Газлифтный реактор
Реферат
Использование: для окисления сложных суспензий твердое-жидкость. Сущность изобретения: реактор содержит жидкостную и газоотделительную камеры, выполненные в виде параллельных труб, расположенных горизонтально или под углом не более 6o к горизонту с подъемом в сторону выхода конечного продукта. Камеры соединены вертикальными барботажными и циркуляционными трубами, которые установлены вдоль боковых поверхностей камер и закреплены на этих боковых поверхностях своими торцами. На одном конце жидкостной камеры установлен штуцер подачи обрабатываемого продукта, а на противоположном - штуцер выхода конечного продукта. Каждая барботажная труба снабжена штуцерами подачи газа и теплоносителя. По всей длине жидкостной камеры установлены штуцеры для подвода газа. 3 з.п. ф-лы., 3 ил.
Изобретение относится к конструкциям химических реакторов и может быть применено для окисления сложных суспензий твердое жидкость, например для проведения процессов окислительно-гидролитической деструкции иловых осадков городских очистных сооружений, а также для проведения различных процессов окисления.
Известен кожухотрубный реактор [1] предназначенный для проведения экзотермических и эндотермических реакций при контактировании с жидкостями и состоящий из вертикального корпуса с газовой и жидкостной камерами, центральной циркуляционной трубы и нескольких барботажных труб, удлиненные концы которых проходят через нижнюю трубную решетку и имеют отверстия. Конструкция реактора проста и, кроме того, в нем достигается равномерность распределения газа по сечению аппарата. Известен кожухотрубный газлифтный аппарат [2] для проведения тепло- и массообмена, состоящий из корпуса с расположенными внутри верхней и нижней камерами, трубными решетками и проходящими через них циркуляционными и барботажными трубами, причем концы труб в верхней камере расположены на разном уровне, что обеспечивает циркуляционный отбор отдельных компонентов в зависимости от их плотности. Наиболее близким к предлагаемому устройству является газлифтный аппарат [3] предназначенный для использования в микробиологической промышленности при проведении процессов биохимических превращений в системах газ-жидкость, состоящий из цилиндрического корпуса и расположенных внутри него верхней газоотделительной и нижней жидкостной камер, трех трубных решеток, верхняя и средняя из которых образуют газовую камеру. В решетках закреплены барботажные и циркуляционные трубы, концы барботажных труб расположены в газовой фазе, а концы циркуляционных труб в жидкой, в стенках циркуляционных труб, расположенных в газовой камере, выполнены отверстия. Аппарат снабжен штуцерами для ввода и вывода фаз, тепло- и хладоносителя. Недостатком прототипа, как и аналогов, является недостаточная эффективность его применения для обработки суспензий твердое жидкость, так как отверстия в барботажных трубах и решетках реактора могут быть засорены различными взвешенными частицами, входящими в состав твердой фазы. Кроме того, на этих аппаратах невозможно организовать непрерывный процесс окисления трудноокисляемых суспензий, состоящих из твердой и жидкой фаз, например обработку кислородом иловых суспензий очистных сооружений. Задачей изобретения является создание конструкции газлифтного реактора, в котором возможно осуществить непрерывный процесс окисления трудноокисляемых гетерогенных суспензий. Для решения этой задачи предложен газлифтный реактор, содержащий нижнюю жидкостную, верхнюю газоотделительную камеры, связанные вертикальными барботажными и циркуляционными трубами, штуцеры подачи обрабатываемого продукта, вывода конечного продукта и подачи газа, отличающийся тем, что жидкостная и газоотделительные камеры выполнены в виде параллельных труб, расположенных горизонтально или под углом не более 6o к горизонтали с подъемом в сторону выхода конечного продукта, барботажные и циркуляционные трубы установлены вдоль боковых поверхностей жидкостной и газоотделительных камер и закреплены своими торцами через штуцеры на этих поверхностях, штуцеры подачи обрабатываемого продукта и вывода конечного продукта установлены на противоположных концах жидкостной камеры, а штуцеры подачи газа установлены в нижней части каждой барботажной трубы. Кроме того, реактор снабжен по крайней мере одним штуцером вывода минерализованного остатка, установленным в нижней части жидкостной камеры и дополнительными штуцерами подачи газа, расположенными также в нижней части жидкостной камеры вдоль ее наружной боковой поверхности, а каждая барботажная труба снабжена штуцером для подачи теплоносителя. Сущность изобретения заключается в следующем. Выполнение жидкостной и газоотделительной камер в виде параллельных горизонтальных труб и установка барботажных и циркуляционных труб вдоль боковых поверхностей по всей длине этих камер позволяет провести многократную циркуляцию суспензии в каждом из циркуляционных контуров: барботажная труба циркуляционная труба. При этом, суспензия вводится через входной штуцер, установленный на одном конце (например, торце трубчатой жидкостной камеры, а выводится через выходной штуцер, установленный на другом ее конце. Эти конструктивные отличия позволяют проводить непрерывный процесс деструкции сложных суспензий жидкость-твердое. Возможна установка трубчатых параллельных друг другу жидкостной и газовой камер под небольшим углом к горизонтали с подъемом в сторону выхода конечного продукта. Выбор угла зависит от физикохимических свойств обрабатываемой суспензии. Благодаря установке жидкостной камеры под углом к горизонтали твердая фаза, входящая в состав суспензии, движется к выходу медленнее жидкой, в результате чего процесс деструкции твердой фазы проходит более глубоко из-за уменьшения возможности продольного перемешивания. Следует отметить, что установка реактора под углом к горизонтали невозможна для конструкций, описанных в прототипе и в аналогах, а следовательно, невозможно оказывать влияние на процесс замедления окисления твердой фазы. Предложенная конструкция иллюстрируется чертежами, где на фиг. 1 показан общий вид газлифтного реактора, установленного под углом к горизонту; на фиг. 2 вид А фиг. 1; на фиг. 8 общий вид газлифтного реактора, установленного горизонтально. Газлифтный реактор состоит из нижней жидкостной камеры 1, верхней газоотделительной камеры 2, которые выполнены в виде труб, установленных горизонтально или под углом не более 6 o к горизонтали с подъемом в сторону выхода конечного продукта. Устройство также содержит вертикальные барботажные 3 и циркуляционные 4 трубы, установленные вдоль боковых поверхностей жидкостной и газоотделительной камер и закрепленные своими торцами через штуцера 5 на боковых поверхностях этих камер. Штуцер 6 подачи суспензии находится на одном из торцов жидкостной камеры 1, а штуцер 7 выхода конечного продукта на противоположном торце этой камеры. Каждая барботажная труба 3 снабжена штуцерами 8 для подачи кислородсодержащего газа и штуцерами 9 для подачи теплоносителя, расположенными в нижней части барботажных труб. В данной конструкции теплоноситель подается в барботажные трубы, однако, их нагрев может осуществляться с помощью внешнего теплообменника. В нижней части жидкостной камеры 1 установлен штуцер 10 для вывода минерализованного остатка. Газоотделительная камера 2 снабжена штуцером 11 отвода неконденсируемого газа. Кроме того, газолифтный реактор может быть снабжен штуцерами 12, устанавливаемыми по всей длине жидкостной камеры для подвода кислородосодержащего газа. Возможно различное соотношение числа циркуляционных и газоотделительных труб, входящих в состав аппарата. На фиг. 1 показана конструкция реактора с числом барботажных труб, равным числу циркуляционных труб, а на фиг. 3 - конструкция реактора, в котором количество циркуляционных труб превышает количество барботажных труб. Как уже указывалось выше, жидкостная и газооделительные камеры, выполненные в виде труб, могут быть расположены горизонтально, как это показано на фиг. 3, или установлены под небольшим углом по отношению к горизонтали с подъемом в сторону выхода готового продукта, но не более 6o по отношению к горизонтали (фиг. 1). Рассмотрим работу реактора на примере проведения процесса окислительно-гидролитической деструкции суспензии, состоящей из твердой и жидкой фаз, например иловой суспензии очистных сооружений. Устройство работает следующим образом. В жидкостную камеру 1 через входной штуцер 6 под давлением подается обрабатываемая суспензия, которой заполняется вся жидкостная камера 1, барботажные и циркуляционные трубы 3, 4 и частично газоотделительная камера 2. Затем через штуцеры 9 в барботажные трубы подается теплоноситель, например острый пар. После достижения заданной температуры в барботажные трубы через штуцеры 8 подается кислородосодержащий газ (сжатый воздух), результате чего в барботажных трубах образуется газожидкостная смесь, которая, поднимаясь по барботажным трубам, попадает в газоотделительную камеру 2, где происходит отделение жидкой фазы от газовой. Последняя поступает из газоотделительной камеры в холодильник (не показан), где освобождается от влаги и удаляется, а жидкость, содержащая в газе, возвращается в газоотделительную камеру 2, а затем в циркуляционные трубы 4. Так как в барботажной трубе обеспечивается насыщение суспензии кислородом и образуется газожидкостная смесь, плотность которой меньше, чем плотность жидкой фазы в циркуляционной трубе, начинается процесс циркуляции газожидкостной смеси по барботажной трубе снизу вверх, а жидкостной фазы по циркуляционной трубе сверху вниз. Такая циркуляция происходит многократно. По истечении заданного времени начинают отбор готового продукта через штуцер 7 и подачу исходной суспензии через штуцер 6, после чего прошедшая циркуляционный контур суспензия вытесняется по жидкостной камере 1 к следующему циркуляционному контуру, где происходит новый цикл и так до выхода готового продукта из реактора. Таким образом, процесс обработки каждой порции суспензии пpодолжается по мере ее продвижения вдоль жидкостной камеры, причем проход от одной барботажной трубы к последующей происходит с отбором готового продукта и поступлением новой порции суспензии. При этом каждая порция суспензии проходит многократную циркуляцию в каждом из циркуляционных контуров, что обеспечивает насыщение газом обрабатываемой суспензии в малом объеме барботажной трубы. Таким образом, осуществляется непрерывный процесс окисления органического вещества суспензии. По мере накопления минерализованного осадка (например, хелатных соединений ионов тяжелых металлов, образующихся в результате химических превращений, происходящих в реакторе и оседающих на дне жидкостной камеры) и для освобождения от него включается подача кислородосодержащего газа через штуцеры 12. Газ перемешивает минерализованный осадок, что способствует его перемещению к выходному штуцеру 7, после чего осадок удаляется вместе с конечным продуктом. Кроме того, минерализованный осадок, в том числе и песок, может периодически удаляться через штуцер 10. Устройство просто и надежно. В нем отсутствуют решетки и отверстия для подачи газа (как в аналогах и прототипе), которые могут быть забиты частицами твердой фазы. Благодаря наружной установке барботажных и циркуляционных труб можно легко проводить их ремонт и замену. Главным достоинством реактора является то, что его конструкция позволяет осуществить непрерывный процесс окисления гетерогенных суспензий, в частности иловых осадков очистных сооружений.Формула изобретения
1. Газлифтный реактор, содержащий нижнюю жидкостную, верхнюю газоотделительную камеры, связанные вертикальными барботажными и циркуляционными трубами, штуцеры подачи обрабатываемого продукта, вывода конечного продукта и подачи газа, отличающийся тем, что жидкостная и газоотделительные камеры выполнены в виде параллельных труб, расположенных горизонтально или под углом не более 6o к горизонтали с подъемом в сторону выхода конечного продукта, барботажные и циркуляционные трубы установлены вдоль боковых поверхностей жидкостной и газоотделительных камер и закреплены своими торцами через штуцеры на этих поверхностях, штуцеры подачи обрабатываемого продукта и вывода конечного продукта установлены на противоположных концах жидкостной камеры, а штуцеры подачи газа в нижней части каждой барботажной трубы. 2. Реактор по п.1, отличающийся тем, что он снабжен по крайней мере одним штуцером вывода минерализованного остатка, установленным в нижней части жидкостной камеры. 3. Реактор по п.1, отличающийся тем, что он снабжен дополнительными штуцерами подачи газа, установленными в нижней части жидкостной камеры вдоль ее наружной поверхности. 4. Реактор по п. 1, отличающийся тем, что каждая барботажная труба снабжена штуцером для подачи теплоносителя.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 10.08.2002
Номер и год публикации бюллетеня: 10-2004
Извещение опубликовано: 10.04.2004