Имитатор источников радиосигналов
Реферат
Изобретение относится к радиотехническим средствам для контроля функционирования и параметров сложных радиоэлектронных систем и их составных частей на всех стадиях их жизненного цикла, обеспечивая имитацию нескольких удаленных источников излучения или отраженных сигналов от различных объектов, в том числе и перемещающихся в пространстве, с наложением нескольких сигналов друг на друга во времени, что позволяет создавать сложные сценарии изменяющейся радиоэлектронной обстановки или потока сигналов на входе моделируемой или контролируемой аппаратуры, которые будут иметь место при работе систем, но которые трудно или невозможно воспроизвести при проведении натурных испытаний. Изобретение может быть использовано в различных автоматизированных стендах контроля или физико-математического (полунатурного) моделирования различных радиоэлектронных систем и устройств. Для достижения указанного технического результата предложенный имитатор выполнен многоканальным и содержит задатчик кодов, формирователь сетки опорных частот и суммирующий блок. Каждый канал имитации включает в себя цифровой синтезатор частоты, блок управления установкой поддиапазона, блок управления спектром сигнала, блок управления мощностью сигнала, дешифратор номера канала, задающий генератор, а также преобразователь частоты, первый и второй модуляторы и выходной аттенюатор, причем входящие в каждый канал имитации вышеуказанные блоки связаны между собой и с задатчиком кодов. Блок формирования опорных частот связан со всеми каналами имитации и с задатчиком кодов. Суммирующий блок объединяет сигналы с выходов выходных аттенюаторов каналов имитации. Непосредственное формирование сигналов потока с их наложением во времени происходит следующим образом: портреты сигналов программно заносятся в ОЗУ блока управления установкой поддиапазона, в первый и второй модуляторы, а в таймеры блока управления установкой поддиапазона, блока управления спектром сигнала и блока управления мощностью сигнала заносятся данные о темпах и интервалах считывания портретов из ОЗУ. Начальный запуск формирования потока сигналов осуществляется подачей сигнала "синхронизация" либо на все каналы одновременно, либо на каждые отдельно в соответствии с программой, которая и определяет наложение сигналов, а опорные частоты от формирователя опорных частот в зависимости от данных, считываемых из ОЗУ блока управления поддиапазонов каждого канала и поступающих на коммутатор опорных частот и на коммутатор преобразователей частоты каждого канала, определяют поддиапазоны сигналов, спектр которых формируется в соответствующих цифровых синтезаторах частоты с амплитудными параметрами, задаваемыми вторыми модуляторами. 8 з.п. ф-лы, 11 ил.
Изобретение относится к радиотехническим средствам для контроля и моделирования функционирования различных сложных радиотехнических систем и их составных частей и может быть использовано в стендах физико-математического моделирования, тренажерах и в контрольно-измерительных комплексах для отработки алгоритмов функционирования, для измерения параметров и их контроля антенных, радиотехнических, радиолокационных систем, систем радиопротиводействия и других устройств для имитации нескольких подвижных источников излучений, работающих в различных режимах.
Известно устройство, реализующее способ имитации радиотехнической обстановки при радиотехнических измерениях по авт. св. N 1495878, МКИ H 01 Q 17/00, 1989. Устройство содержит рабочий объем, испытуемую антенну, вращающиеся дуговые направляющие, основной и дополнительный излучатели цели и формирователь сигнала. В указанном техническом решении имитация радиотехнической обстановки осуществляется электромеханической системой со всеми отсюда вытекающими ее недостатками по надежности и быстродействию и не позволяет имитировать несколько сигналов одновременно (с наложением их во времени). Известен имитатор радиосигналов, содержащий генератор радиочастоты, выход которого соединен со входом радиочастотного блока, другой вход которого подключен к выходу блока управления модуляцией, который своим вторым выходом подключен к управляющему входу генератора радиочастоты; имитатор также содержит компьютер, связанный с клавиатурой, блоком дисковой памяти, дисплеем, модемом, выход компьютера подключен к блоку управления модуляцией и к блоку управления вращением антенн; радиочастотный блок имеет выход сигналов радиочастоты в диапазоне 0,5 18 ГГц и пять выходов радиосигналов соответственно пяти поддиапазонов, обеспечивающих заданную полосу рабочих частот. Эти пять выходов через усилители и переключатель подключены к излучателям антенн (см. техническое описание имитатора A. R.T.I.S фирмы ELETRONICA S.p.A, Италия, 1989 г.). Указанный имитатор формирует радиосигналы в диапазоне 0,5 18 ГГц с различными видами модуляции импульсной (одиночным импульсом и последовательностью импульсов, пачки импульсов, импульсы пилообразной и треугольной форм) и др. и может быть использован для имитации радиообстановки и обучения операторов радиолокационных систем в условиях, приближающихся к реальным. Известен имитатор радиотехнических сигналов, содержащий управляющую ЭВМ с интерфейсом и канал имитации, цифровой синтезатор частоты ЦСЧ, соединенный своим выходом с первым входом преобразователя частоты. Преобразователь частоты имеет три ступени преобразования частоты для переноса спектра сигнала в 3 сантиметровый СВЧ диапазон, каждая из которых включает смеситель, фильтр, усилитель и еще одну четвертую аналогичную по составу блоков ступень преобразования несущей частоты из 3 сантиметрового диапазона СВЧ в более низкий по частоте рабочий диапазон 10 сантиметровый, между первой и второй ступенями преобразования включен управляемый аттенюатор, и на выходе четвертой ступени преобразования включен выходной аттенюатор. Кроме того, имитатор содержит формирователь опорных частот и коммутатор опорных частот, которые схемотехнически объединены, причем четыре коммутируемых сетки частот подключаются соответственно ко входам четырех ступеней преобразователя частоты, т.е. к гетеродинным входам смесителей ступеней преобразования. Кроме того, канал имитации содержит первый и второй модуляторы, выполненные в виде запоминающих устройств (ЗУ) и конструктивно объединенных в одном блоке. Выход управления спектром сигнала первого модулятора подключен ко входу ЦСЧ, первый модулятор имеет также второй выход, посредством которого первый модулятор осуществляет управление коммутацией всех сеток опорных частот в формирователе опорных частот и коммутаторе опорных частот, а вход первого модулятора подключен к интерфейсу ЭВМ. Выход управления мощностью сигнала второго модулятора соединен со вторыми входами управляемого и выходного аттенюаторов, вход второго модулятора также подключен к интерфейсу ЭВМ. Первый и второй модуляторы являются по существу банками данных, задаваемых от ЭВМ, в которых в виде цифровых кодов хранятся параметры модулирующих сигналов, а непосредственное преобразование цифровых кодов в форму спектральных составляющих сигнала, его несущую частоту и мощность производится в ЦСЧ, в формирователе и коммутаторе опорных частот, а также в управляемом и выходном аттенюаторах. (см. имитатор, разработанный фирмой Hewlett Packard, США, "Frequency Agile Signal Simulation" типа HP 8791, техническое описание и руководство по эксплуатации, 1990 г. США, Hewlett Packard). Этот имитатор принят за прототип. Имитаторы приведенные в качестве аналогов и прототипа позволяют получить выходные сигналы с различными видами модуляции без наложения хотя бы двух сигналов во времени. В изобретении решается задача приближения к реальным условиям работы радиоэлектронных средств при их создании на этапах проектирования при отработке алгоритмов функционирования, при тестовом контроле готовых средств, а также возможность физико-математического моделирования потока входных сигналов, имитирующих практически любую сложную радиотехническую обстановку, которую невозможно создать в натурных условиях в реальном времени, так как это связано с недопустимо большими сроками и материальными затратами. Таким образом, решается задача реализации сложных сценариев радиотехнической обстановки при большом потоке входных сигналов от большого количества несинхронно работающих в различных, сменяющих друг друга режимах радиоэлектронных средств, в которых имеется большая вероятность наложения нескольких сигналов во времени. Технический результат, достигаемый при использовании заявленного имитатора, заключается в расширении функциональных возможностей за счет формирования в реальном времени радиотехнических сигналов, соответствующих сложной радиотехнической обстановке, при наложении имитируемых сигналов друг на друга во времени. Для достижения указанного технического результата в имитатор источников радиосигналов, содержащий управляющую ЭВМ с интерфейсом, формирователь сетки опорных частот ФОЧ, коммутатор опорных частот КОЧ и канал имитации, включающий в себя цифровой синтезатор частоты ЦСЧ, соединенный своим выходом с преобразователем частоты, включающим связанные между собой первый смеситель, фильтр, второй смеситель, усилитель мощности и управляемый аттенюатор, и подключенным к выходу преобразователя частоты своим первым входом выходной аттенюатор мощности, а также включающий первый модулятор с выходом управления спектром сигнала, соединенным с первым входом цифрового синтезатора частоты и второй модулятор с выходом управления мощностью сигнала, соединенный со вторыми входами управляемого и выходного аттенюаторов введены суммирующий блок, а также N-1 идентичных каналов имитации, а в каждый из N каналов имитации введены блок управления установкой поддиапазона БУУП, задающий генератор, дешифратор номера канала, первый вход которого соединен с шиной "данные номера канала" интерфейса, второй вход которого подключен к выходу "синхронизация" интерфейса, а также введен блок управления спектором сигнала БУСС своим первым входом соединенный с шиной "данные тактирования БУСС" интерфейса, вторым входом подключенный к шине "адрес данных" интерфейса, своим третьим входом соединенный с первым выходом дешифратора номера канала, своим четвертым входом соединенный со вторым выходом дешифратора номера канала, своим первым выходом БУСС подключен к первому входу первого модулятора, вторым выходом ко второму входу первого модулятора, своим третьим выходом к третьему входу первого модулятора, четвертый выход БУСС соединен с пятым входом первого модулятора, пятый выход БУСС соединен с шестым входом первого модулятора, четвертый вход первого модулятора соединен с шиной "данные формирования спектра сигнала" интерфейса, седьмой вход первого модулятора соединен с третьим выходом дешифратора номера канала, выход первого модулятора соединен с первым входом ЦСЧ, кроме того введен блок управления мощностью сигнала БУМС" интерфейса, своим вторым входом подключенный к шине "адрес данных" интерфейса, своим третьим входом соединенный с первым выходом дешифратора номера канала, своим четвертым входом подключенный ко второму выходу дешифратора номера канала, своим первым выходом БУМС подключен к первому входу второго модулятора, своим вторым выходом ко второму входу второго модулятора, своим третьим выходом БУМС подключен к третьему входу второго модулятора, четвертый выход БУМС соединен с пятым входом второго модулятора, пятый выход БУМС соединен с шестым входом второго модулятора, четвертый вход второго модулятора соединен с шиной "данные установки мощности" интерфейса, седьмой вход второго модулятора соединен с третьим выходом дешифратора номера каналов, первый выход второго модулятора соединен с четвертым входом преобразователя частоты, второй выход второго модулятора соединен со вторым входом выходного аттенюатора мощности канала, а в преобразователь частоты каждого канала введены разветвитель на M выходов, коммутатор на M входов и M выходов, M фильтров, сумматор на M входов, причем вход разветвителя соединен с выходом управляемого аттенюатора, выходы разветвителя соединены с соответствующими входами коммутатора, выходы которого соединены соответственно со входами M фильтров, выходы которых подключены к соответствующим входам сумматора, выход которого непосредственно или через усилитель мощности является выходом преобразователя частоты, M пятых входов преобразователя частоты соединены соответственно с M выходами БУУП, блок управления установкой поддиапазона БУУП своим первым входом подключен к шине "данные тактирования БУПП" интерфейса, своим вторым входом подключен к шине "адрес данных" интерфейса, своим третьим входом соединен с первым выходом дешифратора номера канала, своим четвертым входом подключен ко второму выходу дешифратора номера канала, своим пятым входом подключен к третьему выходу дешифратора номера канала, своим шестым входом подключен к шине "данные установки поддиапазона", выход задающего генератора соединен с тактовыми входами БУМС, БУСС и БУУП, тактовые выходы формирователя опорных частот ФОЧ с 1 по N соединены соответственно со вторыми входами цифровых синтезаторов частоты каждого канала, M выходов опорных частот блока ФОЧ соединены с первыми соответствующими входами КОЧ, выходы частоты переноса блока ФОЧ с 1 по N соединены со вторыми входами преобразователя частоты соответствующих каналов, выходы КОЧ с 1 по N соединены с третьими входами преобразователей частоты соответствующих каналов, вторые входы КОЧ образуют N групп по M входов в каждой, причем входы первой группы соединены соответственно с M выходами БУУП первого канала, входы второй группы соединены соответственно с M выходами БУУП второго канала и т.д. входы N группы соединены соответственно с M выходами БУУП N-го канала, первый вход задающего генератора каждого канала соединен выходом "разрешение внешнего такта" интерфейса, второй вход задающего генератора каждого канала соединен с выходом "такт" ФОЧ. В частном варианте исполнения коммутатор опорных частот КОЧ содержит M разветвителей, каждый из которых имеет один вход и N выходов, N коммутаторов, каждый из которых имеет первую группу M входов, вторую группу M входов и один выход, а также N усилителей, причем первые выходы каждого разветвителя соединены соответственно с входами с первого по M-ный первого коммутатора, вторые выходы каждого разветвителя соединены соответственно со входами с первого по M-ный второго коммутатора и т.д. N-ные выходы каждого разветвителя соединены соответственно с входами с первого по M-ный N-ого коммутатора, выходы коммутаторов через соответствующие усилители образуют N выходов КОЧ, входы разветвителей являются первыми входами КОЧ, N групп, в каждой из которых M входов, являются вторыми входами КОЧ. В частном варианте исполнения формирователь опорных частот ФОЧ содержит первый и второй разветвители на N выходов каждый, третий и четвертый разветвители на два выхода каждый и пятый разветвитель на M выходов, а также кварцевый генератор, два логических элемента И, логический элемент ИЛИ, инвертотр, пять усилителей мощности, три фильтра и M + 1 датчиков опорной частоты, причем кварцевый генератор соединен с первым входом первого логического элемента И, второй вход первого логического элемента И соединен с выходом инвертора, вход инвертора соединен с первым входом второго логического элемента И и является первым входом "разрешение внешнего такта" ФОЧ, второй вход второго логического элемента И является вторым входом "внешний такт" ФОЧ, выход первого логического элемента И соединен с первым входом логического элемента ИЛИ, выход второго логического элемента И соединен со вторым входом логического элемента ИЛИ, выход логического элемента ИЛИ через последовательно соединенные первый усилитель мощности, третий разветвитель, первый фильтр, второй усилитель мощности, четвертый разветвитель, третий фильтр, третий усилитель мощности подключен ко входу первого разветвителя, второй выход четвертого разветвителя через (M + 1)-ый датчик опорной частоты и пятый усилитель мощности соединен со входом второго разветвителя, второй выход третьего разветвителя через второй фильтр и четвертый усилитель мощности подключен ко входу пятого разветвителя, M выходов которого через соответствующие M датчиков опорной частоты образуют M выходов опорных частот ФОЧ, выходы с 1 по N первого разветвителя образуют тактовые выходы ФОЧ, выходы с 1 по N второго разветвителя образуют выходы частот переноса ФОЧ. В частном варианте исполнения блок управления спектром сигнала БУСС содержит таймер, процессор, формирователь внутреннего адреса, коммутатор адреса, причем выход таймера соединен с тактовым входом процессора, первый вход таймера является первым входом БУСС для подключения к шине "данные тактирования БУСС" интерфейса, второй вход таймера является тактовым входом для подключения ЗГ, третий вход "разрешение записи данных" таймера является третьим входом БУСС для подключения к третьему выходу дешифратора номера каналов, второй вход процессора является входом режима работы и четвертым входом БУСС, первый выход процессора является тактовым для формирования адреса и подключен ко входу формирователя внутреннего адреса, второй выход процессора "выборка ОЗУ" является третьим выходом БУСС, третий выход "чтение-запись" процессора является вторым выходом БУСС, четвертый выход "разрешение коммутации" процессора соединен с первым входом коммутатора адреса, пятый выход процессора "разрешение записи в РГ" является пятым выходом БУСС, шестой выход "управление коммутатором данных" является четвертым выходом БУСС, выход "адрес" формирователя внутреннего адреса соединен с третьим входом коммутатора адреса, выход которого является выходом БУСС, второй вход "адрес от ЭВМ" коммутатора адреса является вторым входом БУСС. В частном варианте исполнения первый модулятор содержит ОЗУ, коммутатор данных, регистр и токовые ключи, причем вход "адрес" ОЗУ является первым входом первого модулятора для подключения к первому выходу БУСС, вход "чтение-запись" ОЗУ является вторым входом модулятора для подключения ко второму выходу БУСС, вход "выборка" ОЗУ является третьим входом первого модулятора для подключения к третьему выходу БУСС, а вход-выход "данные" ОЗУ соединен с первым входом коммутатора данных, второй вход "управление" которого является пятым входом первого модулятора, третий вход "данные формирования спектра сигнала" коммутатора данных является четвертым входом первого модулятора, выход "данные" коммутатора соединен с первым входом регистра, второй вход "разрешение записи" регистра является пятым входом первого модулятора для подключения к пятому выходу БУСС, третий вход "запись в регистр" регистра является седьмым входом первого модулятора для подключения к третьему выходу дешифратора номера канала, выход "данные РГ" соединен со входом токовых ключей, выход которых является выходом первого модулятора для подключения ко второму входу ЦСЧ. В частном варианте исполнения блок управления мощностью сигнала БУМС содержит таймер, процессор, формирователь внутреннего адреса, коммутатор адреса, причем первый вход таймера является первым входом БУМС для подключения к шине "данные тактирования БУМС" интерфейса, второй вход таймера является тактовым для подключения ЗГ, третий вход "разрешение записи данных" является третьим входом БУМС для подключения к первому выходу дешифратора номера каналов, выход таймера соединен с первым "тактовым" входом процессора, второй вход "режим работы" таймера является четвертым входом БУМС, первый выход "такт для формирования адреса" процессора подключен ко входу формирователя внутреннего адреса, второй выход процессора "выборка ОЗУ" является третьим выходом БУМС, третий выход "чтение-запись" процессора является вторым выходом БУМС, четвертый выход "разрешение коммутации" процессора соединен с первым входом коммутатора адреса, пятый выход процессора "разрешение записи в РГ" является пятым выходом БУМС, шестой выход "управление коммутатором данных" является четвертым выходом БУМС, выход "адрес" формирователя внутреннего адреса соединен с третьим входом коммутатора адреса, выход которого является выходом БУМС, второй вход "адрес от ЭВМ" коммутатора адреса является вторым входом БУМС. В частном варианте исполнения второй модулятор содержит ОЗУ, коммутатор данных, регистр и токовые ключи, причем вход "адрес" ОЗУ является первым входом второго модулятора для подключения к первому выходу БУМС, вход "чтение-запись" ОЗУ является вторым входом второго модулятора для подключения ко второму выходу БУМС, вход "выборка" ОЗУ является третьим входом второго модулятора для подключения к третьему выходу БУМС, а вход-выход "данные" ОЗУ соединен с первым входом коммутатора данных, второй вход "управление" которого является пятым входом второго модулятора, третий вход "данные установки мощности" коммутатора данных является четвертым входом второго модулятора, выход "данные" коммутатора соединен с первым входом регистра, второй вход "разрешение записи" регистра является пятым входом второго модулятора для подключения к пятому выходу БУМС, третий вход "запись в регистр" регистра является седьмым входом второго модулятора для подключения к третьему выходу дешифратора номера канала, выход "данные РГ" соединен со входом токовых ключей, первый выход которых является первым выходом второго модулятора для подключения ко второму входу преобразователя частоты, второй выход токовых ключей является вторым выходом второго модулятора для подключения к третьему входу преобразователя частоты. В частном варианте исполнения блок управления установкой поддиапазонов БУУП содержит таймер, процессор, формирователь внутреннего адреса, коммутатор адреса, ОЗУ, коммутатор данных, регистр, дешифратор данных, токовые ключи, причем выход таймера соединен с тактовым входом процессора, первый вход таймера является первым входом БУУП для подключения к шине "данные тактирования БУУП" интерфейса, второй вход таймера является тактовым входом для подключения выхода ЗГ, третий вход "разрешения записи данных" таймера является третьим входом БУУП для подключения к первому выходу дешифратора номера каналов, второй вход процессора является входом режима работы и четвертым входом БУУП, первый выход процессора является тактовым для формирования адреса и подключен ко входу формирователя внутреннего адреса БУУП, второй выход процессора "выборка ОЗУ" соединен с третьим входом ОЗУ, третий выход "чтение-запись" процессора подключен ко второму входу ОЗУ, четвертый выход процессора "разрешение коммутации" соединен с первым входом коммутатора адреса, пятый выход процессора "разрешение записи в регистр" подключен ко второму входу регистра, шестой выход "управление коммутатором данных" соединен со вторым входом коммутатора данных, выход формирователя внутреннего адреса соединен с третьим входом коммутатора адреса, второй вход которого является вторым входом БУУП для подключения к шине "адрес данных", выход "адрес ОЗУ" коммутатора адреса соединен с первым входом ОЗУ, "вход-выход данных" ОЗУ подключен к первому входу коммутатора данных, третий вход коммутатора данных является шестым входом БУУП для подключения шины "данные установки поддиапазона" интерфейса, выход коммутатора данных соединен с первым входом регистра, выход которого соединен со входом дешифратора данных, третий вход "запись в РГ" регистра является пятым входом БУУП, выход дешифратора данных подключен ко входу токовых ключей, выход которых является выходом БУУП. Сравнение заявленного имитатора с прототипом показывает, что общими признаками являются: наличие управляющей ЭВМ с интерфейсом, являющейся задатчиком кодов, наличие в канале имитации задающего генератора; наличие в канале имитации цифрового синтезатора частоты, соединенного своим выходом с первым входом преобразователя частоты. Преобразователь частоты включает в себя ступени преобразования, состоящие из смесителя, фильтра, усилителя, осуществляющие перенос спектра имитируемого сигнала в заданный диапазон СВЧ; наличие в канале имитации формирователя опорных частот и коммутаторов опорных частот; наличие в канале имитации управляемого и выходного аттенюатора; наличие в канале имитации первого и второго модуляторов. Отличительными признаками заявляемого имитатора являются: наличие N каналов имитации (в прототипе один канал); выполнение формирователя опорных частот (ФОЧ) и коммутатора опорных частот (КОЧ) в виде отдельных блоков, обеспечивающих работу всех каналов одновременно (в прототипе ОЧ и КОЧ схемотехнически объединены и входят в состав канала); наличие суммирующего блока; введение в каждый из каналов имитации новых по сравнению с прототипом блоков, а именно блока управления установкой поддиапазона БУУП, блока управления спектром сигнала БУСС, блока управления мощностью сигнала БУМС, дешифратора номера каналов; новое по сравнению с прототипом выполнение первого и второго модуляторов; введение в блок преобразователя частоты каждого канала имитации разветвителя, коммутатора, фильтров и сумматора (светвителя); новые связи между блоками. При этом при создании N канального имитатора в соответствии с принципами построения структурной схемы имитатора прототипа потребовалось бы по сравнению с предлагаемым имитатором ввести дополнительно N формирователей опорных частот с коммутаторами опорных частот (ФОЧ и КОЧ), а также N+1 управляющих ЭВМ. Для установления причинно-следственной связи между достигаемым техническим результатом и отличиями предлагаемого имитатора рассмотрим как происходит наложение во времени сигналов имитатора. В каждом канале имитатора возможно формирование не только одного сигнала, но и нескольких независимых во времени сигналов. Например, в интервале времени t0 T1, формируется сигнал с частотной модуляцией несущей частоты f0, в интервале времени t1 t2 формируется сигнал с импульсной модуляцией на несущей частоте f1 и т.д. В выбранных интервалах времени возможно формирование сигналов и с другими видами модуляции и на других или тех же несущих частотах в зависимости от имитируемого сценария радиоэлектронной обстановки. Возможность формирования в каждом канале большого числа сигналов различных радиоэлектронных средств, работающих в различных, сменяющих друг друга режимах, неизменно намеренно или ненамеренно приводит к наложению нескольких сигналов друг на друга во времени. Непосредственное сложение (светвление) сигналов на выходе имитатора происходит в суммирующем блоке, который не содержит нелинейных активных элементов, благодаря чему удается избежать паразитного влияния одного сигнала на спектральные характеристики другого. Каждый конкретный сценарий имитации определяет поток сигналов на выходе имитатора, а непосредственное формирование сигналов потока происходит следующим образом. Программно в каждый канал имитатора, а именно в ОЗУ БУУП, первого и второго модуляторов заносятся портреты сигналов, а в таймеры БУУП, БУСС, БУМС заносятся (записываются) в виде кодов данные о темпах и интервалах считывания портретов из ОЗУ, считывание осуществляется по командам соответствующих процессоров, имеющихся в каждом канале. Режим работы каждого из каналом определяется программой ЭВМ, управляющей каждым каналом через соответствующий дешифратор номера каналов. Начальный запуск формирования потока, определенного сценария радиоэлектронной обстановки, осуществляется подачей сигнала синхронизации либо на все каналы одновременно, либо на каждый отдельно в соответствии с программой, которая и определяет временное наложение сигналов. При этом опорные частоты, формируемые в ФОЧ, в зависимости от данных, считываемых из ОЗУ БУУП каждого канала и поступающих с выходов БУУП на входы КОЧ и входы коммутаторов преобразователей частоты каждого канала, определяют поддиапазон, в котором на заданной несущей частоте формируется спектр сигнала определенной мощности, с заданными параметрами, записанными в ОЗУ первого и второго модуляторов и считываемыми соответственно в ЦСЧ и для управления аттенюаторами в преобразователь частоты в каждом канале. На фиг. 1 изображена структурная электрическая схема предлагаемого имитатора источников радиосигналов; на фиг. 2 электрическая схема формирователя сетки опорных частот (ФОЧ); на фиг. 3 электрическая схема коммутатора опорных частот (КОЧ); на фиг. 4 электрическая схема блока управления установкой поддиапазонов (БУУП); на фиг. 5 электрическая схема первого модулятора; на фиг. 6 электрическая схема блока управления спектром сигнала (БУСС); на фиг. 7 электрическая схема второго модулятора; на фиг. 8 электрическая схема блока управления мощностью сигнала (БУМС); на фиг. 9 - электрическая схема преобразователя частоты; на фиг. 10 электрическая схема синтезатора частоты (ЦСЧ); на фиг. 11 электрическая схема процессора. Рассмотрим пример конкретного осуществления изобретения. Предлагаемый имитатор источников радиосигналов содержит N каналов (первый канал 1, N-ый 2) имитации, формирователь сетки опорных частот (ФОЧ) 3, который имеет с 1 по M-ый выходов опорных частот, N выходов тактовых частот и N выходов частоты переноса, своими выходами опорных частот ФОЧ подключены к первым входам коммутатора опорных частот (КОЧ) 4, вторые входы которого образуют N групп по M входов в каждой группе. КОЧ имеет N выходов. Кроме того, имитатор содержит суммирующий блок 5, ко входам которого подключены соответственно выходы с 1 по N каналов имитации, выход суммирующего блока является выходом имитатора, задатчика кодов 6. Каналы имитации идентичны. Каждый канал содержит задающий генератор (ЗГ) 8, дешифратор номера каналов 9, блок управления установкой поддиапазона (БУУП) 10, блок управления спектром сигнала (БУСС) 11, блок управления мощностью сигнала (БУМС) 12, первый модулятор 13, второй модулятор 14, цифровой синтезатор частоты (ЦСЧ) 15, преобразователи частоты 16, выходной аттенюатор 17. Каждым своим тактовым выходом ФОЧ 1 подключен соответственно ко вторым входам ЦСЧ 15 каждого канала имитации, выходы с 1 по N частоты переноса блока ФОЧ 3 соединены со вторыми входами преобразователя частоты 16 соответствующего канала, выходы с 1 по N КОЧ 4 соединены с третьими выходами преобразователей частоты 16 соответствующих каналов. Первая группа вторых входов блока КОЧ 4 соединена соответственно с M выходами БУУП 10 первого канала, вторая группа вторых входов этого блока соединена соответственно с M выходами БУУП 10 второго канала и т.д. N-ная группа вторых входов этого блока соединена соответственно с M выходами БУУП 10 N-ого канала 2. ЗГ 8 одним выходом подключен к выходу 18 "разрешение внешнего такта" блока 6, который также соединен со входом "разрешение внешнего такта ФОЧ 3, другим входом ЗГ 8 подключен к выходу "такт" ФОЧ 3, выход ЗГ 8 подключен ко входам "такт" блоков БУУП 10, БУСС 11 и БУМС 12. Шина "данные установки поддиапазона" 19 блока 6 соединена с шестым входом БУУП 10, шина "данные тактирования БУУП" 20 соединена с первым входом БУУП 10, шина "адрес данных" 21 блока 6 подключена ко вторым входам блоков БУУП 10, БУСС 11 и БУМС 12. Шина "данные номера канала" 22 блока 6 соединена с первым входом дешифратора номера канала 9, выход "синхронизация" 23 блока 6 подключен ко второму входу дешифратора номера каналов 9, шина "данные тактирования БУСС" 24 блока 6 соединена с первым входом БУСС 11, шина "данные тактирования БУМС" 25 блока 6 подключена к первому входу БУМС 12, шина "данные формирования спектра сигнала" 26 блока 6 подключена к четвертому входу первого модулятора 13, шина "данные установки мощности" 27 блока 6 соединена с четвертым входом второго модулятора 14. Первый выход дешифратора номера каналов 9 соединен с третьими входами блоков БУУП 10, БУСС 11 и БУМС 12, второй выход дешифратора номера каналов 9 соединен с четвертыми входами блоков БУУП 10, БУСС 11 и БУМС 12, третий выход дешифратора номера каналов 9 подключен к пятому входу БУПП 10 и к седьмому входу первого 13 и второго 14 модуляторов. Первый, второй, третий, четвертый и пятый выходы БУСС 11 соединены соответственно с первым, вторым, третьим, пятым и шестым входами первого модулятора 13. Первый, второй, третий, четвертый и пятый выходы БУМС 12 соединены соответственно с первым, вторым, третьим, пятым и шестым входами второго модулятора 14, выходы с 1 оп M БУУП 10 соединены соответственно с пятыми выходами преобразователя частоты 16. Выход первого модулятора 13 соединен с первым входом ЦСЧ 15, выход которого соединен с первым входом преобразователя частоты 16, выход преобразователя 16 соединен с первым входом выходного аттенюатора 17, второй вход которого соединен со вторым выходом второго модулятора 14, первый выход второго модулятора 14 подключен к четвертому входу преобразователя 16. Выходной аттенюатор 17 своим выходом, являющимся выходом первого канала имитации, подключен к первому входу суммирующего блока 5, выход которого является выходом имитатора. Конкретный вариант осуществления предлагаемого имитатора содержит восемь идентичных по составу и выполнению блоков и связям между блоками каналов. Шины и выходы блока 6 подключены параллельно ко всем остальным каналам имитатора соответственно первому каналу. Подключение блоков ФОЧ 3 и КОЧ 4 к N-ому каналу описано выше. Выходы остальных каналов имитации соединены с соответствующими входами суммирующего блока 5. ФОЧ 3 содержит кварцевый генератор (КГ) 28, выход которого соединен с первым входом первого логического элемента И 29, второй вход первого логического элемента И 29 соединен с выходом инвертора 30 и вход инвертора 30 соединен с первым входом логического элемента И 31. Второй вход логического элемента И 31 является вторым входом "разрешение внешнего такта" ФОЧ 3. Выход логического элемента И 29 соединен с первым входом логического элемента ИЛИ 32, выход логического элемента И 31 соединен со вторым входом логического элемента ИЛИ 32. Выход логического элемента ИЛИ 32 соединен через первый усилитель мощности 33 со входом третьего разветвителя 34, который имеет два выхода. Первый через первый фильтр 35 и второй усилитель мощности 36 подключен к четвертому разветвителю 37, имеющему два выхода, первый из которых через третий фильтр 38, третий усилитель мощности 39 соединен со входом первого разветвителя 40, имеющего N выходов (N число каналов имитатора). Второй выход третьего разветвителя 34 через второй фильтр 41, четвертый усилитель мощности 42 подключен к пятому разветвителю 43, имеющему M выходов, где M число поддиапазонов рабочих частот имитатора. Каждый из M выходов пятого разветвителя 43 подключен ко входу соответствующего датчика опорной частоты (ДОЧ) 44, число таких датчиков M. Второй выход четвертого разветвителя 37 через (M+1) ДОЧ 44 и пятый усилитель мощности 45 соединен со входом разветвителя 46, который имеет N выходов. Выходы ДОЧ 44 являются выходами опорных частот ФОЧ 3, N выходов первого разветвителя 40 являются "тактовыми выходами" ФОЧ 3, N выходов второго разветвителя 47 является выходами "частоты переноса" ФОЧ 3, выход логического элемента ИЛИ 32 является выходом "такт" ФОЧ 3. Первый и второй разветвители (40 и 47 соответственно) являются разветвителями СВЧ сигнала и выполнены по схеме симметричного делителя мощности на N каналов, разветвители 34 и 37 являются разветвителями СВЧ сигнала на два канала, причем стоящие на выходах разветвителей 34 и 37 фильтры 35, 36 и 41 имеют достаточно узкую полосу пропускания. Рассмотрим коммутатор опорных частот КОЧ 4, который содержит M разветвителей 48, N коммутаторов 49 и N усилителей 50. Каждый разветвитель 48 имеет один выход и H выходов, а каждый коммутатор 49 имеет одну группу из M входов для частот переноса и другую группу из M входов для управления и один выход. Разветвители 48 и коммутаторы 49 соединены между собой следующим образом. Первые входы каждого разветвителя 48 соединены со входами с первого по M-ный первого коммутатора 49, вторые входы каждого разветвителя 48 соединены со входами с первого по M-ный второго коммутатора 49 и т.д. N выходы каждого разветвителя 48 соединены со входами с