Способ получения авермектина и штаммы streptomyces avermitilis - продуценты авермектина

Реферат

 

Использование: биотехнология, натуральные и ненатуральные авермектины, штамм - продуцент авермектина. Сущность изобретения: для получения натуральных и ненатуральных авермектинов с определенным значением радикала R используют штаммы Streptomyces avermitilis, не обладающие одной или двумя активностями ферментов дегидрогеназы 2-оксо-кислоты с разветвленной цепью и трансаминазы аминокислоты с разветвленной цепью. Штаммы Str. avermitilis депонированы в Американской коллекции типовых культур (ATCC) и имеют коллекционные номера ATCC NN 53567, 53568, 53669 и 53670. Получаемые авермектины проявляют сильную противопаразитарную активность. 5 с. и 7 з.п. ф-лы, 3 ил., 4 табл.

Настоящее изобретение относится к штаммам Streptomyces avermitilis, испытывающим недостаток в активности трансаминазы аминокислот с разветвленной цепью и/или активности дегидрогеназы 2-оксокислот с разветвленной цепью, к способам получения упомянутых S. avermitilis, а также к использованию S. avermitilis для получения натуральных и ненатуральных авермектинов.

Патенты США N 4310519 и N 4429042 описывают авермектины, комплекс родственных агентов, проявляющих сильную противопаразитарную активность, и их получение путем аэробного брожения штаммов Streptomyces avermitilis, а именно NN Американской Коллекции Типовых Культур (NN ATCC) 31267, 31271 и 31272 S. avermitilis. Два последних штамма представляют культуру соответственно в замороженной пробирке и лиофилизированной пробирке, полученную облучением ультрафиолетовыми лучами S. avermitilis ATCC 31267.

Заявка на Европатент N 214731, опубликованная 18 марта 1987 года, являющаяся двойником заявки на патент США N 886867, поданной 16 июля 1986 года, раскрывает ряд соединений (упоминаемых здесь как ненатуральные авермектины), относящихся к натуральным или известным авермектинам, однако имеющих новую замещающую группу в положении 25, и способ их получения путем ферментации авермектин-продуцирующего организма в присутствии определенных карбоновых кислот, или их производных, или предшественников. Микроорганизмами S. avermitilis используемыми для получения указанных новых C-25-замещенных авермектинов, являются ATCC 31267, 31271, 31272 и N CIB 12121 S. avermitilis. Последний микроорганизм, описанный в заявке на Европатент N 214731, происходит от АТСС 31271 S. avermitilis. Он приводит к получению повышенных выходов новых C-25-замещенных авермектинов, когда его выращивают в полусинтетической солевой среде. Каждый из ATCC 31267, 31271, 31272 и N CIB 12121 может также продуцировать, кроме нового C-25-замещенного производного, различные количества известных, или натуральных, авермектинов, в которых 25-заместитель представляет собой изопропил или /S/-втор-бутил (1-метил-пропил).

Углеродный скелет авермектинов (изображенный в формуле (I) ниже) происходит от ацетатов и пропионатов, а C-25-заместитель натуральных авермектинов от L-изолейцина (R /S/-втор-бутил) или L-валина (R изопропил) [Fisher и Mrozik, "Macrolide Antibiotics" Academic Press /1984/, глава 14] Под "известными" или "натуральными" авермектинами подразумеваются те авермектины, продуцируемые ATCC 31267, ATCC 31271 и ATCC 31272 S. avermitilis в которых заместитель в положении 25 представляет собой или изопропил, или /S/-вторбутил (1-метилпропил). Авермектины, в которых заместителем в положении 25 является другой, нежели изопропил или вторбутил (S форма), относятся в настоящем описании к новым или ненатуральным авермектинам.

Штаммы S. avermitilis приведенные в вышеупомянутых патентах США, продуцируют класс веществ, описываемый здесь как C-076. Класс включает восемь различных, но тесно связанных соединений, описываемых как C-076 A1a, A1b, A2a, A2b, B1a, B1b, B2a и B2b. Ряд "a" соединений относится к натуральным авермектинам, в которых 25-заместитель представляет собой /S/-втор-бутил, и ряд "b" относится к тем соединениям, в которых 25-заместитель представляет собой изопропил. Обозначения "A" и "B" относятся к авермектинам, в которых 5-заместителем являются метокси или гидрокси соответственно. Наконец, цифра "1" относится к авермектинам, в которых двойная связь присутствует в положении 22-23, и цифра "2" относится к авермектинам, в которых в положении 22 присутствует водород, а в положении 23 присутствует гидрокси.

В настоящей заявке ни один такой идентификатор не используется относительно 25-заместителя ненатуральных авермектинов. Идентификаторы A1, A2, B1 и B2 сохранены в отношении ненатуральных авермектинов, имеющих структурные признаки, соответствующие этим признакам натуральных авермектинов, как указано выше.

Поколение мутантов, лишенное активности дегидрогеназы альфа-кетокислот с разветвленной цепью, изложено для Bacillus subtilis, Willecke Pardee, J.Biol.Chem. 246, с. 5264 5272 (1971) и Pseudomonas putida, Martin и др. J.Bacteriology 115, с. 198 204 (1973), однако не для Streptomyces. Agly-1. S. avermitilis мутантный штамм, который продуцирует фактически только агликоны авермектина A1a и A2a, изложен Shulman и др. J.Antibiot 38 (11), стр. 1494 - 1498 (1985). Также изложена ферментация Agly-1 S. avermitilis в присутствии синефунгина, который вызывает возросший выход компонентов агликона B-авермектина. Аналогично, 08 S. avermitilis, высокопродуцирующий штамм для авермектинов при брожении в присутствии синефунгина в качестве ингибитора O-метилтрансфераз, приводит к получению авермектинов, лишенных O-метильных групп на агликоне у C-5 и в части дисахарида олеандрозы.

Патент США N 4378353 раскрывает соединения, связанные с C-076, и их получение культивированием MA-5218, мутантного штамма ATCC 31272 S. avermitilis полученного из него ультрафиолетовым облучением. Мутант идентифицирован как ATCC 31780. Соединения, связанные с C-076, которые получены указанным мутантом, лишены фуранового кольца C-076. Кроме того, в некоторых из описанных соединений одна или обе половины олеандрозного сахара отщеплены, тогда как в других группа в положении 5 окислена до кето-группы.

Три класса мутантов O-метилтрансферазы S. avermitilis, которые продуцируют авермектины, лишенные O-метильных групп, изложены Руби и др. 6-й Международный Симпозиум по "Биологии актиномицетов", Дебрецен, Венгрия, август, 26 30, (1985) и Шулманом и др. Противомикробные агенты и химиотерапия, 31, с. 744 747 (1987). Первый класс продуцирует главным образом авермектины вследствие их неспособности метилировать гидроксил C-5 макроциклического лактонного кольца. Второй класс продуцирует 3'-O,3''-O-бис-деметилавермектины (авермектины, лишенные O-метильного заместителя в положении 3 обоих остатков моносахарида олеандрозы), которые упоминаются как деметилавермектины. Третий класс неспособен метилировать в любом положении.

Шульман и др. Fed.Proc. 44, с. 931 (1985), раскрывают повышенное получение авермектинов B путем ферментации S. avermitilis в присутствии таких веществ, как синефунгин, S-аденозилтионин и S-аденозилгомоцистеин, которые ингибируют метилирование C-5 гидроксигруппы половины агликона посредством фермента вермектин B-O-метилтрансферазы. Мутанты Streptomyces avermitilis, которые испытывают недостаток в активности O-метилтрансферазы и продуцируют повышенные количества компонентов B-авермектина, также раскрыты и упоминаются в работе Шульмана и др. Противомикробные агенты и химиотерапия, 29, с. 620 624 (1986).

Мутагенез S. avermitilis продуцирует мутанты, которые лишены активности дегидрогеназы 2-оксокислоты с разветвленной цепью или активности трансаминазы аминокислоты с разветвленной цепью. Мутагенез полученных таким образом мутантов, защищенных простой связью, приводит к получению мутантов, лишенных как активности дегидрогеназы 2-оксокислот с разветвленной цепью, так и активности трансаминазы аминокислот с разветвленной цепью. Мутанты больше не обладают способностью продуцировать значительные количества натуральных авермектинов в отсутствие добавляемого соединения RCOOH, в котором R обозначает изопропил или /S/ втор-бутил, или соединения, конвертируемого в RCOOH в течение процесса ферментации. Удивительно и неожиданно, однако, то, что мутанты, как обнаружено, продуцируют авермектины, натуральные и ненатуральные, во время брожения в присутствии добавляемого соединения R-COOH, где R обозначает изопропил или /S/-втор-бутил, или другой раскрываемой здесь группы, или предшественника для указанной группы RCOOH. И даже более удивительно то, что описываемые здесь мутанты, лишенные только активности дегидрогеназы 2-оксокислот с разветвленной цепью и не способные разрушать L-изолейцин или L-валин, способны осуществлять ассимиляцию широкого круга соединений в биосинтетический путь обмена авермектина с получением ненатуральных авермектинов, свободных от присутствия натуральных авермектинов.

По меньшей мере, удивительно обнаружение того, что описываемые здесь мутанты, лишенные активности трансаминазы аминокислот с разветвленной цепью, которые не способны разрушать L-изолейцин, L-лейцин или L-валин и нуждаются в этих трех аминокислотах с тем, чтобы расти, также способны ассимилировать другие соединения с получением ненатуральных авермектинов, свободных от присутствия натуральных авермектинов.

Натуральные авермектины, как указано, продуцируются в виде сложной смеси восьми различных, но тесно связанных соединений; формула (I), R изопропил и /S/ втор-бутил. Несмотря на то, что они восстановлены по существу в чистом виде (см. патент США N 4429042), методология является в лучшем случае трудоемкой. Получение ненатуральных авермектинов в соответствии со способом, описанным в заявке на Европатент N 214731, может также привести к получению некоторых натуральных авермектинов в различных количествах, благодаря присутствию дегидрогеназы 2-оксокислоты с разветвленной цепью и аминокислот L-валин и L-изолейцин в клетке микроорганизмов S. avermitilis, используемых при их получении.

Желаемой целью является способность выбора продуцировать либо натуральные, либо ненатуральные авермектины с тем, чтобы свести до минимума количество и сложность продуктов, а тем самым повысить чистоту выбранного авермектина, а также упростить методики разделения.

Штаммы S. avermitilis, лишенные активности дегидрогеназы 2-оксокислот с разветвленной цепью или активности аминокислот с разветвленной цепью, продуцируют мутацией авермектин-продуцирующих штаммов S. avermitilis и, особенно мутацией ATCC 31267, ATCC 31271, ATCC 31272 или N CIB 12121 S. avermitilis. Дальнейшая мутация любого из указанных, лишенных активности штаммов приводит к получению штаммов, нуждающихся в обеих активностях. Мутанты не способны синтезировать натуральные авермектины, за исключением того случая, когда в среду, в которой бродят мутанты, добавляют жирную кислоту или ее предшественник, несущий изопропиловую или вторбутиловую /S-форма/ группу. Они способны продуцировать натуральные и ненатуральные авермектины при ферментации в водных аэробных условиях в питательной среде, содержащей подходящую праймерную кислоту или соединение, конвертируемое в нее, в процессе ферментации.

Те мутанты, которые отличаются отсутствием активности трансаминазы аминокислот, выбирают из мутагенизированных колоний на основании их неспособности расти на среде, которая испытывает недостаток L-изолейцина, L-лейцина и L-валина. На практике колонии, растущие на агаровой среде на основе глюкозы и солей M9, пополненной всеми индивидуальными аминокислотами, обнаруженными в казаминокислоте, переносят к сходной среде, которая, однако, не имеет L-изолейцин, L-лейцин и L-валин. Описанные здесь мутанты, которые лишены только активности трансаминазы аминокислот с разветвленной цепью, способны использовать 2-оксокислоты в качестве предшественников для получения авермектинов.

Было удивительно и неожиданно, что описываемые здесь мутанты, лишенные активности дегидрогеназы 2-оксокислот с разветвленной цепью и/или активности трансаминазы аминокислот с разветвленной цепью, сохраняли способность продуцировать авермектины, особенно ненатуральные авермектины. Неспособность мутантов продуцировать производные ацил-кофермента A жирных кислот, когда они растут на традиционной среде, могла стать летальной мутацией, если бы мутантная целостность зависела от указанных производных, или если бы накопление 2-оксокислоты под действием предшествующего мутанта приводила к цитотоксичности. Кроме того, ожидалось, что ни один из мутантов не был в состоянии синтезировать ацетил-КоА и пропионил-КоА из катаболизма L-изолейцина и L-валина, поскольку это требует наличия ферментативных активностей, которых лишены мутанты. Потребность в этих ацил-КоА-производных для биосинтеза авермектина, отмеченная выше, привела к ожиданию того, что мутанты могут быть серьезно повреждены при получении ненатурального авермектина, что, к удивлению, было не так.

Недостаток в активности дегидрогеназы 2-оксокислот с разветвленной цепью в мутантах, описываемых здесь, приводит к предотвращению ацил-КоА-синтеза жирных кислот с разветвленной цепью из деградации L-изолейцина, L-лейцина и L-валина и тем самым синтеза натуральных авермектинов. Аналогичным образом, мутанты S. avermitilis отрицательные к трансаминазе аминокислот с разветвленной цепью, также обладают этим отличительным недостатком ацил-КоА-синтеза жирных кислот с разветвленной цепью, а, следовательно, неспособностью продуцировать натуральные авермектины. Этот недостаток ацил-КоА жирных кислот обусловлен двумя причинами. Во-первых, такие трансаминазаотрицательные мутанты не способны синтезировать 2-оксокислоты с разветвленной цепью из питающихся в среде изолейцина, лейцина и валина посредством нормального пути трансаминирования. Во-вторых, в этих мутантах трансаминазы производство 2-оксокислот с разветвленной цепью посредством клеточного биосинтетического пути метаболизма аминокислот с разветвленной цепью предотвращено необходимостью включения этих аминокислот в сбраживаемую среду для выращивания. Присутствие этих аминокислот предотвращает функционирование этого биосинтетического пути обмена (и производство промежуточных 2-оксокислот) под действием хорошо известных механизмов репрессии ферментов и торможения по типу обратной связи этими аминокислотными конечными продуктами пути обмена. Неприемлемость этих 2-оксокислот, которые являются субстратами для активного фермента дегидрогеназы 2-оксокислот с разветвленной цепью, эффективно препятствует синтезу ацил-КоА жирных кислот с разветвленной цепью. Таким образом, настоящее изобретение охватывает использование таких 2-оксокислотных дегидрогеназаотрицательных и трансаминазаотрицательных мутантов, а также мутантов, в которых объединены мутации, негативные к трансаминазе кислот с разветвленной цепью, и мутации, негативные к дегидрогеназе 2-оксокислот.

Настоящее изобретение также включает любой организм, невзирая на его внешний вид или физиологическое поведение, который может развиваться под действием трансформации, трансдукции, генетической рекомбинации или какой-либо другой генетической методологии, с использованием нуклеиновой кислоты или эквивалентного вещества, из описываемых здесь видов, посредством чего он приобретает характеристики описываемых здесь мутантов.

Термины "авермектин" или "авермектины", как они используются здесь, относятся к соединениям формулы (I), приведенной ниже, но в которых заместитель в положении 25 (R) может быть любой группой, ассимилируемой в указанном положении S. avermitilis настоящего изобретения.

Описываемые здесь мутанты являются чрезвычайно ценными для продуцирования ненатуральных авермектинов при помощи способов, раскрытых и приведенных примерами в настоящей заявке. Они особенно ценны для производства предпочтительных авермектинов, то есть соединений, в которых заместителем C-25 является C4-C6-циклоалкил или циклоалкенил, необязательно замещенный C1-C4-алкильной группой; 1-метилтиоэтил, или 5 или 6-членная гетероциклическая группа кислорода или серы, главным образом 3-тиенил или 3-фурил.

Мутацию авермектин-продуцирующего члена вида Streptomyces avermitilis осуществляют в соответствии с известными методиками с использованием любого из целого ряда мутирующих агентов, включая облучение ультрафиолетовыми лучами, облучение рентгеновскими лучами, N-метил-N'-нитро-N-нитрозогуанидин, этилметансульфонат, азотистую кислоту и азотистую горчицу, например N-метилбис/2-хлорэтил/амин, или подобные обработки. Мутагенез можно осуществлять на спорах растительной культуры S. avermitilis, способной продуцировать натуральные авермектины, например, ATCC 31272 S. avermitilis.

Вслед за проведением методик, хорошо известных специалистам, мутагенизированные колонии отбирают на отсутствие дегидрогеназы 2-оксокислот с разветвленной цепью на основании метода биохимического анализа, который позволяет осуществить скрининг больших количеств беспорядочно мутагенизированных бактериальных колоний для производства 14CO2 из [14C-1]-2-оксокислот (Tabor и др. J.Bact. 128, с. 485 486, 1976).

Методика включает выращивание мутантных колоний в углублении микротитровой чашки на пригодной питательной среде, смачивание клеток толуолом с последующим прибавлением [14C-1]-2-оксокислоты (например, 2-оксоизокапроновой кислоты) в каждое углубление и проверку атмосферы над брожением на 14CO2. Альтернативно, [14C-1]-2-оксо-3-метилвалериановую кислоту или [14C-1] -2-оксо-3-метилмасляную кислоту можно использовать вместо [14C-1]-2-оксо-изокапроновой кислоты. Производство 14CO2 удобно проверять, поместив влажную, Ba/OH/2-насыщенную фильтровальную бумагу над отдельными углублениями с тем, чтобы уловить любое количество высвободившегося 14CO2 и обнаружить Ba14CO3 если только такое соединение есть, при помощи авторадиографии. Мутанты, лишенные активности дегидрогеназы 2-оксокислот с разветвленной цепью, дают авторадиограммы приблизительно такие же, что и у слепых контрольных проб, то есть мутанты не продуцируют Ba14CO3.

Полученные таким образом мутанты подвергают дальнейшему мутагенезу с использованием любого из числа вышеупомянутых мутирующих агентов. Мутагенизированные колонии отбирают на недостаток активности трансаминазы аминокислот с разветвленной цепью на основе их неспособности расти на чашках с минимальной средой M9/глюкоза, за исключением как в присутствии L-изолейцина, L-лейцина и L-валина (ILV). Все три аминокислоты должны присутствовать для того, чтобы начался рост. Кроме того, продемонстрировано, что указанные трансаминазаотрицательные мутанты не растут на средах, пополненных всеми тремя кетокислотами, которые служат в качестве субстратов для реакций трансаминазы. Единственный фермент трансаминазы поэтому катализирует трансаминирование каждой из трех кетокислот /2-оксо-3-метилвалериановой кислоты, 2-оксоизокапроновой кислоты, 2-оксо-изовалериановой кислоты/.

Особый интерес представляют мутанты, защищенные двойной связью, то есть те, которые лишены и активности дегидрогеназы 2-оксокислот с разветвленной цепью, и активности трансаминазы аминокислот с разветвленной цепью, поскольку вероятность их ревертирования в культуры, которые продуцируют натуральные авермектины, крайне мала. Одноблокированные мутанты могут при определенных обстоятельствах проявлять атавистические признаки культур, которые могли бы продуцировать натуральные авермектины.

Кроме производства желаемых аллелей данного штамма микроорганизма путем мутагенеза протопластное слияние позволяет осуществлять интродукцию желаемых аллелей, полученных/идентифицированных в одном штамме, в хромосому другого штамма. Например, штамм S. avermitilis, лишенный активности дегидрогеназы 2-оксокислот с разветвленной цепью и активности трансаминазы аминокислот с разветвленной цепью, может посредством протопластного слияния со штаммов S. avermitilis, имеющим вышеупомянутые активности, продуцировать штамм S. avermitilis, лишенный только активности трансаминазы аминокислот с разветвленной цепью. Как может признать специалист, технология протопластного слияния дает возможность осуществить объединение желаемых аллелей из дивергентных линий селекции в один штамм. Описываемый здесь JC-923 S. avermitilis (ATCC 53669) штамм, лишенный трансаминазы аминокислот с разветвленной цепью, был получен посредством этой методики.

Морфологические и культуральные характеристики мутантов настоящего изобретения в основном такие же, которые описаны в патенте США N 4429042. Отличительные признаки мутантов настоящего изобретения заключаются в их потребности в активности дегидрогеназы 2-оксокислот с разветвленной цепью и/или активности трансаминазы аминокислот с разветвленной цепью, характеристики которых определены, как описано в настоящей заявке. Отсутствие указанных активностей приводит к неспособности мутантов продуцировать натуральные авермектины при росте на синтетической солевой среде, по существу свободной от жирных кислот RCOOH, где R обозначает изопропил или /S/ - вторбутил, или соединений, конвертируемых в указанную группу RCOOH во время брожения. Таксономическое исследование, проведенное Американской Коллекцией Типовых Культур, подтвердило то, что характеристики двух мутантных штаммов, 1-3 и HL-026, выбранных при помощи вышеуказанного испытания 14CO2 тесно взаимосвязаны с характеристиками родительского штамма ATCC 31272, описанного в патенте США N 4429042, но с некоторыми исключениями. Так, мутантный штамм 1-3 (ATCC 53567) образует значительно меньше споровых цепей, чем ATCC 31272, и мутантный штамм HL-026 (ATCC 53568) практически лишен воздушных мицелий и спор, однако очень немного споровых цепей, продуцируемых им, имеют аналогичный характер, что и у ATCC 31272. Кроме того, мутант HL-026 проявляет неопределенную способность к утилизации рафинозы в качестве единственного углеродного источника, тогда как штамм ATCC 31272 и мутантный штамм 1-3 в состоянии использовать рафинозу. (В экспериментах, проведенных заявителями, рафиноза, по-видимому, не поддерживала рост ни одного из этих штаммов). Еще одним отличительным признаком мутантного штамма HL-026 явилась его способность продуцировать меньшее количество меланинового пигмента, чем два других штамма, и, что уникально, вообще не продуцировать этот пигмент на агаре тирозина. Наконец, в противоположность описанию, данному для ATCC 31272 в патенте США N 4429042, заявители не в состоянии обнаружить рост мутантов или штамма ATCC 31272 с сахарозой в качестве единственного источника углерода. Мутанты 1-3 и HL-026 лишены только активности дегидрогеназы 2-оксокислот с разветвленной цепью. Лишенный обеих активностей мутант PGS-119 (ATCC 53670), полученный дальнейшим мутагенезом мутанта 1-3 (ATCC 53567) и JC-922 (ATCC 53669), полученного протопластным слиянием, имеет такое же таксономическое отношение к АТСС 31272, что и мутантный штамм 1-3.

Мутанты 1-3, HL-026, PGS-119 и JC-923 депонированы в соответствии с условиями Будапештского Договора в Американской Коллекции Типовых Культур, Роквилл, Мэриленд, являющейся признанным депозитарием, гарантирующим надежность вкладов и легкую доступность к ним публики, если патент выдан по данной заявке. Им были даны обозначения Streptomyces avermitilis ATCC 53567, ATCC 53568, ATCC 53670 и ATCC 53669 соответственно. Вклады доступны во время нахождения данной заявки на рассмотрении тому лицу, определенному Комиссаром Ведомства США по Патентам и Товарным Знакам, которое имеет полномочия в соответствии с Разделом 37, Пункт 1.14, Свода федеральных правил и Разделом 35, Пункт 122, Кодекса законов США, а также в соответствии с Разделом 37, Пункт 1.14, Свода федеральных правил и Разделом 35, Пункт 122, Кодекса законов США, а также в соответствии с иностранными патентными законодательствами в тех странах, где поданы двойники данной заявки или ее продолжение. Все ограничения в отношении доступности для публики депонированных микроорганизмов будут безвозвратно сняты после выдачи патента.

Каждый из штаммов S. avermitilis ATCC 31267, ATCC 31271, ATCC 31272 и N CIB 12121 продуцирует натуральные авермектины, соединения формулы (I) где прерывистая линия в положении 22-23 обозначает необязательную двойную связь, R1 представляет собой гидроксил и присутствует только тогда, когда отсутствует двойная связь, R2 представляет собой 4'-/альфа-L-олеандрозил/-альфа-L-олеандрозилокси формулы R3 представляет собой водород или метил, а R представляет собой изопропил или /S/-втор-бутил. Патент США N 4285963 раскрывает авермектин формулы (I), где положение 25 замещено метильной и этильной группой, R1 означает гидрокси и R3 означает метил.

В упомянутых здесь ненатуральных авермектинах R обозначает заместитель другой, нежели изопропил или /S/-втор-бутил, и имеет нижеприведенные значения.

Соединения, существенные для использования в биосинтезе соединений формулы (I), встречаются в клетке S. avermitilis. Эти соединения, L-валин, L-лейцин и L-изолейцин, как полагают, входят в биосинтез авермектинов через превращение в 2-оксокислоту и декарбоксилирование кислоты дегидрогеназой 2-оксокислоты с разветвленной цепью, сопровождающиеся соединением продукта с коферментом A. Их присутствие отвечает за совместное производство как изопропилового, так и /S/-вторбутилового соединения формулы /I/. Это, конечно, поднимает проблемы отделения изопропила от производных /S/-втор-бутила.

При ферментации в питательной среде, содержащей подходящее праймерное соединение, мутанты настоящего изобретения продуцируют соединение формулы /I/ или, как более часто происходит, смесь двух или более соединений формулы /I/, в которых R соответствует используемому праймерному соединению. Можно получить до четырех продуктов, для удобства упомянутых как R-авермектин A1, A2, B1 и B2, в соответствии с обозначениями, используемыми в патенте США N 4429042. Группа "R-", конечно, относится к заместителю C-25. Например, когда R представляет собой циклопентил, четырьмя возможными авермектинами являются следующие (табл. 1).

В ненатуральных авермектинах C-25-заыеститель "R" формулы (I) является другим, нежели изопропил или /S/-вторбутил.

Соединения формулы /I/, в которых присутствует двойная связь и отсутствует OH, могут быть альтернативно получены из соответствующего соединения формулы /I/, в котором R1 означает OH и отсутствует двойная связь, реакцией дегидратации. Реакцию осуществляют вначале путем селективной защиты гидроксигрупп в положениях 5 и 4'', например, как т-бутилдиметилсилилоксиацетилпроизводного, затем подвергают взаимодействию с замещенным тиокарбонильным галогенидом, таким, как /4-метилфенокси/тиокарбонилхлорид, с последующим нагреванием в растворителе с высокой температурой кипения, например, в трихлорбензоле, с тем, чтобы осуществить дегидратацию. Наконец продукт освобождают от защиты с получением ненасыщенного соединения. Эти стадии вместе с подходящими реагентами и условиями проведения реакции описаны в патенте США N 4328335.

Соединения формулы /I/, в которых R3 представляет собой H, могут быть также получены из соответствующих соединений, в которых R3 обозначает CH3, диметилированием. Эту реакцию осуществляют обработкой 5-метоксисоединения или пригодно защищенного его производного уксуснокислой ртутью и гидролизацией полученного 3-ацетокси-энольного простого эфира разбавленной кислотой с получением 5-кетосоединения. Затем его восстанавливают с использованием, например, борогидрида натрия, получая 5-гидроксипроизводное. Подходящие реагенты и условия проведения реакции для этих стадий описаны в патенте США N 4423209.

Соединения формулы /I/, в которых R1 представляет собой H и отсутствует двойная связь, могут быть получены из соответствующего соединения, в котором двойная связь присутствует и R1 отсутствует, собирательной каталитической гидрогенизацией с использованием подходящего катализатора. Например, восстановление может быть достигнуто с использованием хлористого трис/трифенилфосфин/родия /1/, как описано в заявке на Европатент N 0001689 и ее двойнике, патенте США N 4199569, выданном 22 апреля 1980 года.

Соединения формулы /I/, в которых R2 представляет собой H, получают из соответствующих соединений, в которых R2 обозначает 4'-/альфа-L-олеандрозил/-альфа-L-олеандрозилокси, путем отщепления группы 4'-/альфа-L-олеандрозил/-альфа-L-олеандрозы мягким гидролизом с кислотой в водном органическом растворителе, получая при этом агликон, имеющий гидроксигруппу в положении 13; данное соединение затем галогенируют, например, реакцией с бензолсульфонилгалогенидом, получая при этом 13-дезокси-13-галопроизводное, которое в конце концов селективно восстанавливают, например, с использованием гидрида трибутилолова. Для того, чтобы избежать нежелательные побочные реакции, достаточно защитить любые другие гидроксигруппы, которые могут присутствовать, например, с использованием трет-бутилдиметилсилиловой группы. Затем ее легко отщепляют после осуществления стадии галогенирования или восстановления путем обработки метанолом, содержащим малое количество кислоты. Все эти стадии вместе с подходящими реагентами и условиями проведения реакции описаны в заявке на Европатент N 0002615.

Соединения, способные использоваться предлагаемыми S. avermitilis для биосинтеза авермектинов, натуральных и ненатуральных, представляют собой соединения формулы /II-A/ R-COOH, (II-A) включая соединения, конвертируемые в /II-A/ во время осуществления процесса ферментации. Указанные соединения упоминаются здесь как "праймерные соединения". В формуле /II-A/ R обозначает альфа-группу с разветвленной цепью, атом углерода ее, к которому присоединена группа -COOH, также присоединен по крайней мере к двум другим атомам или группам, другим, нежели водород. Это определение, конечно, охватывает насыщенные и ненасыщенные ациклические и циклические группы, включая те, которые необязательно несут гетероатом серы или кислорода как член ациклической цепи или циклического кольца.

Более конкретно, R, который становится заместителем C-25, может быть альфа-разветвленным C3-C8-алкилом, алкенилом, алкинилом, алкоксиалкилом или алкилтиоалкилом; C5-C8-циклоалкилалкильной группой, в которой алкильная группа представляет собой альфа-разветвленную C2-C5-алкильную группу; C3-C8-циклоалкильной или C5-C8-циклоалкенильной группой, причем та и другая могут быть по выбору замещены метиленом или одной или более C1-C4-алкильными группами или галоатомами (фтор, хлор, иод или бром); или 3-6-членными кислородом или серой, содержащими гетероциклическое кольцо, которое может быть насыщенным или полностью или частично ненасыщенным и которое может быть по выбору замещено одной или более C1-C4-алкильными группами или галоатомами.

Соединения, конвертируемые в RCOOH, то есть предшественники, в процессе ферментации, представляют собой соединения формулы (II-B), где R имеет вышеприведенные значения R-/CH2/n-Z, (II-B) n равно 0, 2, 4 или 6 и Z обозначает -CH2OH, -CHO, -CH2NH2, -COOR5 или -CONHR6, где R5 обозначает H или /C1-C6/алкил, R6 обозначает водород, /C1-C4/ алкил или остаток аминокислоты, главным образом, аспарагиновой кислоты, глутаминовой кислоты и метионина, например -CH/COOH/CH2COOH, -CH/COOH//CH2/2-COOH и -CH/COOH//CH2/2SCH3 соответственно.

В случае использования штаммов S. avermitilis, лишенных только трансаминазы аминокислот с разветвленной цепью, 2-оксокислоты служат также в качестве предшественников. Так, для указанных штаммов кислоты формулы /II-C/ R-CO-Z, (II-C) в которой R и Z имеют вышеприведенные значения, способны использоваться указанными S. avermitilis для биосинтеза авермектинов.

В настоящее изобретение также включены изомерные формы соединений формулы /II-A/ и соединений, конвертируемых в них в течение процесса ферментации, а также изомерные авермектины в положении C-25, получаемые в результате их использования в описываемом здесь способе.

Способ настоящего изобретения осуществляют путем аэробного брожения штаммов S. avermitilis, который лишен активности дегидрогеназы 2-оксокислот с разветвленной цепью и/или активности трансаминазы аминокислот с разветвленной цепью, в водной питательной среде, содержащей усвояемый источник азота, углерода, неорганические соли и соединение формулы RCOOH или соединение, конвертируемое в указанное соединение (то есть предшественник) в течение процесса ферментации. Кислоту или соединение, конвертируемое в нее, прибавляют в ферментацию либо во время инокулирования, либо с интервалами во время ферментации. При использовании трансаминазаотрицательного мутанта среда должна содержать L-изолейцин, L-лейцин и L-валин с тем, чтобы происходил рост мутанта. Производство продуктов авермектина можно контролировать посредством взятия проб из ферментации, экстрагируя органическим растворителем, и слежения за появлением продукта хроматографией, например, используя высокоэффективную жидкостную хроматографию. Инкубирование продолжают до получения максимального выхода продукта, как правило, в течение периода от 4 до 15 дней.

Предпочтительный уровень каждого прибавления праймерных соединении /карбоновой кислоты или соединения, конвертируемого в нее/ составляет от 0,05 до 3,0 г на литр. Праймерное соединение можно прибавлять постоянно, с промежутками или все сразу. Кислоту /RCOOH/ прибавляют как таковую или в виде соли, такой как натриевая, литиевая или аммониевая соль, или в виде соединения, конвертируемого в кислоту, как определено выше. Кислоту, если она представляет собой твердое вещество, предпочтительно растворять в пригодном растворителе, таком как вода или /C1-C4/ спирты.

Среды, используемые для ферментации, особенно, когда заместителем C-25 является изопропил или /S/-втор-бутил, могут быть традиционными средами, содержащими усвояемые источники углерода, азота и микроэлементы. Когда заместителем C-25 должна быть ненатуральная группа, то есть ни изопропил, ни /S/-втор-бутил, сбраживаемой средой является та, в которой выбранные ингредиенты не содержат или содержат только минимальные количества праймерных соединений, в которых часть R представляет собой изопропил или /S/-втор-бутил.

После ферментации в течение нескольких дней при температуре предпочтительно в интервале от 24 до 33oC ферментационный бульон центрифугируют или фильтруют, и мицеллярный осадок экстрагируют предпочтительно ацетоном или метанолом. Экстракт растворителя концентрируют и требуемый продукт затем экстрагируют в несмешивающийся с водой органический растворитель, такой как метиленхлорид, этилацетат, хлороформ, бутанол или метилизобутилкетон. Экстракт растворителя концентрируют и сырой продукт подвергают очистке, как необходимо, хроматографией, например, используя препаративную высокоэффективную жидкостную хроматографию с обращенными фазами.

Продукт обычно получают в виде смеси соединений формулы (I), где R2 обозначает 4'-/альфа-L-олеандрозил/-альфа-L-олеандрозилокси, R1 обозначает OH и двойная связь отсутствует или R1 отсутствует и двойная связь присутствует, и R3 обозначает H или CH3; однако относительные содержания могут варьироваться в зависимости от конкретного мутанта и праймерного соединения и от используемых условий.

Источник группы R, то есть происходит ли она непосредственно из R-COOH или продуцируется от одного из вышеуказанных предшественников или любого другого предшественника, не играет роли для производства авермектинов. Решающим условием способа настоящего изобретения для получения авермектинов является то, что желаемая группа R должна быть приемлемой для штаммов S. avermitilis настоящего изобретения в процессе ферментации.

Пригодные соединения включают следующие: 2,3-диметилмасляная кислота, 2-метилкапроновая кислота, 2-метилпент-4-еновая кислота, 2-циклопропилпропионовая кислота, Литиевая соль 4,4-дифторциклогексанкарбоновой кислоты, 4-метиленциклогексанкарбоновая кислота, 3-метилциклогексанкарбоновая кислота /цис/транс/, 1-циклопентенкарбоновая кислота, 1-циклогексенкарбоновая кислота, Тетрагидропиран-4-карбоновая кислота, Тиофен-2-карбоновая кислота, 3-фуранкарбоновая кислота, 2-хлортиофен-4-карбоновая кислота, Циклобутанкарбоновая кислота, Циклопентанкарбоновая кислота, Циклогексанкарбоновая кислота, Циклогептанкарбоновая кислота, 2-метилциклопропанкарбоновая кислота, 3-циклогексен-1-карбоновая кислота, 2-метилтиопропионовая кислота, 2-метил-4-метоксимасляная кислота, Тиофен-3-карбоновая кислота, Гидроксиметилциклопентан, 3-тиофенкарбоксальдегид, 3-циклогексилпропионовая кислота, 3-циклопентилпропионовая кислота, Гидроксиметилциклобутан, Тетрагидротиофен-3-карбоновая кислота, 3-циклопентил-1-пропанол, Литиевая соль 3-метилциклобутанкарбоновой кис