Производные тиазолидин-2,4-диона и способ их получения

Реферат

 

Соединения формулы /1/: (в которой R1 представляет алкил; R2 и R3 каждый представляет алкил или алкокси, или R2 и R3 вместе образуют необязательно замещенное бензольное кольцо, и, когда R2 и R3 вместе образуют указанное бензольное кольцо, R1 представляет водород, галоген или алкил; R4 и R5 оба представляют водород или вместе представляют одинарную углерод-углеродную связь; W представляет одинарную связь или алкилен; и Z представляет атом водорода или катион) обладают ценными видами терапевтической и профилактической активности, включая противодиабетическую активность. 2 с. и 11 з.п. ф-лы, 8 табл.

Изобретение относится к ряду производных тиазолидина, которые характеризуются присутствием хиноновой группы 2 в их молекулах. Эти соединения обладают ценной терапевтической и профилактической активностью, включая противодиабетическую активность, и, следовательно, изобретение предоставляет также способы и композиции, использующие эти соединения для лечения и профилактики диабетов и диабетических осложнений. Изобретение также предоставляет процессы получения этих новых соединений.

Известен ряд соединений, в которых к 5-положению тиазолидин-2,4-дионовой группы присоединена замещенная алкоксибензильная группа. Эти соединения могут быть представлены в общем виде формулой /А/: Например, в европейской патентной публикации N 8203 раскрывается ряд соединений типа, показанного с помощью формулы /А/, в которой Ra может быть алкильной или циклоалкильной группой. В европейской патентной публикации N 139421 раскрываются такие соединения, в которых группа, эквивалентная группе Ra в формуле /А/, представленной выше, представляет хромановую или аналогичную группу, а У.Каwawаtsu и др. -Сhеm. Рhаrm. Bull., 30, 3580-3600 /1982/ раскрывают обширный ряд соединений формулы /А/, в которой Ra может представлять различные фенильные, замещенные фенильные, алкиламино, циклоалкильные, терпинильную и гетероциклические группы.

Говорится, что все из известных производных тиазолидина, на которые дается ссылка выше, обладают способностью понижать уровни глюкозы в крови, и считается, что это достигается путем уменьшения стойкости к инсулину в периферической системе.

Однако в настоящее время считают, что соединения известного уровня техники, которые являются наиболее близкими к соединениям настоящего изобретения, раскрываются в европейской патентной публикации N 441605, принадлежащей владельцам настоящего изобретения, так как они, как и соединения настоящего изобретения, могут содержать хиноновую группу, хотя и присоединенную иным образом к алкиленовой группе формулы -/CH2/.

В настоящее время мы обнаружили ряд новых соединений, которые в дополнение к способности уменьшать устойчивость к инсулину в периферических тканях /что является единственной основой противодиабетической активности большинства соединений известного уровня техники/ также проявляют другие виды активности, например, как и соединения европейской патентной публикации N 441605, настоящие соединения обладают способностью подавлять гепатический глюкогенез в печени, который является одной из причин диабетов.

Эти дополнительные виды активности в сочетании с низкой токсичностью означают, что соединения настоящего изобретения являются более эффективными, чем известные соединения, и способны лечить более широкий круг различных нарушений. Соединения настоящего изобретения обладают гораздо лучшей активностью, чем известные соединения из европейской патентной публикации N 441605.

Таким образом, объектом изобретения является предоставление ряда новых тиазолидиновых соединений, имеющих бензохиноильную или нафтохинонильную группу.

Еще одной целью изобретения является предоставление таких соединений, которые имеют полезную терапевтическую активность, такую как противодиабетическая активность.

Другие цели и преимущества станут очевидными по мере дальнейшего описания изобретения.

Соответственно, соединения настоящего изобретения представляют соединения формулы (I) в которой R1 представляет алкильную группу, имеющую от 1 до 5 атомов углерода; R2 и R3 являются одинаковыми или различными, и каждый представляет алкильную группу, имеющую от 1 до 5 атомов углерода, или алкокси группу, имеющую от 1 до 5 атомов углерода, или R2 и R3 вместе образуют бензольное кольцо, которое является незамещенным или которое замещено по крайней мере одним заместителем, выбранным из группы, состоящей из заместителей А, определенных ниже, и, когда R2 и R3 вместе образуют указанное бензольное кольцо, R1 представляет атом водорода, атом галогена или алкильную группу, имеющую от 1 до 5 атомов углерода; R4 и R5 оба представляют атомы водорода, или R4 и R5 вместе представляют одинарную углерод-углеродную связь /образуя двойную связь между двумя углеродными атомами, к которым они присоединены, как это показано/; W представляет одинарную связь или алкиленовую группу, имеющую от 1 до 5 атомов углерода; и Z представляет атом водорода или 1/х эквивалента катиона, где x является зарядом y катиона; и заместители А выбираются из группы, состоящей из алкильных групп, имеющих от 1 до 5 атомов углерода, алкоксигрупп, имеющих от 1 до 5 атомов углерода, и атомов галогена.

Изобретение также предоставляет фармацевтическую композицию для лечения или профилактики диабетов или гиперлипемии, которая включает эффективное количество активного соединения в смеси с фармацевтически приемлемым носителем или разбавителем, в которой указанное активное соединение выбрано из группы, состоящей из соединений формулы (I), определенной выше.

Далее изобретение предоставляет способ лечения или профилактики диабетов или гиперлипемии у млекопитающих (например, у человека), который включает назначение для приема млекопитающим эффективного количества активного соединения и при котором активное соединение выбирается из группы, состоящей из соединений формулы (I), определенной выше.

Данное изобретение предоставляет также способы получения соединений настоящего изобретения, которые описываются далее более подробно.

В соединениях настоящего изобретения, когда R1, R2 или R3 представляет алкильную группу, ею может быть алкильная группа с прямой или разветвленной цепью, имеющая от 1 до 5 атомов углерода, и примеры ее включают метильную, этильную, пропильную, изопропильную, бутильную, изобутильную, втор-бутильную, трет-бутильную, пентильную, неопентильную и изопентильную группы. Из них мы предпочитаем алкильные группы, имеющие от 1 до 4 атомов углерода, наиболее предпочтительно метильную группу.

Когда R2 и R3 вместе образуют бензольное кольцо (то есть, бензольное кольцо образует с кольцом, с которым оно сконденсировано, нафтохиноновую систему), оно может быть незамещенным, или может иметь на кольцевой части, представленной символами R2 и R3, один или более заместителей, выбранных из группы, состоящей из заместителей А, примеры которых приведены ниже. В дополнение к сказанному в данном случае R1 может представлять атом водорода, галогена или одну из алкильных групп, примеры которых приведены выше. В данном случае заместители А могут быть выбраны из группы, состоящей из алкильных групп, имеющих от 1 до 5 атомов углерода, таких как группы, примеры которых приведены выше, алкоксигрупп, имеющих от 1 до 5 атомов углерода, и атомов галогена.

Когда получающееся в результате сконденсированное бензольное кольцо является замещенным, в отношении числа заместителей нет никаких особых ограничений, за исключением таких, которые могут налагаться числом способных к замещению положений или возможно пространственными (стерическими) сдерживающими факторами. Обычно возможно наличие от 1 до 4 заместителей, хотя предпочитается меньшее число, обычно более предпочтительно присутствие от 1 до 3, а еще более предпочтительно 1 или 2 заместителя. Мы больше всего предпочитаем данное сконденсированное бензольное кольцо без заместителей.

Когда R2, R3 или заместитель А представляет алкоксигруппу, ею может быть алкоксигруппа с прямой или разветвленной цепью, имеющая от 1 до 5 атомов углерода, и примеры ее включают метокси, этокси, пропокси, изопропокси, бутокси, изобутокси, вторбутокси, трет-бутокси, пентилокси, неопентилокси и изопентилоксигруппы. Из них мы предпочитаем алкоксигруппы, имеющие от 1 до 4 атомов углерода, наиболее предпочтительно метоксигруппу.

Когда R1 или заместитель А представляет атом галогена, им может быть, например, атом хлора, фтора или брома, предпочтительно атом хлора или фтора, и наиболее предпочтительно атом хлора.

W может представлять одинарную связь или алкиленовую группу/.Когда W представляет алкиленовую группу, ею может быть алкиленовая группа с прямой или разветвленной цепью, имеющая от 1 до 5 атомов углерода. Связи алкиленовой группы, по которым она присоединяется, с одной стороны, к бензохиноновой или нафтохиноновой группе, а, с другой стороны, к атому кислорода, могут быть у одних и тех же атомов углерода или у различных атомов углерода. Когда связи находятся у одних и тех же углеродных атомов, эти группы иногда называют "алкилиденовыми группами". Однако обычным или общепринятым является использование общего термина "алкиленовая группа" для включения как тех групп, у которых связи находятся у одного и того же атома углерода, так и тех, у которых они находятся у различных углеродных атомов. Примеры таких групп включают метиленовую, этиленовую, триметиленовую, тетраметиленовую, пентаметиленовую, метилметиленовую, 2,2-диметилтриметиленовую, 2-этилтриметиленовую, 1-метилтетраметиленовую, 2-метилтетраметиленовую и З-метилтетраметиленовую группы, из которых мы предпочитаем те алкиленовые группы (которые могут быть группами с прямой или разветвленной цепью), имеющие от 1 до 4 атомов углерода, и наиболее всего предпочитаем алкиленовые группы с прямой цепью, имеющие 2 или 3 атома углерода.

Z может представлять атом водорода или катион. Когда катион имеет множественный заряд, например 2+, тогда Z представляет число эквивалентов того катиона, который является соответствующим тому заряду. Например, когда Z представляет щелочной металл, примеры таких щелочных металлов включают литий, натрий или калий, и зарядом, который несут эти металлы, является 1+, представляет для каждого эквивалента соединения формулы (I) один эквивалент металла. Когда Z представляет щелочно-земельный металл, примеры таких металлов включают кальций или барий, и заряд, несомый этими металлами, составляет 2+, Z представляет для каждого эквивалента соединения формулы (I) половину эквивалента металла. Когда Z представляет основную аминокислоту, примеры таких аминокислот включают лизин или аргинин, и заряд, несомый этими кислотами, составляет 1+, Z представляет для каждого эквивалента соединения формулы (I), один эквивалент кислоты.

Предпочтительно Z представляет щелочной металл, половину эквивалента щелочно-земельного металла или основную аминокислоту.

Соединения настоящего изобретения обязательно содержат по крайней мере один асимметричный углерод в 5-положении тиазолидинового кольца и в зависимости от природы групп и атомов, представленных символами R1, R2, R3и W, могут содержать несколько асимметричных атомов углерода в своих молекулах. Они могут также образовывать оптические изомеры. Они могут также образовывать таутомеры вследствие взаимопревращений имидной группы, образованной оксогруппами в 2- и 4-положениях тиазолидинового кольца, в группу формулы -N= С/ОН/-. Хотя эти оптические изомеры и таутомеры все представлены здесь одной молекулярной формулой, настоящее изобретение включает как индиви- дуальные, выделенные изомеры, так и смеси, включая их рацематы.

Когда применяются стереоспецифические приемы синтеза или в качестве исходных материалов применяются оптически активные соединения, могут непосредственно получаться индивидуальные изомеры; с другой стороны, если получается смесь изомеров, индивидуальные изомеры могут быть получены с помощью общепринятых приемов разделения.

Предпочтительным классом соединений настоящего изобретения являются те соединения формулы (I), в которых R1 представляет алкильную группу, имеющую от 1 до 5 атомов углерода; R2 и R3 являются одинаковыми или различными, особенно предпочтительно, одинаковыми, и каждый представляет алкильную группу, имеющую от 1 до 5 атомов углерода, или алкокси группу, имеющую от 1 до 5 атомов углерода, или R2 и R3 вместе образуют незамещенное бензольное кольцо, и, когда R2 и R3 вместе образуют указанное бензольное кольцо, R1 представляет атом водорода, метильную группу или атом хлора, более предпочтительно атом водорода; R4 и R5 каждый представляет атом водорода; W представляет алкиленовую группу, имеющую от 1 до 5 атомов углерода; и Z представляет атом водорода или атом натрия.

Более предпочтительным классом соединений настоящего изобретения являются те соединения формулы (I), в которых R1 представляет алкильную группу с 1-5 атомами углерода; R2 и R3 являются одинаковыми или различными и каждый представляет алкильную группу, имеющую от 1 до 5 атомов углерода; R4 и R5 каждый представляют атом водорода; W представляет алкиленовую группу, имеющую от 2 до 4 атомов углерода; и Z представляет атом водорода или атом натрия.

Наиболее предпочтительным классом соединений настоящего изобретения являются соединения формулы (I), в которых R1, R2 и R3 каждый представляет метильную группу; R4 и R5 каждый представляет атом водорода; W представляет этиленовую или триметиленовую группу; и Z представляет атом водорода или атом натрия.

Конкретными примерами соединений изобретения являются те соединения, имеющие формулы (I-1) - (I-3) (см. в конце текста), в которых заместители имеют значения, определенные в отношении одной из табл.1-3; т.е. табл. 1 относится к формуле (I-1), табл. 2 относится к формуле (I-2) и табл. 3 относится к формуле (I-3). В этих таблицах используются следующие сокращения для некоторых групп; в других отношениях для обозначения атомов используются стандартные международно признанные символы: Bu - бутил, Et - этил, Me - метил.

Из соединений, перечисленных выше, предпочтительными являются следующие соединения.

1-4. Натриевая соль 5-[4-(3,5,6-триметил-1,4-бензохинон-2-ил-метокси)бензил]тиазолидин-2,4-диона.

1-5. 5-/4-/2-(3,5,6-триметил-1,4-бензохинон-2-ил)этокси/ бензил/тиазолидин-2,4-дион.

1-7. 5-/4-/3-(3,5,6-триметил-1,4-бензохинон-2-ил)пропокси/- бензил/тиазолидин-2,4-дион.

1-8. Натриевая соль 5-/4-/3-(3,5,6-триметил-1,4-бензохинон-2-ил/пропокси/бензил/тиазолидин-2,4-диона.

1-9. 5-/4-/4-(3,5,6-триметил-1,4-бензохинон-2-ил)бутокси/- бензил/тиазолидин-2,4-дион.

Более предпочтительными являются соединения 1-5 и 1-8, причем наиболее предпочтительным является соединение 1-5.

Соединения настоящего изобретения могут быть получены с помощью разнообразных процессов, известных для получения соединений данного типа. Например, в общем смысле они могут получаться с помощью окисления соединения формулы (II): /где R1, R2, R3,R4,R5 и W имеют значения, определенные выше, и У представляет атом водорода, алкильную группу, имеющую от 1 до 5 атомов углерода, алифатическую карбоксильную ацильную группу, имеющую от 1 до 6 атомов углерода, карбоциклическую ароматическую карбоксильную ацильную группу или алкоксиалкильную группу, в которой каждый алкил или алкокси фрагмент имеет от 1 до 4 атомов углерода/, давая соединение формулы (Iа): /где R1,R2,R3,R4,R5 и W имеют значения, определенные выше/, и, когда R4 и R5 каждый представляет атом водорода, если необходимо, окисления указанного соединения с получением соединения формулы /Iа/, в которой R4 и R5 вместе образуют одинарную связь, и, если необходимо, превращения продукта в соль.

Когда Y представляет алкильную группу, она может быть группой с прямой или разветвленной цепью, имеющей от 1 до 5 атомов углерода, и примерами являются такие, как даны в отношении алкильных групп, которые могут быть представлены символами R1, предпочтительно метильная группа. Когда Y представляет алифатическую карбоксильную ацильную группу, ею может быть группа с прямой или разветвленной цепью, имеющая от 1 до 6 атомов углерода, и примеры их включают формильную, ацетильную, пропионильную, бутирильную, изобутирильную, валерильную, изовалерильную, пивадоильную и гексаноильную группы, предпочтительно ацетильную группу.

Когда Y представляет карбоциклическую ароматическую карбоксильную ацильную группу, ароматическая часть ее может иметь от 6 до 10 атомов углерода в карбоциклическом кольце, и примеры включают бензоильную и нафтоильную группы.

Когда Y представляет алкоксиалкильную группу каждый из алкильных и алкокси фрагментов имеет от 1 до 4 атомов углерода, и примеры включают метоксиметильную, этоксиметильную, пропоксиметильную, бутоксиметильную, 2-метоксиэтильную, 2-этоксиэтильную, 2-пропоксиэтильную, 2-бутоксиэтильную, З-метоксипропильную и 4-метоксибутильную группы. Мы особенно предпочитаем, чтобы Y представлял метильную или ацетильную группу.

Альтернативно соединения формулы (Iа), в которой W представляет атом водорода, может получаться с помощью реакции, описанной ниже на реакционной схеме С.

Соединения формулы (II) представляют особую ценность как промежуточные соединения при получении соединений формулы (I).

Более подробно, соединения настоящего изобретения могут быть получены, как иллюстрируется с помощью следующих ниже реакционных схем A, B, C и D.

Реакционная схема А Согласно реакционной схеме А требуемое соединение формулы (I-А) получается из промежуточного соединения формулы (2), которое может быть получено, как иллюстрируется реакционными схемами E, F, G или H, описанными позднее, необязательно через промежуточное соединение формулы (3) (см. в конце текста).

В приведенных формулах R1, R2, R3 и W имеют значения, определенные выше, и У' представляет алкильную группу, ацильную группу или алкоксиалкильную группу, определенную и проиллюстрированную примерами в отношении символа Y.

На стадии А1 данной схемы реакции желаемое соединение формулы (I-А) получается с помощью окисления промежуточного соединения формулы (2) непосредственно. Например, когда Y' в соединении формулы (2) представляет низшую алкильную группу, в частности метильную группу, желаемое соединение формулы (I-А) может быть получено с помощью обработки промежуточного соединения формулы (2) цериевым нитратом аммония с помощью процедуры, описанной в работе Fieser and Fieser, "Reagents for Organic Synthesis", т. 7, с. 55, публикация Вили-Интерсайенз, изданной фирмой Джон Вили энд Санc.

Реакция окисления с использованием цериевого нитрата аммония обычно и предпочтительно проводится в присутствии растворителя. В отношении природы применяемого растворителя нет особых ограничений при условии, что он не оказывает вредного воздействия на реакцию или на реагенты, участвующие в ней, и что он может растворять реагенты, по крайней мере, до некоторой степени.

Примеры подходящих растворителей включают: воду; нитрилы, такие как ацетонитрил; кетоны, такие как ацетон; и смеси любых двух или более из этих растворителей. Нет особых ограничений в отношении количества используемого цериевого нитрата аммония, но мы предпочитаем использовать от 1 до 10 моль цериевого нитрата аммония на моль промежуточного соединения формулы (2).

Реакция может протекать в широком интервале температур, и точная температура реакции не является критической для изобретения. Обычно, хотя предпочтительная температура зависит от природы исходных материалов и растворителей, мы считаем удобным осуществлять реакцию при температуре от -10 до 40oC. Время, необходимое для реакции, также может широко варьировать, в зависимости от многих факторов, а именно от реакционной температуры и характера применяемых реагентов и растворителей. Однако при условии, что реакция проводится в предпочтительных условиях, описанных выше, обычно достаточным бывает период от нескольких минут до нескольких десятков часов.

На стадии А2 данной реакционной схемы промежуточное соединение формулы (3) получается сначала из промежуточного соединения формулы (2), а затем оно превращается в желаемое соединение формулы (I-А). Превращение промежуточного соединения формулы (2) в промежуточный продукт формулы (3) может осуществляться, например, с помощью обычной реакции гидролиза. Когда Y' представляет, например, ацетильную или метоксиметильную группу, оно гидролизуется, давая соединение формулы (3), а затем продукт подвергается обычному окислению, например окислению воздухом, или окислению с использованием иона металла /такого как ион железа или меди/ или с использованием двуокиси марганца, давая желаемое соединение формулы (I-А). Обе эти реакции могут осуществляться с использованием реагентов и условий реакции, которые хорошо известны специалистам в данной области.

Реакционная схема В Реакционная схема В иллюстрирует получение соединений формулы (I-В), в которой R4 и R5 вместе представляют одинарную связь (см. в конце текста).

В приведенных формулах R1, R2, R3 и Y' имеют значения, определенные выше.

На стадии В1 данной реакционной схемы желаемые соединения формулы (I-В) могут получаться с помощью окисления соединения формулы (I-А), которое могло быть получено, как описано на реакционной схеме А, или с помощью окисления промежуточного соединения формулы (2) или промежуточного соединения формулы (12), которое описывается позднее. Эти реакции окисления могут, например, осуществляться с помощью процедуры, описанной на стадии А1 реакционной схемы А, с использованием цериевого нитрата аммония.

Реакционная схема C По реакционной схеме C может получаться желаемое соединение формулы (I-С), где W представляет одинарную связь. Реакция эта особенно полезна для получения соединений, в которых R2 и R3 вместе образуют бензольное кольцо, которое является незамещенным или замещено, как определено выше (см. в конце текста).

В приведенных формулах R1, R2 и R3 имеют значения, определенные выше, и X представляет атом галогена, такой как атом хлора, брома или иода.

Реакция обычно и предпочтительно осуществляется в присутствии основания или при использовании соли щелочного металла /например, натриевой соли/ 5-/4-гидроксибензил/тиазолидин-2,4-диона формулы (4а). Основание и растворитель, которые могут использоваться для данной реакции, также как и реакционная температура, и время, необходимое для реакции, аналогичны таковым процедуры реакционной схемы С, описанной ниже.

Альтернативно, соединение формулы (4) вводится в реакцию с 4-гидроксинитробензолом или с его солью, давая 3-галоид-2-/4-нитро-фенокси/-1,4-нафтохиноновое производное, а затем данный продукт превращается в соединение формулы (5) (в которой R1, R2, R3 и W имеют значения, определенные выше, Y" представляет метильную или ацетильную группу и А представляет карбоксильную, алкоксикарбонильную или карбамоильную группу, или группу формулы -COOM) с помощью процедуры литературного источника, описанного в отношении реакционной схемы E, и дается здесь ниже. Примеры алкоксикарбонильных групп, которые могут быть представлены символом А, включают метоксикарбонильную, этоксикарбонильную, изопропоксикарбонильную и бутоксикарбонильную группы. В группе формулы -COOM М представляет катион, например эквивалентный катион, такой как атом металла /например, натрия, калия, кальция или алюминия/ или ион аммония. Впоследствии после осуществления процедуры реакционной схемы E соединение формулы (2) может получаться из соединения формулы (5).

Реакция осуществляется в тех же условиях, что условия, описанные для реакционной схемы Е. После этого, следуя процедуре, описанной для реакционной схемы А или В, из соединения формулы (2) может быть получено желаемое соединение формулы (I).

Реакционная схема D По реакционной схеме D желаемое соединение формулы (I), например, в которой Z представляет атом натрия, может получаться в форме соли, то есть с помощью замещения атома водорода имидной группы атомом металла с помощью реакции соединения формулы (Iа) с подходящим основанием с помощью обычных средств. Нет каких-либо особых ограничений относительно природы используемого основания.

Примеры таких оснований включают гидроокись натрия, алкоголяты, такие как метилат натрия или этилат натрия, и натриевые соли органических кислот, такие как 2-этилгексаноат натрия. Реакция обычно и предпочтительно проводится в присутствии растворителя. Нет каких-либо особых ограничений в отношении применяемого растворителя при условии, что он не оказывает вредного воздействия на реакцию или на участвующие в ней реагенты, и может растворять реагенты по крайней мере в некоторой степени. Используемый предпочтительный растворитель может меняться в зависимости от характера, используемого основания, и примеры растворителей, которые могут использоваться, включают низшие спирты, такие как метанол или этанол; сложные эфиры, такие как этилацетат или пропилацетат; простые эфиры, такие как тетрагидрофуран или диоксан; воду; и смеси любых двух или более приведенных выше растворителей. Соли других металлов, например калиевые или кальциевые, или соответствующие соли основных аминокислот или других органических оснований могут получаться по способу, аналогичному получению натриевых солей, описанному выше.

Реакционная схема E и следующие далее реакционные схемы относятся к получению промежуточного соединения формулы (2).

Реакционная схема E Реакционная схема E состоит из процедуры, описанной в европейской патентной публикации N 139421 (японская патентная заявка Кокаи N Sho 60-51189 = японская патентная публикация N Hei 2-31079). По данной процедуре промежуточное соединение формулы (6): /в которой R1, R2, R3, W и Y" имеют значения, определенные выше/ получается с помощью реакции соединения формулы (5): /в которой R1, R2, R3, W, X, Y" и А имеют значения, определенные выше/ с тиомочевиной. Соединение формулы (5) может получаться с помощью процедуры описания, касающегося альфа-галоидкарбоновых кислот и/или "Ссылочных примеров" в цитированном патенте.

Реакция соединения формулы (5) с тиомочевиной обычно и предпочтительно проводится в присутствии растворителя. Нет особых ограничений в отношении характера применяемого растворителя, при условии, что он не оказывает пагубного влияния на реакцию или на реагенты, участвующие в ней, и что он может растворять реагенты по крайней мере в некоторой степени. Примеры подходящих растворителей включают спирты, такие как метанол, этанол, пропанол, бутанол или этиленгликоль-монометиловый эфир; простые эфиры, такие как тетрагидрофуран или диоксан; кетоны, такие как ацетон; сульфоксиды, такие как диметилсульфоксид или сульфолан; и амиды, такие как диметилформамид или диметилацетамид.

Нет особых ограничений в отношении используемого молярного отношения соединения формулы (5) к тиомочевине и реакция предпочтительно осуществляется с использованием по крайней мере легкого молярного избытка тиомочевины по отношению к соединению формулы (5). Более предпочтительно использовать от 1 до 2 моль тиомочевины на моль соединения формулы (5). Реакция может иметь место в широком интервале температур, и точная температура реакции не является критической для изобретения, хотя предпочтительная температура может варьировать в зависимости от природы исходных материалов и растворителей.

Обычно мы находим удобным осуществлять реакцию при температуре от 80 до 150oC. Время, требуемое для реакции, может также широко варьировать в зависимости от многих факторов, а именно реакционной температуры и природы применяемых реагентов и растворителя. Однако при условии, что реакция проводится в предпочтительных условиях, охарактеризованных выше, обычно достаточным будет период от 1 до нескольких десятков часов.

После этого, все еще следуя процедуре, описанной в патенте, цитированном выше, промежуточное соединение формулы (2-1) /в которой R1, R2, R3 и W имеют значения, определенные выше, и Y3 представляет атом водорода, метильную группу или ацетильную группу/ может получаться с помощью гидролиза соединения (6).

Данный гидролиз может осуществляться с помощью нагревания соединения формулы (6) в соответствующем растворителе /например, сульфолане, метаноле, этаноле или этиленгликольмонометиловом эфире/ в присутствии воды и органической кислоты, такой как уксусная кислота, или минеральной кислоты, такой как серная кислота или соляная кислота. Количество кислоты обычно и предпочтительно составляет от 0,1 до 10 моль, более предпочтительно от 0,2 до 3 моль, на моль промежуточного соединения формулы (6). Вода или водный растворитель обычно добавляется в большом избытке по отношению к молярному количеству промежуточного соединения формулы (6).

Реакция может происходить в широком интервале температур, и точная температура реакции не является критической для изобретения. Обычно мы считаем удобным осуществлять реакцию при температуре порядка от 50 до 100oC. Время, требуемое для реакции, также может широко варьировать в зависимости от многих факторов, а именно от реакционной температуры и характера применяемых реагентов и растворителя. Однако при условии, что реакция проводится в предпочтительных условиях, описанных выше, обычно достаточным является период от нескольких часов до нескольких десятков часов.

Реакционная схема F Согласно данной реакционной схеме промежуточное соединение формулы (9) может получаться с помощью процедуры, описанной в J. Med. Chem., 1538 /1991/ (см. в конце текста).

В приведенных формулах R1, R2, R3, W и Y' имеют значения, определенные выше, и R6 представляет атом водорода или защитную группу.

Реакционная схема F использует в качестве исходных материалов спиртовое соединение формулы (7), где R1, R2, R3, W и Y' имеют значения, определенные выше, которое может быть получено с помощью процедуры, описанной, например, в J. Аm. Сhеm Sос, 64, 440 /1942/, J. Am. Chem, Sос., 94, 227 /1972/, J. Chem, Soc. Perkin Trans. I, 1591 /1983/, японской патентной заявке Кокаи N Shо 58-83698 /японская патентная публикация N Неi I-33114/, японской патентной заявке Кокаи N Sho 58-174342 /японская патентная публикация NN Hei 1-39411/ или J. Takeda Res. Lab. , 45, N 3 и 4, 73 /1986/, с последующим превращением с помощью общепринятых средств, и тиазолидиновое соединение формулы (8), которое является незамещенным или которое является замещенным защитной группой. Соединения формулы (7) и (8) подвергаются реакции дегидратации, например реакции Мицунобу /Fieser and Fieser, "Reagents for Organic synthesis, т.6, с.645, публикация Вили-Интерсайенз, изданная фирмой Джон Вили энд Санз/, давая желаемое соединение формулы (9).

Реакция обычно и предпочтительно проводится в присутствии растворителя. В отношении природы применяемого растворителя нет особых ограничений при условии, что он не оказывает вредного влияния на реакцию или на участвующие в ней реагенты и что он может растворять реагенты по крайней мере в некоторой степени. Примеры подходящих растворителей включают ароматические углеводороды, такие как бензол или толуол; алифатические углеводороды, такие как гексан или гептан; простые эфиры, такие как тетрагидрофуран или диоксан; галоидированные углеводороды, особенно галоидированные алифатические углеводороды, такие как метиленхлорид; и сульфоксиды, такие как диметилсульфоксид. Молярное отношение соединения формулы (7) к соединению формулы (8) не является особенно критическим, но предпочитается использовать от 1 до 3 моль соединения формулы (8) на моль соединения формулы (7).

Реакция может происходить в широком интервале температур, и точная реакционная температура не является существенной для изобретения, хотя предпочтительная температура может варьировать в зависимости от природы исходных реагентов и используемого растворителя. Обычно мы находим удобным осуществлять реакцию при температуре от -20 до 150oC. Время, требуемое для реакции, также может широко варьировать в зависимости от многих факторов, а именно от температуры реакции и от природы применяемых реагентов и растворителя. Однако, если реакция проводится в предпочтительных условиях, описанных выше, обычно будет достаточным период от 10 мин до нескольких десятков часов.

Когда соединение формулы (9), полученное таким образом, имеет защитную группу, например тритильную группу, при желании снятие защиты может достигаться с помощью обработки органической кислотой, такой как трифторуксусная кислота, с получением промежуточного соединения формулы (2). Реакция снятия защиты может осуществляться в присутствии или в отсутствии растворителя. Когда реакция осуществляется в присутствии растворителя, примеры растворителей, которые могут использоваться, включают простые эфиры, такие как тетрагидрофуран или диоксан; и метиленхлорид. Молярное отношение трифторуксусной кислоты к промежуточному соединению формулы (9) составляет предпочтительно от 0,5:1 до большого избытка трифторуксусной кислоты.

Реакция может протекать в широком интервале температур, и точная реакционная температура не является критической для изобретения, хотя предпочтительная температура может варьировать в зависимости от природы исходных материалов и используемого растворителя. Обычно мы находим удобным осуществлять реакцию при температуре от -20 до 40oC. Время, необходимое для реакции, также может варьировать широко в зависимости от многих факторов, а именно температуры реакции и природы применяемых реагентов и растворителя. Однако при условии, что реакция проводится в предпочтительных условиях, охарактеризованных выше, обычно достаточным является период от нескольких минут до нескольких десятков часов.

Реакционная схема G По данному методу промежуточное соединение формулы (9) получается с помощью превращения соединения формулы (7) /см. реакционную схему F/ в активное сложноэфирное производное или галоидированное соединение, а затем реакции продукта с соединением формулы (8).

Соединение формулы (7) может превращаться в активное сложноэфирное производное, такое как метансульфонат, бензолсульфонат или толуолсульфонат, с помощью обычных средств, или в галоидированное соединение, такое как хлорид, бромид или иодид также с помощью обычных приемов. Желаемое соединение формулы (9) может затем получаться с помощью взаимодействия активного сложноэфирного соединения или галоидированного соединения, полученного таким образом, с соединением формулы (8), формула которого показана на реакционной схеме F.

Реакция активного сложноэфирного соединения или галоидированного соединения с соединением формулы (8) обычно и предпочтительно осуществляется в присутствии основания, например неорганического основания, такого как карбонат щелочного металла /например, карбонат натрия или карбонат калия/, или гидроокись щелочного металла /например, гидроокись натрия или гидроокись калия/; алкоголят щелочного металла, такой как метилат натрия, этилат натрия или трет-бутилат калия; или гидрид металла, такой как гидрид натрия, гидрид калия или гидрид лития. Реакция обычно и предпочтительно проводится в присутствии растворителя. В отношении применяемого растворителя нет каких-либо особых ограничений при условии, что он не влияет отрицательно на реакцию или на участвующие в ней реагенты, и что он может растворять реагенты по крайней мере до некоторой степени. Предпочтительный используемый растворитель варьирует в зависимости от природы используемого основания.

Однако примеры подходящих растворителей включают ароматические углеводороды, такие как бензол, толуол или ксилол; простые эфиры,