Катализатор или компонент катализатора для полимеризации или сополимеризации пропилена

Реферат

 

Способ получения титансодержащего и гафнийсодержащего и/или цирконийсодержащего катализатора или компонента катализатора на магнийсодержащем носителе для полимеризации или сополимеризации альфаолефинов. 19 з.п. ф-лы, 2 табл.

Изобретение относится к компоненту катализатора или катализатору, который пригоден для использования в реакции стереорегулярной полимеризации или сополимеризации альфа-олефинов и особенно касается магнийсодержащего, титансодержащего компонента катализатора на подложке или катализатора, пригодного для получения гомополимера или сополимера альфа-олефина.

Хотя в литературе описаны многие способы полимеризации и сополимеризации и каталитические системы, используемые для полимеризации или сополимеризации альфа-олефинов, желательно создавать компоненты катализатора или сам катализатор, обладающие повышенной каталитической активностью в таких реакциях. Предпочтительно разработать способ и каталитическую систему, которые позволяют получить полимер или сополимер с определенным комплексом свойств. Например, для некоторых областей применения желателен продукт с более широким молекулярно-весовым распределением. Такой продукт имеет более низкую вязкость расплава при высоких скоростях сдвига, чем продукт с более узким молекулярно-весовым распределением. Многие способы переработки полимеров и сополимеров, оперирующие высокими скоростями сдвига, например, инжекционное формование, производство ориентированных волокон, выиграют от использования продукта с меньшей вязкостью за счет повышения скоростей переработки и уменьшения расхода энергии. Таким образом, желательно разработать катализатор или компонент катализатора, пригодный для получения гомополимера или сополимера альфа-олефина с более широким молекулярно-весовым распределением. Также важно обеспечить высокую активность и низкое содержание атактического продукта, измеренное по растворимым в гексане и экстрагируемым гексаном фракциям, образующимся во время полимеризации или сополимеризации.

Магнийсодержащие компоненты катализатора на подложке на основе галогенида титана или каталитические системы, содержащие эти компоненты, хорошо известны из уровня техники. Обычно эти компоненты катализатора и каталитические системы оцениваются по их активности и стереоспецифичности. Описаны многочисленные способы или стадии процессов, целью которых является создание усовершенствованных магнийсодержащих, титансодержащих электронодонорных катализаторов на подложке для полимеризации или сополимеризации олефинов. В частности, в патентах США NN 4866022, 4988656 и 5013702 раскрываются способ получения особенно предпочтительного катализатора или компонента катализатора полимеризации или сополимеризации альфа-олефинов, который включает конкретную последовательность определенных стадий процесса, приводящую к получению катализатора или компонента катализатора с исключительно высокой активностью и стереоспецифичностью в сочетании с очень хорошей морфологией. Описан твердый нерастворимый в углеводородах катализатор или компонент катализатора полимеризации или сополимеризации альфа-олефина с превосходными активностью, стереоспецифичностью и морфологическими характеристиками, представляющий собой продукт, полученный путем: 1) получения раствора магнийсодержащего продукта из гидрокарбилкарбоната магния или карбоксилата магния; 2) осаждения твердых частиц из такого магнийсодержащего раствора путем обработки галогенидом переходного металла и органосиликаном в качестве агента, регулирующего морфологию; 3) повторного осаждения таких твердых частиц из смеси, содержащей циклический простой эфир; и 4) обработки осажденных частиц соединением переходного металла и донором электронов.

В патенте США 4540679 описан способ получения гидрокарбилкарбоната магния взаимодействием суспензии алкоголята магния с двуокисью углерода в среде спирта и реакцией гидрокарбилкарбоната магния с переходным металлом. В патенте США 4612299 раскрыт способ получения карбоксилата магния путем реакции раствора гидрокарбила магния с двуокисью углерода с осаждением карбоксилата магния и его взаимодействием с переходным металлом.

В то время как каждый из способов, описанных в упомянутых патентах NN 4540679, 4612299, 4866022, 4988656 и 5013702, позволяет получить катализаторы или компоненты катализаторов полимеризации или сополимеризации альфа-олефинов, имеющие высокую активность в процессах полимеризации и сополимеризации альфа-олефинов с получением гомо- и сополимеров с заданными свойствами, все еще существует необходимость в создании новых катализаторов или компонентов катализаторов полимеризации или сополимеризации олефинов и способов их получения, причем эти катализаторы или компоненты катализаторов должны обладать еще более высокой каталитической активностью и приводить к получению полимеров или сополимеров с более широким молекулярно-весовым распределением.

Например, в патенте США 5227354 описаны твердый нерастворимый в углеводородах катализатор или компонент катализатора и способ их получения, основанные на катализаторах или компонентах катализатора и методах их получения, соответственно, по упомянутым патентам США NN 4540679, 4612299, 4866022, 4988656 и 5013702, отличающиеся тем, что конечный катализатор или компонент катализатора является продуктом, полученным путем: A) получения раствора магнийсодержащего продукта в жидкости, причем магнийсодержащий продукт образован путем реакции магнийсодержащего соединения с двуокисью углерода или двуокисью серы; B) осаждения твердых частиц из раствора магнийсодержащего продукта обработкой галогенидом титана; D) обработкой осажденных частиц соединением титана и донором электронов; причем обработанные осажденные частицы со стадии D содержат магний и ванадий и ванадий вводится по меньшей мере в (i) один из упомянутых магнийсодержащих продуктов на стадии A взаимодействием магнийсодержащего соединения или продукта с ванадийсодержащим соединением или комплексом; или в (ii) вышеуказанные твердые частицы, осажденные на стадии B обработкой магнийсодержащего продукта галогенидом титана и ванадийсодержащим соединением или комплексом; или в (iii) указанные осажденные частицы, обработанные на стадии B соединением титана, донором электронов и ванадийсодержащим соединением или комплексом, не содержащим галогенида. Применение катализатора или компонента катализатора, описанных в вышеуказанном патенте США N 5227354, для полимеризации и сополимеризации альфа-олефина позволяет получить полимеры или сополимеры, характеризующиеся более широким молекулярно-весовым распределением, но в этом патенте не упоминается о значительном повышении каталитической активности при осуществлении полимеризации или сополимеризации.

В аналогичном патенте США N 5084429 описан катализатор полимеризации олефинов, содержащий носитель, в основном, состоящий из соединения магния, осажденного из раствора, и каталитический компонент, нанесенный на носитель и выбранный из галогенидов титана, галогенидов ванадия и ванадилгалогенидов. Катализатор получают способом, включающим: (A) смешение (a) по меньшей мере одного соединения магния с (c) насыщенным или ненасыщенным одноатомным или многоатомным спиртом для реакции в растворенном состоянии в присутствии (b) двуокиси углерода в инертном углеводородном растворителе с получением компонента (A); (B) смешение компонента (A) с (d) галогенидом титана и/или ванадилгалогенидом, и/или галогенидом ванадия общей формулы VXn(OR8)4-n, а также с (e) по меньшей мере одним соединением бора, соединением кремния и/или силоксаном с получением твердого продукта (I); взаимодействие твердого продукта (I) с (f) циклическим эфиром или R12OH, сопровождающееся растворением и повторным осаждением образующегося твердого продукта (II), и (D) последующее взаимодействие твердого продукта (II) с (g) компонентом (B), состоящим из галогенида титана и/или ванадилгалогенидом, и/или галогенидом ванадия, и/или SiXs(OR9)4-s, с получением твердого продукта (III), который затем или подвергают реакции с компонентом (B) и (h) донором электронов, или подвергают реакции (g) с твердым продуктом (III), полученным взаимодействием твердого продукта (II) b (h) или (h) с (j) донором электронов, при этом образуется твердый продукт (IV), используемый как компонент катализатора.

Катализаторы полимеризации олефинов, содержащие другие релевантные комбинации металлов, также описаны. Например, в патенте США N 5082817 раскрыт катализатор полимеризации олефинов, полученный реакцией соединения переходного металла, обычно титана, содержащего по меньшей мере одну связь металл-галоид, нанесенного на галогенид магния в активной форме, с соединением титана, циркония или гафния, содержащим по меньшей мере одну связь металл-углерод.

В патенте США N 4228263 описан катализатор полимеризации пропилена, представляющий собой продукт реакции окиси металла, например окиси алюминия, окиси титана, двуокиси кремния и окиси магния, или их физических смесей и металлоорганического соединения циркония, титана или гафния.

Кроме того, морфология полимера или сополимера часто является решающей и зависит от морфологии катализатора. Хорошая морфология полимера обычно характеризуется однородными размером и формой частиц, узким распределением размеров частиц, сопротивлением истиранию и довольно высокой объемной плотностью. Уменьшение количества очень мелких частиц обычно имеет большое значение для избежания забивки линий передачи компонентов или возврата в цикл. Поэтому очень желательно создание катализаторов и компонентов катализатора полимеризации и сополимеризации альфа-олефинов, обладающих хорошей морфологией и, особенно, узким распределением размера частиц.

Другим важным свойством является относительно высокая объемная плотность.

Целью изобретения является получение усовершенствованного катализатора или компонента катализатора полимеризации или сополимеризации альфа-олефина, приводящего к получению полимера или сополимера с улучшенными свойствами, а также создание способа получения такого катализатора или компонента катализатора.

В частности, целью данного изобретения является создание такого катализатора или компонента катализатора полимеризации или сополимеризации альфа-олефина, который обеспечивает образование полимера или сополимера альфа-олефина с широким молекулярно-весовым распределением.

Другой целью данного изобретения является создание катализатора или компонента катализатора полимеризации или сополимеризации альфа-олефина с повышенной активностью в реакции получения полимеров или сополимеров альфа-олефина.

Другие цели и преимущества данного изобретения будут очевидны из нижеследующих подробного описания и формулы изобретения.

Указанные цели достигаются созданием твердого нерастворимого в углеводородах катализатора или компонента катализатора полимеризации или сополимеризации альфа-олефинов, представляющего собой продукт, полученный путем: A) приготовления раствора магнийсодержащего продукта в жидкости, причем магнийсодержащий продукт получен взаимодействием магнийсодержащего соединения с двуокисью углерода или двуокисью серы; B) осаждения твердых частиц из раствора магнийсодержащего продукта обработкой соединением или комплексом титана; и D) обработки осажденных частиц соединением титана и донором электронов; причем обработанные осажденные частицы со стадии (D) включают магнийсодержащий компонент, по меньшей мере один гафний- или цирконийсодержащий компонент и по меньшей мере один из элементов: гафний или цирконий вводят в по меньшей мере один продукт, выбранный из (i) упомянутого магнийсодержащего продукта стадии A путем реакции магнийсодержащего соединения или продукта с двуокисью углерода или серы и с по меньшей мере одним компонентом из группы, включающей гафний- или цирконийсодержащее соединение или комплекс, или (ii) упомянутых твердых частиц, осажденных на стадии B путем обработки магнийсодержащего продукта соединением или комплексом титана и по меньшей мере одним гафний- или цирконийсодержащим соединением или комплексом; или (iii) указанных осажденных частиц, обработанных на стадии D соединением титана, донором электронов и по меньшей мере одним соединением или комплексом гафния или циркония.

Указанные цели изобретения также достигаются способом по данному изобретению, включающим вышеуказанные стадии (A), (B) и (D), для получения упомянутых катализатора или компонента катализатора.

Подробное описание предпочтительных вариантов изобретения.

Твердый нерастворимый в углеводородах катализатор или компонент катализатора стереорегулярной полимеризации или сополимеризации альфа- олефинов согласно изобретению представляет собой продукт, полученный способом по данному изобретению, который включает стадию (A) приготовления раствора магнийсодержащего продукта в жидкости, причем магнийсодержащий продукт образуется при взаимодействии магнийсодержащего соединения с двуокисью углерода или двуокисью серы. Магнийсодержащим соединением, из которого образуется магнийсодержащий продукт, является алкоголят магния, гидрокарбилалкоголят магния или гидрокарбил магния. Когда используют двуокись углерода, магнийсодержащий продукт представляет собой гидрокарбилкарбонат или карбоксилат магния. Когда используют двуокись серы, получаемый магнийсодержащий продукт представляет собой гидрокарбилсульфит(ROSO2-) или гидрокарбилсульфинат (RSO2-). Поскольку предпочтительно применение двуокиси углерода, ниже следует описание с использованием именно двуокиси углерода.

В случае применения алкоголята магния образующийся магнийсодержащий продукт является гидрокарбилкарбонатом магния. Обычно гидрокарбилкарбонат магния можно получить реакцией двуокиси углерода с алкоголятом магния. Например, гидрокарбилкарбонат магния может быть получен суспендированием этоксида магния в этаноле, добавлением двуокиси углерода до тех пор, пока этоксид магния не растворится с образованием этилкарбоната магния. Если, однако, этоксид магния суспендируют в 2-этил-гексаноле, образуется по меньшей мере одно из соединений, выбранных из группы, включающей 2-этилгексилкарбонат магния, этилкарбонат магния и этил/2-этилгексилкарбонат магния. Если этоксид магния суспендируют в жидком углеводороде или галоидуглеводороде, не содержащих спирта, добавление двуокиси углерода приводит к разрушению частиц этоксида магния, и продукт реакции - гидрокарбилкарбонат магния не растворяется. Реакция алкоголята магния с CO2 может быть представлена следующим образом: Mg(OR)2 + nCO2 _ Mg(OR)2-n(-OC-OR)n, где n - целое число или дробное до 2 и R - гидрокарбил C1-C20. Кроме того, можно использовать алкоголят магния, содержащий две различные гидрокарбильные группы. С точки зрения цены и доступности предпочтительно согласно данному изобретению применять алкоголяты магния формулы Mg(OR')2, где R' имеет значения, указанные выше. С точки зрения каталитической активности и стереоспецифичности лучшие результаты достигаются при использовании алкоголятов магния формулы Mg(OR')2, где R' - алкил-С1- С8, арил-C6-C12 или алкарил или аралкил-C7-C12. Наилучшие результаты получают при использовании этоксида магния.

Конкретные примеры алкоголятов магния, используемых согласно изобретению, включают: Mg(OCH3)2, Mg(OC2H5)2, Mg(OC4H9)2, Mg(OC6H5)2, Mg(OC6H13)2, Mg(OC9H19)2, Mg(OC10H7)2, Mg(OC12H9)2, Mg(OC12H25)2, Mg(OC16H33)2, Mg(OC18H37)2, Mg(OC20H41)2, Mg(OCH3)(OC2H5), Mg(OCH3)(OC6H13), Mg(OC2H5)(OC8H17), Mg(OC6H13)(OC20H41), Mg(OC3H7)(OC10H7), Mg(OC2H4Cl)2 и Mg(OC16H33)(OC18H37). Можно также применять смеси алкоголятов магния, если это желательно.

Подходящий гидрокарбилалкоголят магния имеет формулу MgR(OR'), где R и R' указаны выше для алкоголята магния.

С одной стороны, когда в качестве суспензионной среды для реакции между гидрокарбилалкоголятом магния и двуокисью углерода применяют спирт, гидрокарбилалкоголят магния является функциональным эквивалентом алкоголята магния, потому что гидрокарбилалкоголят магния превращается в алкоголят магния в спирте. С другой стороны, когда суспензионная среда не содержит спирта, гидрокарбилалкоголят магния реагирует с двуокисью углерода следующим образом: R-Mg-(OR)+2CO2 _ R-C-O-Mg-O-C-OR. В этом случае RC-O-Mg-O-C-OR' является образующимся магнийсодержащим продуктом.

Когда соединение магния, из которого образуется магнийсодержащий продукт, является гидрокарбилом магния формулы XMgR, где X - галоген и R - гидрокарбил-С1-C20, реакция гидрокарбила магния с двуокисью углерода приводит к образованию карбоксилата магния и может быть представлена следующим образом: X-MgR+CO2 _ X-MgOC-R. Если гидрокарбил магния содержит две гидрокарбильные группы, реакцию можно представить следующим образом: MgR2+2CO2 _ Mg(OC-R)2, где R указан для X-MgR. Гидрокарбильные соединения магния, используемые согласно данному изобретению, имеют структуру R-Mg-Q, где Q - водород, галоген или R' (каждый R' - независимо представляет собой гидрокарбил-C1-C20). Конкретные примеры гидрокарбилов магния, пригодных согласно данному изобретению, включают: Mg(CH3)2, Mg(C2H5)2, Mg(C4H9)2, Mg(C6H5)2, Mg(C6H13)2, Mg(C9H19)2, Mg(C10H7)2, Mg(C12H9)2, Mg(C12H25)2, Mg(C16H33)2, Mg(C20H41)2, Mg(CH3)(C2H5), Mg(CH3)(C6H13), Mg(C2H5)(C8H17), Mg(C6H13)(C20H41), Mg(C3H7)(C10H7), Mg(C2H4Cl)2 и Mg(C16H33)(C18H37), Mg(C2H5)(H), Mg(C2H5)(Cl), Mg(C2H5)(Br) и т. д. Если это желательно, можно также использовать смеси гидрокарбильных соединений магния. С точки зрения цены и доступности дигидрокарбильными соединениями магния, предпочтительными для использования согласно данному изобретению, являются соединения формулы MgR2, где R указан выше. С точки зрения каталитической активности и стереоспецифичности, лучшие результаты достигаются при использовании галогенидов гидрокарбила магния формулы MgR'Q', где R' - алкил-C1-C18, арил-C6- С12 или алкарил или аралкил-С712 и Q' -хлорид или бромид.

Предпочтительно в качестве магнийсодержащего соединения применять алкоголят магния, при этом образующийся магнийсодержащий продукт представляет собой гидрокарбилкарбонат магния. Например, можно использовать алкоголят магния, который получают реакцией стружки металлического магния с низкомолекулярным спиртом, например, метанолом, этанолом или 1-пропанолом, без катализатора или в присутствии катализатора, например, иода или четыреххлористого углерода, с образованием твердого алкоголята магния. Избыток спирта удаляют фильтрованием, испарением или декантацией.

В качестве разбавителей или растворителей, пригодных для карбонизации соединений магния с образованием магнийсодержащего продукта, используют спирты C1-C12, неполярные углеводороды и их галоидпроизводные, простые эфиры или их смеси, которые практически инертны к используемым реагентам и, предпочтительно, являются жидкими при той температуре, при которой их используют. Реакцию осуществляют при повышенном давлении для того, чтобы даже при более высоких температурах можно было использовать низкокипящие растворители и разбавители. Примеры подходящих растворителей и разбавителей включают спирты, например, метанол, этанол, 1- или 2-пропанол, третбутиловый спирт, бензиловый спирт, амиловые спирты, 2-этилгексанол и разветвленные спирты, содержащие 9 или 10 атомов углерода; алканы, например, гексан, циклогексан, этилциклогексан, гептан, октан, нонан, декан, ундекан и т.д.; галоидалканы, например, 1,1,2-трихлорэтан, четыреххлористый углерод и т.д.ж ароматические углеводороды, например, ксилолы и этилбензол; и галоидированные и гидрированные ароматические соединения, например, хлорбензол, о-дихлорбензол, тетрагидронафталин и декагидронафталин.

Более подробно процесс получения магнийсодержащего продукта состоит в растворении или суспендировании магнийсодержащего соединения в жидкости. Используют 10-80 мас. ч. магнийсодержащего соединения на 100 мас. ч. жидкости. Достаточное количество углекислого газа пропускают в жидкую суспензию из расчета 0,1-4 М углекислого газа на 1 М соединения магния при умеренном перемешивании. К раствору или суспензии магнийсодержащего соединения при перемешивании при 0-100oC в течение 10 мин - 24 ч добавляют 0,3-4 М CO2.

Независимо от того, какое из вышеупомянутых магнийсодержащих соединений применяют для получения магнийсодержащего продукта, на стадии B твердые частицы осаждают из вышеупомянутого раствора магнийсодержащего продукта путем обработки раствора соединением или комплексом титана и, предпочтительно, в смеси с агентом, регулирующим морфологию. В качестве соединения или комплекса титана предпочтительно использовать галогенид титана (IV), особенно тетрахлорид титана. Хотя можно использовать любой агент, регулирующий морфологию, особенно подходящими для этой цели являются органосиланы формулы где n = 0-4 и R - водород, алкил, алкокси, галоидалкил или арил, содержащие 1-10 атомов C, или галоидсилил или галоидалкилсилил, содержащий 1-8 атомов C и R'- OR или галоген. Обычно R - алкил или хлоралкил, содержащие 1-8 атомов C и 1-4 атома хлора и R' - хлор или OR, содержащий 1-4 атома C. Подходящий органосилан может содержать различные R'. Можно использовать смеси органосиланов. Предпочтительные органосиланы включают триметилхлорсилан, триметилэтоксисилан, диметилдихлорсилан, тетраэтоксисилан или гексаметилдисилоксан.

Агент, контролирующий морфологию, может быть также о-, м- или п- диалкилфталатом или o-, м- или п-алкиларалкилфталатом. Алкилы в диалкилфталате могут быть одинаковыми или различными и каждый содержит 1-10, предпочтительно до 4, атомов углерода.

Предпочтительно использовать о-диалкилфталат, особенно о- дибутилфталат, наиболее предпочтительно о-ди-н-бутилфталат или о-ди- изобутилфталат. Другие подходящие диалкилфталаты включают дигексилфталат и диоктилфталат. В подходящем алкиларалкилфталате алкилы содержат 1-10, предпочтительно до 6, атомов C и аралкилы содержат 7-10, предпочтительно до 8 атомов C. Подходящие алкиларалкилфталаты включают бензил-н-бутилфталат и бензил-изобутилфталат. Кроме того, Cohen et al в патенте США N 4946816 описывают использование ароматического соединения с 8-10 атомами C в растворителе на любой из стадий NN 1)-3) по упомянутым патентам США NN 4866022, 4540679 и 4612299, в любое время перед добавлением простого эфира на стадии 3) для регулирования морфологии полученных частиц конечного продукта - катализатора или компонента катализатора.

Конкретные ароматические соединения с 8-10 атомами C, пригодные в качестве агентов, регулирующих морфологию, включают о-ксилол, м-ксилол, п-ксилол, смесь ксилолов, этилбензол, нафталин, кумол, псевдокумол, метилэтилбензолы, тетрагидронафталин и диэтилбензолы. Предпочтительными являются этилбензол, орто-ксилол, мета-ксилол, параксилол и нафталин. Самым предпочтительным является нафталин. Предпочтительно вводить C8-C10-ароматические соединения на стадии B их изобретения, хотя такие ароматические соединения можно также вводить на стадии A способа по данному изобретению или на стадии C, рассматриваемой ниже, перед добавлением циклического простого эфира. Обычно вместе с растворителем для регулирования желательного изменения морфологии вводят 1000-20000 мас.ч. или 0,1-2 мас.% таких C8-C10-ароматических соединений на миллион частей всего количества присутствующих материалов. Предпочтительно использовать 2000-10000 ч. на миллион таких C8-C10-ароматических соединений. Если вводятся только C8-ароматические соединения, предпочтительный интервал составляет 4000-10000 C8- ароматического соединения.

Частицы, осажденные на стадии В, обрабатывают на стадии D соединением титана и донором электронов. Соединения титана (IV), используемые на стадии D, представляют собой галогениды титана и галоидалкоголяты, содержащие 1-20 атомов C на алкоголятную группу, например, метокси, этокси, бутокси, гексокси, фенокси, декокси, нафтокси, додекокси и эйкозокси. Можно использовать, если это желательно, смеси соединений титана. Предпочтительными соединениями титана являются галогениды и галоидалкоголяты, содержащие 1-8 атомов C в алкоголятной группе. Примерами таких соединений служат: TiCl4, TiBr4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC4H9)Cl3, Ti(OC6H5)Cl3, Ti(OC6H13)Br3, Ti(OC8H17)Cl3, Ti(OCH3)2Br2, Ti(OC2H5)2Cl2, Ti(OC6H13)2Cl2, Ti(OC8H17)Br2, Ti(OCH3)3Br, Ti(OC2H5)3Cl, Ti(OC4H9)3Cl, Ti(OC6H13)3Br и Ti(OC8H17)3Cl. С точки зрения максимальной активности и стереоспецифичности предпочтительны тетрагалогениды титана, особенно TiCl4.

Органические доноры электронов, используемые при получении компонентов стереоспецифических катализаторов на носителе по данному изобретению, представляют собой органические кислоты, ангидриды органических кислот, сложные эфиры органических кислот, спирты, простые эфиры, альдегиды, кетоны, амины, окиси аминов, амиды, тиолы, различные эфиры и амиды фосфорной кислоты и т.п. Если это желательно, можно применять смеси органических доноров электронов.

Конкретные примеры подходящих кислородсодержащих доноров электронов включают органические кислоты и эфиры, используемые в качестве модификаторов, алифатические спирты, например, метанол, этанол, пропанолы, буганолы, пентанолы, гексанолы и т.д., алифатические диолы и триоды, например, этиленгликоль, пропандиолы, глицерин, бутандиолы, бутантриолы, пентандиолы, пентантриолы, гександиолы, гексантриолы и т.д., ароматические спирты, например, фенол, ди-, три- и тетрагидробензолы, нафтолы и дигидроксинафталины, аралкиловые спирты, например, бензиловый, фенилэтанолы, фенилпропанолы, фенилбутанолы, фенилпентанолы, фенилгексанолы и т.д.; алкариловые спирты, например, крезолы, ксиленоны, этилфенолы, пропилфенолы, бутилфенолы, пентилфенолы, гексилфенолы и т.д.; диалкиловые эфиры, например, диметиловый, диэтиловый, метилэтиловый, дипропиловый, дибутиловый, дипентиловый, дигексиловый эфиры и т.д.; алкилвиниловый и алкилаллиловые эфиры, например, метил-, этил-, пропил-, бутил-, пентил- и гексилвиниловый эфиры и гексилаллиловый эфир; алкариловые эфиры, например, анизол, фенетол, пропилфениловый эфир, бутилфениловый эфир, пентилфениловый эфир, гексилфениловый эфир и т.д.; арилвиниловый и арилаллиловый эфиры, например, фенилвиниловый и фенилаллиловый эфиры; диариловые эфиры, например, дифениловый и циклические эфиры, например, диоксан и триоксан.

Конкретные примеры других подходящих кислородсодержащих органических доноров электронов включают альдегиды, например, формальдегид, ацетальдегид, пропиональдегид, бутиральдегид, валеральдегид, капроальдегид и т.д., бензилальдегид, толуальдегид и альфа-толуальдегид; и кетоны, например, ацетон, диэтилкетон, метилэтилкетон, дипропилкетон, дибутилкетон, дипентилкетон, дигексилкетон и т.д., циклобутанон, циклопентанон и циклогексанон, ацетофенон, пропиофенон, бутирофенон, валерофенон, капрофенон и т.д. и бензофенон.

Конкретные примеры подходящих азотсодержащих органических доноров электронов включают тритичные амины, у которых по меньшей мере одна из групп, связанных с атомом азота, содержит по меньшей мере два атома углерода, например, диметилэтиламин, метилдиэтиламин, N,N'-тетраметил-этилендиамин, триэтиламин, три-н-бутиламин, диметил-н-гексиламин, дифенилметиламин, трифениламин, тритолиламин, дифенилбензиламин, дифенилэтиламин, диэтилфениламин, бис(диэтиламино)бензолы и т.п.; насыщенные гетероциклические амины и их производные, например, пирролидин, пиперидин, 2-метилпирролидин, 2- метилпиперидин, 2,5-диметилпирролидин, 2,6-диметилпиперидин, 2,4,6-триметилпиперидин, 2,2,6,6-тетраметилпиперидин и т.п.; ненасыщенные гетероциклические амины и их производные, например, пиридин, пиримидин, пиколины, лутидины, коллидины, этилпиридины, диэтилпиридины, триэтилпиридины, бензилпиридины, метилпиримидины, этилпиримидины, бензилпиримидины и т.п.

Примеры подходящих серусодержащих органических доноров электронов включают тиолы, например, метантиол, этантиол, этандитиол, пропантиолы, бутантиолы, бутандитиолы, гексантиолы и т.п., тиоэфиры, например, этилтиоэтан, этилтио-н-бутан и т.п.; и другие тиоаналоги вышеописанных кислородсодержащих органических доноров электронов.

Конкретные примеры подходящих фосфорсодержащих органических доноров электронов включают фосфорсодержащие аналоги вышеописанных азотсодержащих органических доноров электронов, например, триэтилфосфин, этилдибутилфосфин, трифенилфосфин и т.п.

Примеры подходящих органических доноров электронов, содержащих два или более атомов, выбранных из группы, включающей кислород, азот, серу и фосфор, включают амиды, например, ацетамид, бутирамид, капроамид, бензамид и т.п., аминоспирты, например, этаноламин, гидроксианилины, аминокрезолы и т.п.; аминоокиси, например, лутидин-N-окиси и коллидин-N-окиси; аминоэфиры, например, бис-(2-этоксиэтил)амин; тиокислоты, например, тиоуксусная кислота, тиомасляная кислота, тиовалеровая кислота, тиобензойная кислота и т.п.; органосульфокислоты, например, метансульфокислота, этансульфокислота, фенилсульфокислота и т.п.; различные производные фосфорной кислоты, например, триметилфосфит, три-н-пропилфосфит, трифенилфосфит, три-(этилтио)фосфит, триамид гексаметил-фосфорной кислоты и т.п.; и окиси фосфина, например, окись триметилфосфина, окись трифенилфосфина и т.п.

С точки зрения поведения катализатора и технологических характеристик доноры электронов, которые предпочтительны согласно данному изобретению, включают C1-C6-алкиловые эфиры ароматических карбоновых кислот и галоид-, гидроксил-, оксоалкил, алкокси- и/или арилоксизамещенных ароматических монокарбоновых кислот. Среди них особенно предпочтительны алкиловые эфиры бензойной, галоидбензойной, фталевой, терефталевой и изофталевой кислот, где алкил содержит 1-6 атомов углерода, например, метилбензоат, метилбромбензоат, этилбензоат, этилхлорбензоат, этилбромбензоат, бутилбензоат, изобутилбензоат, диизобутилфталат, гексилбензоат и циклогексилбензоат. Лучшие результаты достигаются при использовании диэфиров.

Донором электронов, предпочтительно служит о-, м- или п-диалкилфталат или о-, м- или п-алкиларалкилфталат. Алкилы в диалкилфталате могут быть одинаковыми или различными и каждый содержит от 1 до 10, предпочтительно до 4, атомов C. Предпочтительно использовать о-ди-алкилфталат, особенно о-ди-н-бутилфталат или о-ди-изобутилфталат. Другими подходящими диалкилфталатами являются дигексилфталат и диоктилфталат. В подходящем алкиларалкилфталате алкилы содержат 1-10, предпочтительно до 6, атомов C и аралкилы содержат от 7 до 10, предпочтительно до 8, атомов C. Предпочтительно используют о-алкиларалкилфталат. Подходящие алкиларалкилфталаты включают бензил-н-бутилфталат и бензилизобутилфталат.

На стадии D (стадия активации) частицы, образовавшиеся на стадии B, галогенид титана и органический донор электронов реагируют при температурах от -10oC до 170oC, обычно в течение периода времени от нескольких минут до нескольких часов и контактируют в количествах, обеспечивающих атомное отношение титана к магнию в частицах (вычисленное для магния в соединении магния, из которого образуется магнийсодержащий продукт), равное по меньшей мере 0,5:1. Предпочтительно, это отношение устанавливать в пределах 0,5:1-20: 1. Большие количества титана можно использовать без отрицательного влияния на поведение компонента катализатора, но обычно нет необходимости превышать отношение титана к магнию, равное 20:1, так как только часть титана присоединяется к продукту предварительной обработки во время его получения. Более предпочтительно устанавливать отношение титана к магнию в интервале от 2: 1-15:1 для обеспечения достаточного количества титана в катализаторе, что приводит к хорошей активности при экономном расходовании титана в процессе приготовления катализатора. Донор электронов применяют в количестве от 1,0 моль на г-а титана в соединении титана, предпочтительно, от 0,001 до 0,6 моль/г-а титана в соединении титана. Лучшие результаты достигают, когда это отношение составляет 0,01-0,3 моль/г-а титана.

Предпочтительно, чтобы донор электронов и соединение титана контактировали с осажденными твердыми частицами в присутствии инертного углеводорода или галоидсодержащего соединения в качестве разбавителя, хотя можно использовать и другие методы. Подходящими разбавителями являются те соединения, которые указаны выше как разбавители на стадиях A или B или C (описанных ниже) и которые практически инертны к используемым компонентам и являются жидкими при используемых температурах или которые можно поддерживать в жидком состоянии при повышенном давлении.

Предпочтительно стадию D активации осуществлять как ряд подстадий, где на подстадий D-1 частицы со стадии B обрабатывают тетрахлоридом титана и затем на подстадий D-2 - тетрахлоридом титана в присутствии смеси указанных первого и второго доноров электронов.

Более предпочтительно дополнительная обработка включает подстадию D-3 с применением жидкого ароматического углеводорода, например, толуола, и последующую подстадию D-4 - обработку тетрахлоридом титана. В некоторых случаях для получения твердого компонента катализатора с самой высокой активностью при проведении полимеризации или сополимеризации альфа-олефинов, особенно пропилена, подстадия D-3 повторяется как подстадия D-3 до проведения подстадий D-4.

Согласно предпочтительному варианту данного изобретения перед стадией D частицы, осажденные на стадии B, переосаждаются на дополнительной стадии C из раствора, содержащего циклический простой эфир, и затем переосажденные частицы обрабатываются на стадии D соединением переходного металла и донором электронов. Согласно обычной процедуре переосаждения (стадия C) частицы, осажденные на стадии B, полностью солюбилизируются в растворителе - циклическом простом эфире и затем частицам дают переосадиться с образованием частиц одинакового размера. Предпочтительным простым эфиром является тетрагидрофуран, хотя можно использовать другие подходящие циклические простые эфиры, например, тетрагидропиран и 2-метилтетрагидрофуран, с целью солюбилизации частиц на стадии B. Можно также использовать тиоэфиры, например, тетрагидротиофен. В некоторых случаях, например, при использовании 2,2,5,5-тетраметил-тетрагидрофурана и тетрагидропиран-2-метанола, при нагревании до 130-185oF (54,4- 85oC) возникает переосаждение. Могут также использоваться другие соединения, действующие таким же образом, т.е. те, которые могут солюбилизировать частицы, образовавшиеся на стадии B и из которых могут переосаждаться твердые однородные частицы, например, окись циклогексана, циклогексанон, этилацетат и фенилацетат. Можно использовать смеси этих соединений.

Разбавитель, который можно использовать на любой из упомянутых стадий A, B или D или на стадии C переосаждения, должен быть практически инертным к используемым реагентам и, предпочтительно, быть жидким при температурах процесса. Предпочтительно проводить конкретную стадию при повышенном давлении, чтобы можно было применять р