Способ получения отбеленной целлюлозной массы и способ делигнификации и отбелки лигноцеллюлозного материала (варианты)

Реферат

 

Сущность: способ получения отбеленной целлюлозной массы и способ делигнифицирования и отбелки лигноцеллюлозной массы и его варианты без применения газообразного хлора посредством частичного делигнифицирования массы до перманганатного числа приблизительно 10 или менее и вязкости более приблизительно 10 или менее и вязкости более приблизительно 13 сП; затем делигнифицируют частично делигнифицированную массу некоторым эффективным количеством озона на протяжении времени, достаточного для получения по сути делигнифицированной массы, имеющей перманганатное число приблизительно 5 или меньше, вязкость больше приблизительно 5 или меньше, вязкость больше приблизительно 10 и белизну GE по меньшей мере приблизительно 50%. Полученную по сути делигнифицированную массу можно отбелить добавкой такого отбеливателя, как двуокись хлора или перекись для получения готового продукта, имеющего белизну по меньшей мере приблизительно 65%, а предпочтительно от 70 до 90%. Благодаря тому, что в процессе отсутствует газообразный хлор, можно регенерировать фильтрат со всех стадий, кроме стадии обработки двуокисью хлора, если эта стадия присутствует, и не сбрасывать его со сточными водами. В результате достигается значительное экологическое улучшение. 8 с. и 116 з.п. ф-лы, 30 табл., 5 ил.

Изобретение относится к способу получения отбеленной целлюлозной массы и к новому и экологически приемлемому способу делигнификации и отбелки лигноцеллюлозной массы, при котором отпадает необходимость в применении газообразного хлора и получается целлюлозная масса приемлемой прочности. Применение подобного способа также позволяет уменьшить количество веществ, загрязняющих окружающую среду.

В состав древесины входят два основных компонента, это волокнистый углеводород или целлюлозная часть и неволокнистый компонент. Полимерные цепи, образующие волокнистую целлюлозную часть древесины, ориентированы одинаково и образуют прочные ассоциативные связи с соседними цепями. Неволокнистая часть древесины содержит трехмерный полимерный материал, состоящий в основном из фенилпропановых звеньев, называемых также лигнином, некоторая часть лигнина находится между целлюлозных волокон, осуществляя их прочную связь, однако основная часть лигнина распределена внутри самих волокон.

Чтобы древесину можно было использовать при производстве бумаги, ее следует прежде всего измельчить до волокнистой массы. Подобная масса представляет собой волокна древесины, которые можно суспендировать и потом осадить на сетке, получая в результате лист бумаги. Для превращения древесины в волокнистую массу ее подвергают физической или химической обработке либо их комбинированному действию с целью изменить химическую форму древесины и придать готовому продукту желаемые свойства. Итак, существует два основных метода получения из древесины волокнистой массы это механический и химический методы. Путем механической обработки древесину разделяют на отдельные волокна. При химической обработке древесную щепу варят с химическими растворами, чтобы растворить часть лигнина и в результате удалить его. Наиболее широко используемые методы химической обработки можно классифицировать так: (1) натронный способ варки; (2) сульфитный способ варки, и (3) сульфатный способ или крафт-процесс; последний способ нашел наиболее широкое применение, известны самые различные его модификации, подробно описанные ниже.

Натронный способ варки хорошо известен. В нем применяют гидроксид натрия (NaOH), действующий в качестве активного реагента, размягчающего лигнин и способствующего его удалению. Сульфитный способ варки также хорошо известен (см. например, "Справочник технолога по целлюлозе и бумаге", глава 6 "Сульфитная варка" (TAPPI, США).

Основным химическим процессом, применяемым при производстве бумаги, является сульфитный способ варки, а также различные его вариации. В соответствии с основным сульфатным способом варки, описанным в "Справочнике технолога по целлюлозе и бумаге", глава 7 "Крафт-процесс" (TAPPI, США), осуществляют варку древесной щепы в водном растворе гидроксида натрия (NaOH) и сульфида натрия (Na2S). Этот способ показал себя высокоэффективным при варке южных хвойных пород древесины, а также при варке легкообрабатываемых видов древесины, а именно северных лиственных и хвойных пород. Применение крафт-процесса, как правило, позволяет получать сравнительно высокопрочный материал, так как при его использовании целлюлозная компонента древесины подвергается меньшему разрушению.

Различные модификации крафт-процесса позволяют достичь еще меньшей деструкции полимерной структуры целлюлозных волокон, благодаря чему прочность получаемой бумаги оказывается выше, чем при стандартном крафт-процессе. Один из модифицированных способов сульфатной варки называют методом "расширенной делигнификации", он охватывает множество модифицированных крафт-процессов, например добавку химикатов в строго обусловленной последовательности или в различных точках варочного котла или в различные отрезки времени, либо удаление и последующую подачу варочных растворов в заданной последовательности, с тем, чтобы обеспечить более эффективное удаление лигнина при одновременном смягчении химического воздействия варочных растворов на целлюлозные волокна. Другой модификацией крафт-процесса является процесс, при котором к сульфатному варочному щелоку добавляют небольшое количество антрахинона, чтобы ускорить делигнификацию и ограничить воздействие на целлюлозные волокна.

Кроме них, известно множество других методов делигнификации, например, модифицированная непрерывная варка по Камюру (МСС), описанная В.А.Кортелайненом и Э. А. Баклундом в TAPPI, том 68 (II), 70 (1985); метод ускоренного замещения при нагреве Белуа (РДН), описанный Р.С.Грантом в TAPPI, том 66 (3), 120 (1983); и варка с холодным выдувом Сэндса, описанная Б.Петерсоном и Б.Эрнерфельдом в "Целлюлозе и бумаге", том 59 (II), 90 (1985).

В результате варки древесины по основному или модифицированному крафт-процессу образуется суспензия, окрашенная в темный цвет и потому называемая небеленой массой. Темный цвет небеленой массы приписывают тому, что во время варки удаляется не весь лигнин, он химически модифицируется и образует хромофорные группы. Чтобы осветлить небеленую массу, т.е. сделать ее пригодной для использования в качестве печатной или писчей бумаги, необходимо продолжать удалять остаточный лигнин за счет добавки делигнифицирующих материалов и путем химического превращения остаточного лигнина в бесцветные соединения, используя процесс, известный под названием отбелки или осветления.

Однако обычно по завершении химической обработки, проводимой во время варки древесины, и до начала отбелки целлюлозную массу помещают в отдельный выдувной резервуар. Внутри выдувного резервуара снимают давление, создаваемое в ходе начальной химической обработки лигноцеллюлозного материала, и отделяют волокнистую массу. Полученную волокнистую массу подвергают нескольким промывкам для удаления сочетания из остаточных химикатов и растворимых материалов (вроде лигнина), отделяемых от волокнистых материалов во время варки. Весьма часто целлюлозную массу подвергают нескольким сортировкам, направленным на то, чтобы отделить неизмельченную древесину для дальнейшей обработки (переварка, механическое измельчение и т.д.).

После промывки получают остаток, обычно называемый черным щелоком, его собирают, концентрируют и затем экологически безопасным способом прокаливают в регенерационном котле. Технология сбора, концентрирования и сжигания черного щелока является типовой, она хорошо известна.

Процессы делигнификации и отбелки проводят на промытой волокнистой массе на протяжении нескольких этапов, используя выбранные сочетания химических реагентов. Ранее предлагались самые различные сочетания химических обработок. Кроме того, отдельные этапы обработки могут перегруппировываться, и число подобных сочетаний и перестановок почти беспредельно. Поэтому для упрощения при дальнейших пояснениях различных процессов и систем применимы буквенные коды, которыми будем пользоваться для описания применяемых конкретных реагентов и последовательностей этапов.

Далее там, где удобно, будут использоваться следующие буквенные коды: C хлорирование реакция с газообразным хлором в кислой среде; E щелочная обработка растворение продуктов реакции с NaOH; Eо окислительно-щелочная обработка растворение продуктов реакции с NaOH и кислородом; D двуокись хлора реакция с ClO2 в кислой среде; P пероксид реакция с пероксидами в щелочной среде; O кислород реакция с газообразным кислородом в щелочной среде; Ом модифицированный кислород равномерная щелочная обработка целлюлозной массы малой или средней концентрации, после чего следует реакция высококонцентрированной массы с кислородом; Z озон реакция с озоном; Zм- однородная реакция с озоном; C/D смеси хлора и двуокиси хлора; H гипохлорит реакция с гипохлоритом в щелочном растворе.

Ом и Zм представляют собой модифицированные процессы по данному изобретению, их описание дано далее в тексте.

На протяжении многих лет для делигнификации и отбелки древесной массы применяют газообразный хлор.

Хотя газообразный хлор представляет собой эффективное отбеливающее вещество, однако с ним трудно обращаться, и он является потенциально опасным как для оборудования так и для персонала. Например, в сточных водах, поступающих из процессов хлорной отбелки, в качестве побочных продуктов этих процессов содержится большое количество хлоридов. Под воздействием хлоридов оборудование быстро корродирует, из-за чего на изготовление таких установок приходится направлять дорогостоящие материалы. Вместе с тем наличие хлоридов внутри установки препятствует рециркуляции фильтрата по завершении этапа хлорирования в системе с замкнутым циклом, если не использовать регенерационные системы со сложными и потому дорогими модификациями. Но понятие о потенциальном экологическом воздействии хлорированных органических соединений, входящих в состав сточных вод и признанных токсичными для людей и животных согласно решениям Агентства США по охране окружающей среды, претерпело значительные изменения в смысле ужесточения требований и стандартов, соблюдение которых может оказаться невозможным при использовании типовых методов отбелки и контроля за загрязнением окружающей среды.

Чтобы избежать перечисленных неудобств, стараются уменьшить или совсем исключить применение газообразного хлора и хлорсодержащих соединений на многоэтапных процессах отбелки лигноцеллюлозного материала. Дополнительным фактором, усложняющим предпринимаемые попытки, является необходимость в соблюдении высокого уровня белизны волокнистого полуфабриката.

Поэтому усилия были направлены на разработку такого процесса отбелки, при котором вместо хлорсодержащих веществ для отбелки массы применяют кислород. Использование кислорода позволяет вести рециркуляцию сточных вод с этого этапа наряду со значительным уменьшением количества применяемого газообразного хлора. Было предложено несколько процессов отбелки и делигнификации древесной массы с помощью кислорода, например, патенты США N 2926114, по кл. 162/16 за 1960 г. и N 3024158 по кл. 162/17 за 1962 г. патент США N 3274049 по кл. 162/65 за 1966 г. патент США N 3384533 по кл. 162/65 за 1968 г. патент США N 3423282 по кл. D 21 C 9/10 (162/65) за 1969 г. и др. патент США N 3661699 по кл. D 21 C (162/65) за 1972 г. публикация П.Кристенсена "Отбелка сульфатных масс с помощью перекиси водорода", Norsk Skoqindustri, 268-271 (1973).

В патенте США N 4806203 по кл. D 21 C 3/26 (162/19) за 1989 г. предлагаются способы предварительной щелочной обработки целлюлозной массы до кислородной делигнификации.

Однако использование кислорода нельзя считать полностью удовлетворительным решением проблемы, связанной с использованием газообразного хлора. Кислород не является столь же селективным делигнифицирующим веществом, как газообразный хлор, из-за чего применение типовых методов делигнификации с помощью кислорода позволяет лишь в ограниченной степени уменьшить перманганатное число целлюлозной массы до начала непропорционального, т.е. неприемлемого воздействия на волокна целлюлозы. Кроме того, по завершении кислородной делигнификации остаточный лигнин как правило удаляли методами хлорной отбелки, чтобы получить полностью отбеленную массу; при этом использовали намного меньшее количество хлора. Однако даже при столь малых концентрациях хлора из-за замкнутого рабочего цикла вскоре достигались совершенно недопустимые уровни концентрации корродирующих хлоридов.

Чтобы избежать применения отбеливающих веществ с содержанием хлора, предлагали удалять остаточный лигнин с помощью озона. Вначале озон казался идеальным материалом для отбелки лигноцеллюлозных материалов, однако исключительно высокие окислительные свойства озона и его сравнительно высокая стоимость до последнего времени сильно ограничивали разработку удовлетворительных процессов озонной отбелки лигноцеллюлозных материалов и в особенности южных хвойных пород. Озон легко вступает в реакцию с лигнином, эффективно уменьшая перманганатное число, однако, он во многих случаях вызывает разрушение углеводорода, содержащегося в целлюлозных волокнах, и значительно уменьшает прочность полученной целлюлозной массы. Вместе с тем озон чрезвычайно чувствителен к таким параметрам процесса, как pH, влияющим на его окислительную и химическую стабильность, из-за чего подобные изменения могут значительно изменить реакционную способность озона в отношении лигноцеллюлозных материалов.

С самого начала нашего века, когда впервые распознали делигнифицирующие свойства озона, многие исследователи вели важную и непрерывную работу по созданию промышленно приемлемого способа отбелки лигноцеллюлозных материалов с помощью озона. Результатом этой работы стали многочисленные статьи и патенты, где сообщалось о попытках осуществить озонную отбелку в непромышленных масштабах. К примеру, в патенте США N 2466633, кл. 162/65 за 1949 г. описан процесс отбелки, при котором озон пропускают через целлюлозную массу, где абсолютную влажность поддерживают в пределах от 25 до 55% а pH от 4 до 7.

Другие предложения по отбелке без применения хлора описаны в публикации С. Ротенберга, Д.Робинсона и Д.Джиосонбо "Отбелка кислородсодержащих целлюлозных масс с помощью озона", TAPPI, 182-185 (1975) Z, ZeZ, Zp и ZPa (Pa надуксусная кислота); и в публикации Р.Соселэнда "Отбелка технической целлюлозы кислородом и озоном", "Канадское обозрение по целлюлозе и бумаге". T153-58 (1974) OZEP, OP и ZP.

В патенте США N 4196043, D 21 C 9/10 (162/30K) за 1980 г. раскрыт многоэтапный способ отбелки, в котором также сделана попытка избавиться от применения соединений хлора; в нем содержатся примеры, специально относящиеся к твердолиственным породам. Специалистам хорошо известно, что твердолиственные породы отбеливаются легче многих хвойных пород. Предложенный там способ характеризуется применением от одного до трех этапов получения с помощью крафт-процесса массы озонной отбелки и заключительной обработки щелочной перекисью водорода, при этом каждый этап отделяется щелочной экстракцией. Подобную последовательность можно сокращенно описать как ZEZEP. В соответствии с этим способом сточную воду с каждого этапа собирают и рециркулируют для использования в ходе операций по отбелке, предпочтительно на более раннем этапе. В патенте также описан так называемый противоток сточных вод.

Тем не менее, несмотря на все проведенные исследования до настоящего времени не известно о каком-либо промышленно осуществимом способе производства лигноцеллюлозных масс посредством озоновой отбелки, особенно южных мягких хвойных пород; имеются лишь сообщения о многочисленных провалах.

Задача, на решение которой направлено данное изобретение, заключается в создании новых сочетаний из этапов варки и отбелки, позволяющих устранить ранее встречавшиеся трудности, перечисленные выше, при исключении выпуска хлорированных органических соединений, а также минимизация цвета и биологической потребности в кислороде для производства высокосортной беленой целлюлозы в промышленных масштабах.

Существо изобретения.

Техническим результатом изобретения является создание многоэтапного процесса делигнификации и отбелки лигноцеллюлозной массы без применения отбеливающих веществ с содержанием хлора для значительного уменьшения или исключения окружающей среды при оптимизации физических свойств целлюлозной массы способом, эффективным с точки зрения энергии и затрат. Данное изобретение может применяться практически со всеми породами дерева, в том числе и с трудными для отбелки южными мягкими хвойными породами.

Способ по данному изобретению состоит из трех или более этапов, при этом внутри этапов и между ними возможны различные вариации. Все эти этапы можно описать следующим образом.

В первый этап входит делигнификация древесной щепы в лигноцеллюлозную массу с применением одного из известных процессов химической варки, после чего следует удаление путем промывки растворенных органических веществ и варочных химикатов для их рецикла и регенерации. Затем обычно осуществляется сортирование массы, чтобы удалить пучки волокон, не разделившиеся во время варки. Этап делигнификации проводят таким образом, чтобы из мягких хвойных пород получить целлюлозную массу с перманганатным числом от 20 до 24 (желательно 21), вязкость в растворе куприэтилендиамина ("СЕД") приблизительно от 21 до 28 и белизну по приблизительно от 15 до 25. Из твердых лиственных пород США обычно получают целлюлозную массу с перманганатным числом от 10 до 14 (желательно 12,5) и СЕД вязкостью приблизительно 21-28.

К возможным вариантам реализации первого этапа относятся, не ограничиваясь ими: а) сульфатная варка с применением непрерывной или циклической стадии; б) непрерывная сульфатная варка с расширенной делигнификацей при поэтапной добавке щелочи и заключительной противоточной варке; в) циклическая сульфатная варка с расширенной делигнификацией и с применением методов быстрого вытеснения щелока и холодной продувки; или г) сульфатная варка с применением антрахинона для достижения расширенной делигнификации с применением непрерывной или циклической стадии.

Упомянутые выше в пунктах б) и в) методы расширенной делигнификации могут содержать к примеру технологические приемы варки по Камюру МСС, Белуа РДН и Сэндсу, рассмотренные во вводной части данного описания. В зависимости от конкретного типа используемого лигноцеллюлозного материала также могут применяться упомянутые выше натронный и сульфитный процессы.

На втором этапе способа проводится кислородная делигнификация для дальнейшего удаления лигнина, не сопровождающаяся значительной потерей прочности целлюлозных волокон. На этом этапе может проводиться удаление путем промывки растворенных органических веществ и щелочей для рецикла и регенерации. По завершении кислородной делигнификации также производится сортировка целлюлозной массы.

На этапе кислородной делигнификации пермангантное число целлюлозной массы с повышенной концентрацией уменьшается по меньшей мере, приблизительно на 45% (для О) и на 60% (для Ом) без заметных повреждений целлюлозной компоненты. Кроме того, отношение перманганатного числа к вязкости обычно уменьшается, по меньшей мере, на 25% При обработке целлюлозной массы достигается перманганатное число равное или меньше 10, при обработке целлюлозной массы из хвойных пород с использованием Ом легко достижимо перманганатное число от 7 до 10 и вязкость приблизительно равная или более 13. При обработке целлюлозной массы из лиственных пород после этапа кислородной делигнификации достигается перманганатное число от 5 до 8 и вязкость приблизительно равная или более 13.

К возможным вариантам реализации второго этапа относятся, не ограничиваясь ими: а) типовая кислородная делигнификация, куда входит кислородно- щелочная обработка массы при малой, средней или большой концентрации целлюлозной массы (O); или б) предпочтительный вариант щелочной обработки при концентрации массы от малой до средней, т.е. менее приблизительно 10 вес. после чего для массы с большой концентрацией (т.е. более приблизительно 20 вес.) следует кислородная обработка (Ом).

В качестве целлюлозной массы, белизна которой может не превышать 35% СЕВ (часто называемой полубеленой массой), можно использовать массу, обработанную вплоть до 2 этапа.

На третьем этапе способа проводится кислотная отбелка газообразным озоном (Z или Zм) при соблюдении определенных параметров процесса для достижения высокоизбирательного удаления и отбелки лигнина для минимального разрушения целлюлозы. К числу параметров процесса относятся хелатообразователи для контроля за ионами металлов, контроль pH, контроль размера частиц, контроль консистенции массы, концентрации озона и контакта между газом и целлюлозной массой. До начала обработки озоном к целлюлозной массе могут добавляться хелатообразователи, например щавелевая кислота, диэтилентриаминпентауксусная кислота (ДТРА) или этилендиаминтетрауксусная кислота ("ЕДТА") для связывания с заключенными в ней ионами металла. Желательно регулировать величину pH от 1 до 4, осуществляя это до начала третьего этапа. С этой целью к целлюлозной массе можно добавлять достаточное количество кислого материала, также предпочтительно, чтобы консистенция массы находилась в пределах от 35 до 45 мас. а хлопьям из волокон желательно придать размер приблизительно в 5 мм или менее, осуществляя это до этапа озонной делигнификации. Сюда же входит стадия промывки растворенных органических веществ для рецикла и регенерации.

На протяжении этапа обработки озоном желательно, чтобы температура массы поддерживалась равной нормальной или по меньшей мере ниже приблизительно 120oF (48,9oC). Озон может поступать в виде озонсодержащего газа, куда может входить к примеру кислород или воздух. Если используется смесь кислорода с озоном, то желательно, чтобы концентрация озона приблизительно от 1 до 8 об. тогда как в смеси озона с воздухом допустима концентрация приблизительно от 1 до 4 об. Перемещение делигнифицированной массы внутри реакционного резервуара осуществляется так, чтобы озон оказывал равномерное воздействие на все ее частицы.

Было обнаружено, что целлюлозные массы с перманганатным числом более приблизительно 10 после второго этапа не подходят для использования на описываемом третьем этапе, поскольку для уменьшения перманганатного числа до желаемого уровня требуется большое количество озона, что обычно нежелательно влияет на свойства целлюлозных волокон. Если озонируется целлюлозная масса с перманганатным числом менее 10, то используется меньшая концентрация озона и наблюдается самое незначительное разрушение целлюлозы. У продукта, полученного на этапе озонирования из целлюлозной массы из хвойных или лиственных пород, перманганатное число приблизительно 5 или менее 5 и как правило находится в пределах от 3 до 4 (предпочтительно 3,5), вязкость превышает 10, и белизна СЕ составляет, по меньшей мере, 50% (обычно у хвойной древесины приблизительно 54% и выше, у лиственной 63% и выше).

К возможным вариантам реализации третьего способа относятся, не ограничиваясь ими: а) обработка подкисленной массы при противоточном контакте с озоном в кислородсодержащем газе или воздухе; или б) обработка подкисленной массы при контакте с параллельным потоком озона в кислородсодержащем газе или воздухе.

Затем может проводиться дополнительный этап отбелки для придания целлюлозной массе желаемого полностью отбеленного состояния, когда уровень белизны достигает приблизительно 70-95% благодаря применению одного из хорошо себя зарекомендовавших процессов отбелки и щелочения. К числу возможных вариантов реализации относятся: а) типовая стадия щелочения с промывкой, после чего следует перекисная стадия с промывкой, т.е. ЕР; б) типовые стадии щелочения и промывки, после которых следуют типовая обработка двуокисью хлора с промывкой, то есть ED; в) типовые стадии щелочения и промывки, после которых следует типовая обработка двуокисью хлора с промывкой, далее повторное щелочение и обработка двуокисью хлора, т.е. EDED; или г) стадия щелочения, усиленная либо кислородом, либо кислородом и перекисью, после которой следует типовая обработка двуокисью хлора, т.е. (Eо)D или (Eор)D.

В качестве дополнительного варианта реализации на стадии щелочения может осуществляться соединение в основном делигнифицированной массы с достаточным количеством щелочного материала в водно-щелочном растворе на определенное время и при определенной температуре в соответствии с имеющимся количеством щелочного материала для растворения значительной доли лигнина, оставшейся в массе. Затем часть водно-щелочного раствора можно извлечь для удаления практически всего растворенного лигнина.

По завершении этапа щелочения делигнифицированную целлюлозную массу можно направить на дополнительный этап отбелки для повышения ее белизны, по меньшей мере, до 70% В число предпочтительных отбеливателей входят двуокись хлора или перекись.

Наибольшая степень белизны достигается в вариантах реализации (Eо)D, (Eор)D или EDED. В варианте ED фильтрат, полученный после обработки двуокисью хлора, нельзя направлять в рецикл для химической регенерации без предварительной обработки из-за наличия неорганических хлоридов. Вместе с тем такой фильтрат является единственным, уходящим из процесса, и потому достигается значительное уменьшение объема сточных вод, наличия в нем хлорированных органических соединений, СОD и ВОD. Вполне можно добиться значений количества красителя менее 2 фунтов на тонну, ВОD5 менее 2 фунтов на тонну и общего содержания органических хлоридов менее 2 и предпочтительно менее 0,8. Кроме того, фильтрат после обработки двуокисью хлора можно направить на мембранное фильтрование, которое и позволит завершить рецикл. В варианте ЕР на этапе отбелки не происходит образования хлорированных материалов и практически все жидкие фильтраты можно рециркулировать и регенерировать, благодаря чему получается процесс без сточных вод.

На фиг. 1 в виде блок-схемы показаны предпочтительные способы согласно данному изобретению, при этом сплошной линией изображен поток целлюлозной массы, а пунктиром поток сточных вод; на фиг.2 предпочтительный способ по данному изобретению; на фиг.3 вид устройства для озонирования по фиг.2, в разрезе, выполненном по линии 3-3; на фиг.4 вид предпочтительного устройства для озонирования по фиг.2 в разрезе, выполненном по линии З-З; на фиг.5 - сравнение потоков рецикла и отходов в различных способах обработки целлюлозы.

Изобретение относится к новым способам делигнификации и отбелки целлюлозной массы, позволяющим минимизировать степень разрушения целлюлозной доли древесины и потому получать продукт, обладающий прочностными свойствами, приемлемыми для производства бумаги и различных изделий из нее. Для удобства в понимании усовершенствований, достигаемых при использовании заявленного способа делигнификации и отбелки, далее будут представлены определения нескольких параметров, участвующих на различных стадиях во всех процессах делигнификации и отбелки.

Во всем описании используются следующие определения.

Под "консистенцией" понимается количество целлюлозных волокон в суспензии, выраженное в процентном отношении от общего веса абсолютно сухого волокна и воды. Его иногда называют концентрацией целлюлозной массы. Консистенция массы зависит от работы используемого обезвоживающего оборудования и его типа. В основе последующих определений лежат определения, приведенные Рюдхольмом в публикации "процессы варки" Interscience Publishers, 1965, с. 862-863, и монографии TAPPI N 27, "Отбелка целлюлозной массы", издание Технической Ассоциации Целлюлозной и Бумажной промышленности, 1963, с.186-187.

В понятие "малая консистенция" входит диапазон от 6% обычно это от 3 до 5% Такую суспензию накачивать обычным центробежным насосом, ее получают с помощью сгустителей и фильтров без отжимных валов.

В понятие "средняя консистенция" входит диапазон приблизительно от 6 до 20% точкой раздела внутри этого диапазона служит значение в 15% Получить консистенцию ниже 15% можно с помощью фильтров. Именно такую консистенцию имеет масса, выходящая из барабанного вакуум-фильтра в системе промывки небеленой массы и в системе отбелки. Консистенция суспензии, поступающей из промывного аппарата, будь то вакуум-фильтр для промывки сульфатной целлюлозы или аппарат для промывки после отбелки, составляет от 9 до 15% Если консистенция больше 15% то для обезвоживания требуются отжимные валы. Рюдхольм считает, что обычный диапазон для средней консистенции равен 10-18% тогда как Рэпсон указывает 9-15% Суспензию можно накачивать специальными машинами, хотя при высоких температурах и под давлением она представляет собой однородную жидкую фазу.

В понятие "большая консистенция" входит диапазон более 20 и вплоть до 50% Рюдхольм считает обычным диапазон от 25 до 35% по мнению Рэпсон 20-35% Подобную консистенцию можно получить лишь при использовании прессов. Волокна целлюлозы полностью поглотили жидкую фазу, и целлюлозную массу можно накачивать лишь на очень малые расстояния.

Далее, в настоящем описании понятие "варка" используется в своем обычном смысле, указывая на варку лигноцеллюлозного материала для получения небеленой целлюлозы. В понятие варки включаются крафт-процесс, а также крафт-процесс с использованием антрахинона, в результате варки достигается делигнификация.

Понятие "модифицированный крафт-процесс" включает в себя расширенную делигнификацию и все другие модифицированные крафт-процессы за исключением крафт-процесса с применением антрахинона, поскольку этот процесс приобрел особый статус и известен под особым названием. Под понятие расширенной делигнификации не подпадает этап кислородной делигнификации, следующий по завершении варки; его предпочтительней называть первым этапом процесса делигнификации для отбелки или осветления массы.

Затем здесь упоминаются два основных типа измерений, используемых для определения завершения процесса варки или отбелки, это "степень делигнификации" и "белизна" целлюлозной массы. Понятие о степени делигнификации обычно используется в связи с процессом варки и начальными этапами отбелки. По мере того, как количество лигнина падает, этот показатель становится менее точным, что свойственно последним этапам отбелки. Коэффициент белизны обычно используют в связи с процессом отбелки, так как он становится более точным по мере светления целлюлозной массы, когда ее отражательная способность увеличивается.

Существует несколько методов замера степени делигнификации, однако многие из них представляют собой лишь вариации перманганатного теста. При нормальном перманганатном тесте получается перманганатное число (K), т.е. число кубических сантиметров децинормального перманганатного раствора калия, поглощенного одним граммом абсолютно сухой массы при определенных условиях. Перманганатное число определяется по стандартному тесту TAPPI T-214.

Существует также несколько методов замера белизны целлюлозной массы. Этот параметр обычно представляет меру отражательной способности, и его величина выражается в процентах по определенной шкале. Стандартным методом является белизна СЕ, выражаемая как процентное отношение от максимальной белизны СЕ, определяемой по стандартной методике TAPPI ТРД-103.

Кроме того, в соответствующих местах будет использоваться буквенный код, описанный выше в разделе "Предпосылки к созданию изобретения"; на протяжении всего подробного описания он будет обозначать различные этапы обработки целлюлозной массы.

На приведенных далее значениях перманганатного числа, вязкости и белизны, полученных при использовании предлагаемого способа варки, делигнификации и отбелки, будет показана способность данного способа к улучшению степени удаления лигнина из целлюлозной массы при минимизации возникающего при этом разрушения целлюлозы.

По завершении этапа кислородной делигнификации и до начала отбелки имеется частично делигнифицированная масса с перманганатным числом приблизительно от 5 до 10, предпочтительно от 7 до 10 для растущих в США хвойных пород и от 5 до 7 для лиственных. Вязкость частично делигнифицированной массы приблизительно превышает 10, обычно более 13 и предпочтительно по меньшей мере 14 (для массы из хвойных пород) или 15 (для лиственных). Частично делигнифицированный материал обладал хорошей прочностью и требуемой вязкостью и потому мог выдерживать воздействие озона. Частично делигнифицированную массу подвергали действию озона для дальнейшего делигнифицирования массы, в результате чего перманганатное число массы уменьшалось приблизительно до 3-4 как для хвойных, так и для лиственных пород, при этом белизна массы увеличивалась по меньшей мере до 50-70% У целлюлозной массы из хвойных пород обычно достигалась белизна приблизительно 54% и выше, тогда как у лиственных пород достигались значения более 63% Дальнейшее увеличение белизны целлюлозной массы достигалось щелочением и дополнительной отбелкой с помощью двуокиси хлора или перекиси.

Для удобства понимания данного изобретения на фиг.1 в схематической форме показаны различные этапы, используемые при варке, делигнификации и осветлении массы согласно данному изобретению. Как видно из фиг.1, в данном изобретении предлагается многоэтапный процесс, при котором: (а) осуществляют варку лигноцеллюлозного материала, причем применяемые при варке химикаты могут регенерироваться и повторно использоваться с помощью известных методов; (б) промывают массу для удаления химических отходов от варочного раствора вместе с остаточным лигнином и, как правило, сортируют целлюлозную массу для удаления тех пучков волокон, что не разделились во время варки; (в) осуществляют кислородно-щелочную делигнификацию массы (т.е. О или Ом); (г) промывают частично делигнифицированную массу, полученную на этапе (в), для удаления растворенных органических соединений; при необходимости в этот момент можно провести сортировку и направить на рецикл по меньшей мере часть сточных вод с этого этапа на предшествующий этап; (д) осуществляют хелатообразование и подкисление целлюлозной массы для связывания ионов металла и регулирования pH до заданного уровня; (е) осуществляют контакт массы с озоном (т.е. Z или Zм) для дальнейшей делигнификации и частичной отбелки материала; (ж) промывают озонированную массу, направляя в рецикл по меньшей мере часть сточных вод с этого этапа на предшествующий; (з) осуществляют щелочную обработку для удаления остаточного лигнина; (и) промывают обработанную массу, рециркулируют по меньшей мере часть сточных вод к предшествующему этапу; (к) добавляют второй отбеливающий реагент (т.е. D или P для осветления и отбеливания массы); (л) промывают осветленную массу для получения отбеленного продукта, белизна которого составляет приблизительно 70-90% и (м) рециркулируют по меньшей мере часть сточных вод с этапа отбелки P к предшествующему этапу; или сливают сточные воды с этапа отбелки D или после соответствующей обработки рециркулируют сточные воды к предыдущему этапу.

1. Варка Первым этапом в способе по данному изобретению, в котором могут применяться процедуры, способствующие удалению лигнина из лигноцеллюлозных материалов при минимизации разрушения целлюлозы, является варка. Конкретный способ варки, используемый в данном изобретении, в значительной степени зависит от типа лигноцеллюлозного материала и точнее от типа древесины, используемой в качестве исходного материала. Из фиг.1 видно, что варочный раствор, применяемый в ходе варки, может регенерироваться и повторно использоваться по известной методике. После этого этапа обычно следует промывка для удаления большей части растворенных органических соединений и варочных химикатов для рецикла и регенерации, а также этап сортировки, при котором целлюлозная масса про