластичное построение отвалов. Эта пластичность проявляется в послойном расположении, поочередном или совместном с взаимно совместимыми бактериями, что является целесообразным для обработки материала, так как открывает доступ к другим компонентам в руде, например к кислотонерастворимому углероду.

Таким образом, различные бактерии, которые обладают прекрасными свойствами для обработки рудных материалов, содержащих биоцидно-активные металлы, такие как мышьяк, сурьма, кадмий и им подобные, в больших количествах, в присутствии железа, обеспечивают успешное введение различных культур в различные места отвала и на различных этапах обработки.

Вследствие этого сокращается индукционный период роста, улучшается доступ воздуха и двуокиси углерода, а также введение питания и прочих добавок, больше биомассы сохраняется по всему объему отвала, улучшается просачивание, сводятся к минимуму трамбование и каналообразование, отсутствует водный каротаж и так далее. Новая практика формирования макрочастиц и построения отвала обеспечивает выдающиеся результаты при извлечении металлов из руды, в особенности благородных металлов из металлических руд с низким их содержанием. Одним из преимуществ изобретения является то, что на первой стадии обработки, проводимой в кислотных условиях с использованием специальных средств агломерации, создаются условия для дальнейшего по ходу процесса восстановления нужного металла, например на второй стадии, то есть цианированием или обработкой другим выщелачивателем для извлечения металла, или восстановлением прямо из биовыщелачивающего раствора. Эти преимущества, которые дает вторая стадия, возникают в результате улучшенной пористости, достигаемой тем, что средство агломерации не пострадало от биовыщелачивания, а также хорошей проницаемостью выщелачивателя, что, в свою очередь, исключает отрыв глины от своих макрочастиц и так далее. Кроме того, увеличивается скорость извлечения как таковая; достигаются значительные успехи в обеспечении доступа для цианида или другого выщелачивателя, или выщелачивающего раствора; снижается потребление цианида (выщелачивателя); создаются условия для регенерации выщелачивателя и различных вариаций в процессе обработки, а также обеспечивается возможность упрощения процесса нейтрализации отвала, если это необходимо, снижается потребность в нейтрализации из-за хорошего промывания как результат первой стадии обработки отвала биоокисляющим материалом и так далее.

Следовательно, формирование отвала для обработки цианидом или другим выщелачивателем перестает быть необходимостью из-за получения диспергированной пористой биоокисленной матрицы, дающей возможность промывать и нейтрализовать кислотный материал отвала для последующего цианирования или другого вида выщелачивания руды. Эти и другие преимущества обеспечивают свободное использование цианоцидных грибков и других микроорганизмов, понижающих количество цианида, для последующей обработки иcтощенного отвала. При этом улучшенный доступ цианида внутрь частиц и между ними позволяет обойтись без него.

Фиг. 1 схематично изображает ленточный конвейер устройства для агломерации частиц, обладающих необходимыми свойствами для формирования макрочастиц в отвале, для последующего биоокисления и выщелачивания металла.

Фиг. 2 изображает площадь поперечного сечения приготовленной макрочастицы руды.

Фиг. 3 схематично изображает вариант реализации данного изобретения в отвале биоокисляемого рудного материала, который затем реконструируется и обрабатывается цианидом.

Фиг. 4 изображает другой вариант реализации изобретения в отвале рудного материала, биоокисляемого по способу "гоночная трека".

Фиг. 5 схематично изображает еще один вариант биоокислительного выщелачивания рудного отвала с помощью выщелачивателя или другого раствора.

Система конвейера, показанного на фиг. 1, состоит из загрузочного бункера 1, в котором содержится сульфидная руда 2. Руда 2 подается на ленточный конвейер 3, расположенный наклонно к вертикали и имеющий разбрызгивающее устройство 4, оперативно связанное с конвейером 3. Ленточный конвейер 3 расположен внахлест с наклонным к вертикали ленточным конвейером 5, который, в свою очередь, расположен внахлест с круто наклонным ленточным конвейером 6, с которого частицы руды 7, постепенно формируясь на конвейере 3, выгружаются, образуя отвал 8.

На фиг. 2 изображена площадь поперечного сечения макрочастицы 9. Как показано, отдельные частицы 10 покрыты бактериальной оболочкой 11. Так как каждая руда имеет различные характеристики на излом и частицы могут быть измельченными, раздробленными и даже в натуральном виде из шахты, ясно, что частицы 10 могут присутствовать в руде в различной форме. Частицы глины обычно бывают мельче и располагаются на поверхности больших частиц. Следует заметить, что эти макрочастицы достаточно прочные и выдерживают в значительной степени любые уплотнения и/или когда подвергаются воздействию давящего сверху материала отвала. Более того, большие частицы глины выдерживают действие промывочных растворов. Обычно для сульфидных руд макрочастицы должны быть размером около 2,54 см и менее, при этом около 45-50% сульфидов в макрочастице окисляется. Оптимальный размер для сульфидных руд около 1,27 см до приблизительно 0,63 см, что дает возможность 80%-ного окисления сульфидов, правда, в зависимости от периода времени, отведенного на это. Частицы глины меньше размером и поэтому должны быть агломерированы и скреплены с макрочастицами или сформированы в макрочастицы.

Для углеродистых сульфидных руд размер макрочастиц должен быть около 3,81 см и менее, при этом окисляется приблизительно такое же количество сульфидов, как и в сульфидных рудах. Оптимальный низкий предел размеров приблизительно такой же, как в сульфидных рудах.

Для цианирования размер макрочастиц должен быть около 2,54 см и менее.

На фиг. 3 изображен отвал 12 в соответствии с данным изобретением. Отвал 12 имеет секцию 13 "индуцирования", только что сформированную, и схематично показывает временную задержку перед значительно более важной реакцией биоокисления. Секция 14 отвала 12 схематично изображает отвал в самой активной стадии биоокисления. Секция 15 изображает состояние заключительного биоокисления и период, когда достигается заданное содержание биоокисленного сульфида в руде. По достижении этого содержания секция 15 дренируется. Когда отвал 12 находится в своей наиболее активной стадии, может возникнуть необходимость в его охлаждении охлажденным раствором биоокислителя, прошедшего рециркуляцию, или охлажденным поддерживающим, то есть питательным, раствором.

После того, как нужный процент окисленного сульфида в секции 15 отвала 12 был достигнут и отвал 12 дренирован, отвал 12 промывается в течение продолжительного времени, как схематично показано секцией 16 отвала 12. После необходимого для промывки периода времени, например в течение двух недель, или в зависимости от остаточной кислотности железа в промывочном растворе секция 16 реконструируется, для чего ее разрушают, и при помощи конвейера 3 руда реагломерируется цементом или известью для создания нового отвала 17, который цианируется или обрабатывается раствором тиосульфата.

Фиг. 4 схематично изображает вариант реализации изобретения, где показано более ограниченное пространство, то есть "круговой" отвал 18, который постоянно формируется и переформировывается. Таким образом, зона простирания 19, которая является свободной поверхностью, движется постепенно по кругу, образованному "круговым" отвалом 18. По мере добавления новых слоев руды 7 на забой 20 агломерированная руда постепенно приближается к новому забою 21 свежеинокулированной руды 7.

Из соответствующего движущегося фронта 22 удаления породы руда отводится в щелочной отвал 17 (фиг. 3). Аналогично, движущийся фронт промывки 23 и его соответствующий новый фронт промывки 24 показывают секцию промывки 25, обеспечивающей снижение кислотности биоокисленной руды в "круговом" отвале 18.

Как показано на фиг. 5, несколько отдельных стволов могут обрабатываться биоокислением. После того, как реакция биокисления началась в отвале 8 и затем закончилась, отвал становится отвалом 26, который может дренироваться. Отвал 26 промывается и получает обозначение 27.

Вода 28 отвала 27 смешивается с дренирующим раствором 29 из отвала 26 и также частично с потоком из отвала 8. Хотя новый отвал 30 макрочастиц был предварительно агломерирован и инокулирован, при необходимости в этот отвал 30, в котором осуществляется биоокисление сульфидов руды, можно вводить дополнительные растворы 31 бактерий из емкости 32. Биоокисление отвала 8 осуществляют также из емкости 32.

В описанных вариантах изобретения отвал в фазе биоокисления может обрабатываться рециркулирующим биоокислителем от 3 до 8 дней, и от 3 до 8 дней приблизительно длится питательный цикл, то есть цикл сохранения влаги.

Достаточно от 4 до 7 дней рециркуляции биоокислителя и цикла питания для поддержания необходимого активного уровня обработки отвала.

Фиг. 5 изображает последовательную работу с раствором для полного биоокисления, дренирования и промывки. Из фиг. 5 видно, что все объемы раствора используются повторно, включая кислоту, ионы железа и бактерии. Это еще одно преимущество настоящего изобретения. Работа с раствором, показанная на фиг. 5, применима также для вариантов реализации изобретения, показанных в фиг. 3 и 4.

Что касается термина "агломерация", это рабочий термин, а более подробно подразумевает формирование макрочастиц, размеры частиц, распределение частиц в рудном теле.

Эти макрочастицы получают в результате соответствующего послойного расположения, образования и соединения частиц руды. Это придает им необходимые свойства, что зависит от качества кислотоустойчивого агломерирующего средства и бактериальной инокуляции. Следствием этого является улучшение пористости, проницаемости, просачиваемости и уменьшение расхода жидкости.

Для правильного формирования макрочастиц важно снизить до минимума влияние глин на "жизнеспособность" макрочастицы в течение процесса биоокисления и далее, в процессе выщелачивания, и, следовательно, агломерации и инокуляции, а также на "слипание" частиц и устойчивость к дроблению материала макрочастиц, приготовленных согласно данному изобретению.

Средняя скорость растворения железа по данному изобретению является другой отличительной чертой для установления правильного формирования макрочастиц рудного материала агломерирующим средством и бактериями биоокислителя. Порог скорости растворения железа определяет границу, когда макрочастица становится некондиционной в результате неправильной агломерации, от которой зависят пористость и правильное построение макрочастицы.

Другим способом, определяющим правильное формирование макрочастицы, является отрезок времени перед тем, как маркировочный элемент появится в выщелачивающем растворе. Такие маркировочные элементы и условия по данному изобретению определялись в зависимости от соотношения в системе матриц золота, железа и серы, как полностью растворимое железо, растворимое двухвалентное железо, растворимое трехвалентное железо, соотношение трехвалентного и двухвалентного железа, которое должно превышать 4:1 и предпочтительно 3:1, растворимый мышьяк, pН и Еh. Далее, скорость выщелачивания и расход выщелачивающего раствора для растворов с достаточным питанием и для растворов с недостаточным питанием также принимаются во внимание. В приведенном выше описании маркером процесса служило железо, но и другой металл, растворимый при биоокислении, также годится в качестве маркировочного элемента.

Что касается приготовления руды до формирования макрочастиц, руда может быть необработанной, то есть натуральным сырьем непосредственно после добычи, или уже прошедшей первичное или вторичное дробление.

Частицы руды так распределяются по размеру, как было установлено для проведения правильного формирования макрочастиц. Рудные материалы, которые были измельчены натуральным образом и готовы для правильного формирования макрочастиц, обеспечивают наиболее быстрое протекание процесса биоокисления; одновременно принимается во внимание наиболее экономичный способ дробления для каждого отдельного вида руды. Так, например, для легкодробимых руд размер должен быть менее, например, 1,27 см до минус 10 мешей, а для труднодробимых руд от 2,54 см до 0,63 см. Обычно такие размеры частиц обеспечивает наличие пустоты. Эти пустоты могут образовываться сочетанием размеров частиц и их распределением, формой частиц и формой образовавшихся макрочастиц. Обычно наиболее благоприятные результаты дают почти круглые макрочастицы, но для всего отвала трудно получить желаемую конфигурацию из-за разнообразия характеристик различных руд. В соответствии с правильным формированием макрочастиц в биоокислительном растворе находятся слоистые округлые макрочастицы, после чего более мелкие частицы (каждая из которых, в свою очередь, покрывается оболочкой) увеличиваются до нужных размеров. Поэтому формирование макрочастиц с использованием биоокисления является средством для увеличения площади поверхности, но, что более важно, для получения устойчивых к дроблению, несмотря на индивидуальную бактериальную обработку, макрочастиц с увеличенной площадью поверхности, на которые не оказывает влияния высокое содержание глины.

Такое физико-химическое воздействие делает возможным использование биовыщелачивания на практике для обработки материалов породы, считавшейся ранее пустой, то есть с низким содержанием металла, золота, в частности, и низким содержанием сульфида.

В добавление к вышесказанному инокуляция биоокислителя быстро инициирует реакцию биоокисления. Это способствует быстрому прямому, косвенному и гальваническому выщелачиванию.

Таким образом, железный сульфат, получаемый реакцией биоокисления, ускоряет реакцию в целом, и становится очевидно, что окклюдированное золото в матрице пирита является более приемлемым для второй стадии процесса, то есть для цианирования.

В случае, если нужный металл является компонентом материала матрицы и биоокисление растворяет этот металл, раствор биоокислителя функционирует в качестве биовыщелачивателя и нужный металл может быть восстановлен прямо из его потока. С уменьшением концентрации растворенного металла в потоке при его рециркуляции через отвал растворение нужного металла из руды облегчается из-за его низкой концентрации в руде.

Поскольку дробление и измельчение руды составляют значительную часть расходов при формировании отвала, способ, описываемый здесь, практичен для наиболее больших по размеру частиц руды, что делает биоокисление экономичным.

Проникающая способность бактериального раствора и далее, выщелачивающего раствора, и формирование частиц в макрочастицы (это касается биоокисления) позволяют использовать большие макрочастицы, однако существенную роль играет размер мелких частиц. Так, например, частицы глины задерживаются на поверхности макрочастиц, поскольку агломерирующее средство улучшает образование макрочастиц, особенно в сочетании с инокулирующим раствором.

Образование макрочастиц с помощью средств агломерации можно осуществлять с рудами, имеющими начальное содержание влаги приблизительно от 2 до 3% где добавление жидкости приводит к содержанию влаги в руде максимум 8-12% Более высокие количества делают растворы недееспособными. Расход большого количества жидкости может оказаться нецелесообразным, если руда не смешивается так, чтобы соблюдалось соотношение сухой и мелкодробленой руды в макрочастицах. Кроме того, рудный "шлам", то есть мелких частиц, теперь может пригодиться в процессе формирования макрочастиц.

Однако наилучший способ образования макрочастиц заключается в укрупнении или соединении частиц при помощи инокулирующего раствора (как показано на фиг. 1), а также в использовании агломерирующих средств, например полимерных смесей.

Для руд с высоким содержанием глин необходимо установить требуемое количество агломерирующего средства и использовать связующий агент, то есть кислотоустойчивые полимеры или сополимеры для улучшения "прилипания" в бактериальном растворе.

Глиносодержащие руды наиболее трудны для выщелачивания, так как они поглощают огромные количества воды, закупоривают каналы для прохода раствора в отвале и, отделяясь от макрочастиц, образуют непроницаемый слой в отвале. Материал руды, содержащий мельчайшие частицы, также трудно доступен для выщелачивания, так как мельчайшие частицы свободно мигрируют с потоком жидкости и тоже способствуют закупорке протоков.

Содержание глины в руде более 10 мас. или мельчайших частиц больше 30 мас. (200 мешей), или комбинированное содержание глины более 5 мас. и мелких частиц более 25 мас. (200 мешей) предусматривает включение агломерирующего агента при образовании макрочастиц, который служил бы связующим агентом. Обычно добавляемые количества составляют от 22,68 г до 4,536 кг на тонну рудного материала. Термин "мелкие частицы" относится к материалу, проходящему через сито, имеющее 200 мешей, то есть частицы, имеющие минус 200 мешей.

Кислотоустойчивые совместимые с микробным биоокислителем водорастворимые виниловые полимеры, полученные ступенчатой полимеризацией, включают агломерирующие средства согласно способу по данному изобретению. Такие полимеры должны быть кислотоустойчивыми, так как микробные биоокислители, такие как Т. ferroxidans, требуют кислотной среды для выживания и окисления железа и серы, то есть физиологической активности. Далее, метаболизм этих микроорганизмов производит кислоту и стремится снизить pН в их среде. Кислота также необходима при выщелачивании материала из отвала. Так, для эффективности процесса предпочтение отдается кислоте, полученной из микробов. Полимерные агломерирующие средства должны быть микробосовместимыми в том смысле, что они не должны быть микробобиоцидными или ухудшать жизнеспособность и метаболизм микроорганизмов, или вызывать серьезные нарушения метаболических направлений. Полимерное агломерирующее средство должно быть не только совместимым с микробным биоокислителем, но процесс биоокисления не должен оказывать никакого влияния на его свойства. Предпочтительно, агломерирующее средство не должно действовать в качест