Дисперсно-упрочненный материал для электродов контактной сварки
Реферат
Цель изобретения - создание материала с высокими значениями твердости, электропроводности и температуры рекристаллизации для электродов точечной контактной сварки, обладающих высоким ресурсом работы. Дисперсно-упрочненный материал для электродов контактной сварки содержит следующие компоненты, мас.%: титан 1,2 - 2,8, углерод 0,1 - 0,3, медь - остальное. 2 ил., 3 табл.
Изобретение относится к электросварочному производству, в частности, к составам материалов для электродов контактной точечной сварки, преимущественно низколегированных и низкоуглеродистых сталей.
Известно, что электроды контактной сварки подвергаются циклическому воздействию больших сжимающих усилий при высоких температурах. При этом происходит рекристаллизация материала поверхностных слоев электрода, сопровождающаяся образованием внутризеренных и межзеренных трещин, что приводит к деформации электрода, нарушению режимов сварки и, как следствие этого, - к некачественному сварному соединению. Для материала электрода, предназначенного для сварки деталей и конструкций из низколегированных и низкоуглеродистых сталей, первостепенное значение имеют его температура рекристаллизации и стойкости к взаимному переносу, а также твердость и электропроводность /1/. Для сварки деталей и конструкций из указанных сталей применяются медные сплавы, содержащие кадмий, хром и цирконий, которые, повышая прочностные характеристики меди, однако, незначительно снижают ее электропроводность. При этом температура рекристаллизации указанных материалов остается весьма низкой, например, для бронзы БрХЦр (Cr:0,5-1,0 мас.%; Zr:0,03-0,08 мас.%) она не превышает 500oC /2/, тогда как поверхностные слои электродов разогреваются до 600-800oC. Известны также дисперсно-упрочненные материалы, содержащие медь, а также алюминий, магний, титан, бериллий, образующие в материалах упрочняющие фазы в виде оксидов алюминия, магния, титана и бериллия /3/. Материалы обладают высокими значениями электропроводности, температуры рекристаллизации и жаропрочности. Получают их преимущественно методом "внутреннего окисления", для которого характерны длительные технологически сложные окислительно-восстановительные отжиги с применением водорода и других защитных и восстановительных атмосфер. Этим обусловлен основной недостаток указанных материалов - их высокая стоимость. Наиболее близким материалом к предлагаемому является дисперсно-упрочненный материал на медной основе, содержащий 0,4-1,0 мас.% алюминия и 0,15-0,3 мас. % углерода /4/. Алюминий при этом использован в качестве оксидо- и карбидообразующего элемента, который в процессе получения материала, реагируя с кислородом воздуха и углеродом, образуют мелкодисперсные частицы оксида и карбида алюминия Al2O3 и Al4C3. Благодаря наличию разнородных фазоупрочнителей, которые менее подвержены процессам коагуляции, чем однородные упрочняющие фазы, температура рекристаллизации материала достигает 800oC. Материал обладает твердостью по Виккерсу в проделах 1600-1800 МПа и электропроводностью в пределах 45-50% от электропроводности меди. Однако, как показали проведенные рентгеноструктурный и химический анализы материала, алюминий не полностью вовлекается в процессы оксидации и карбидизации, образуя твердый раствор с медью, что препятствует получению материала с большей электропроводностью, твердостью и температурой рекристаллизации. Это обусловлено значительной растворимостью алюминия в меди. Цель изобретения - получение материала с более высокими значениями электропроводности, твердости и температуры рекристаллизации, а также ресурса работы изготовленных из него электродов для контактной точечной сварки деталей и конструкций из низколегированных и низкоглеродистых сталей. Предлагаемый дисперсно-упрочненный материал, содержащий медь, углерод, оксидо- и карбидообразующий элемент, в качестве оксидо- и карбидообразующего элемента содержит титан, при следующем соотношении компонентов, мас.%: Титан - 1,2-2,8 Углерод - 0,1-0,3 Медь - Остальное Материал получают следующим образом. Смесь указанных порошков металлов и углерода обрабатывают в высокоэнергетической шаровой мельнице, полученный продукт (гранулы) компактируют входную в брикеты, которые затем нагревают до температуры 890oC и в этом состоянии экструдируют в протки или профили. В ходе этого процесса благодаря интенсивному механическому измельчению и механохимической активации компонентов шихты в шаровой мельнице происходит взаимодействие титана с углеродом, а также с кислородом воздуха, поскольку все операции проводятся без применения каких-либо защитных атмосфер. В результате, как показали химический, ренгенофазовый и стереологический анализы, упрочняющими частицами в предлагаемом материале являются мелкодисперстные частицы карбида TiC и оксида TiO2 титана. При этом так же, как и в материале-прототипе, наблюдается присутствие остаточного графита (углерода), который, кроме дополнительного упрочнения материала, также повышает его противоадгезионные свойства и снижает переходное сопротивление в контакте, обеспечивая тем самым качественное сварное соединение. Пример 1. По технологиям, приведенным выше, были изготовлены прутки диаметром 13 мм из материала-прототипа двух составов (Cu-1,2 мас.%, Al-0,3 мас. % C и Cu-2,8 мас.%-0,3 мас.% C) и предлагаемого материала, также двух составов (Cu-1,2 мас.%, Ti-0,3 мас.% C и Cu-2,8 мас.%, Ti-0,3 мас.% C), причем суммарное содержание титана и углерода в шихте обоих материалов было одинаковым: соответственно 1,5 мас.% и 3,1 мас.%. Прутки были подвергнуты рентгеноструктурному и химическому анализам для определения количества соответственно алюминия и титана в альфа-твердом растворе меди. По данным проведенных указанных анализов определялись периоды решеток материалов, по которым рассчитывалось количество растворенных компонентов в меди. Данные расчетов приведены в табл. 1. Из табл. 1 видно, что у материала-прототипа более 50% количества алюминия содержится в твердом растворе с медью, тогда как у предлагаемого материала количество титана, вошедшее в альфа- твердый раствор, составляет лишь 25 - 40% от количества титана в шихте. Как следствие этого, предлагаемый материал обладает более высокими значениями электропроводности и температуры рекристаллизации. Результаты испытаний показали, что, например, материал, содержащий 1,2 мас.% титана и 0,3 мас. % углерода, имеет электропроводность 68% от электропроводности меди и температуру рекристаллизации, равную 950oC, против соответственно 30% и 800oC у материала-прототипа с содержанием алюминия 1,2 мас.% и углерода 0,3 мас.% (табл. 2). Для определения твердости и электропроводности предлагаемого материала были приготовлены 35 составов порошковой смеси с содержанием в ней 0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2 мас.% титана и 0; 0,1; 0,2; 0,3; 0,4 мас.% углерода. Порошковые смеси были обработаны в аттриторе в течение 100 мин, из полученных гранул в холодную отпрессованы брикеты диаметром 55 мм и высотой 100 мм, которые затем после нагрева на воздухе до температуры 890oC с этой температуры были экструдированы в прутки диаметром 17 мм. Из прутков изготавливались стандартные образцы для определения твердости и электропроводности. На фиг. 1 и фиг. 2 представлены графики зависимости соответственно электропроводности и твердости материала по Виккерсу от содержания в шихте углерода и титана. Из анализа графиков следует, что: а) оптимальным является содержание углерода в пределах 0,10-0,3% мас., где наблюдаются максимальные значения как электропроводности, так и твердости; б) оптимальным является содержание титана в пределах 1,2-2,8 мас.%, поскольку при содержании титана менее 1,2 мас.% материала обладает низкой твердостью (ниже твердости материала-прототипа), а содержание титана более 2,8 мас.% приводит к снижению его электропроводности; в) при указанном содержании компонентов в шихте материал обладает электропроводностью в пределах 40-68% от электропроводности меди и твердостью по Виккерсу в пределах 2000-2480 МПа, что значительно выше соответствующих значений материала-прототипа. Пример 2. Для определения ресурса работы электродов контактной сварки были изготовлены электроды по ГОСТ 14111-90 из прутков БрХЦр, материала-прототипа и предлагаемого материала различных составов. Испытания проводились на контактной сварочной машине МТ-1215 при сварке стали 08Ю толщиной 0,8+0,8 мм по следующим режимам: Iсв.=10-11 кА; Pсв.=230 кГс; tсв.=7 пер.; темп сварки 40 точек/мин. Составы испытанных материалов и результаты их испытаний представлены в табл. 3. Приведенные в табл. 3 данные показывают, что электроды контактной сварки, изготовленные из предлагаемого материала состава 1,2-2,8 мас.% титана и 0,1-0,3 мас.% углерода, действительно имеют ресурс, превышающий ресурс электродов из бронзы БрХЦр и материала-прототипа. Как следует из приведенных данных, введение титана в качестве оксидо- и карбидообразующего элемента в материал, содержащий медь и углерод, позволяют значительно поднять его электропроводность, твердость и температуру рекристаллизации, что обусловлено меньшей растворимостью титана в меди, чем алюминия. Благодаря вышеописанным преимуществам предлагаемого материала электроды контактной сварки, изготовленные из него, имеют значительно более высокий ресурс работы, чем электроды из известных сплавов и из дисперсно-упрочненного материала, выбранного в качестве прототипа. Источники информации: 1. Кабанов Н.С. Сварка на контактных машинах. - М.: Высшая школа, 1985, 271 с. 2. Справочник по обработке цветных металлов и сплавов / Смирягин А.П., Днестровский Н.З., Ландихов А.Д. и др. Под ред. Миллера Л.Е. - М.: Металлургиздат, 1961, 872 с. 3. Данелия Е.П., Розенберг В.М. Внутреннеокисленные сплавы. - М.: Металлургия, 1978, 232 с. 4. Шалунов Е.П., Матросов А.Л. Высокоресурсные токоподводящие наконечники для сварки проволочным электодом в среде защитных газов и материал для их изготовления / Информлисток N 418-96. - Чебоксары: ЧувЦНТИ, 1996, с.3.Формула изобретения
Дисперсно-упрочненный материал для электродов контактной сварки, преимущественно для сварки низколегированных и низкоуглеродистых сталей, содержащий медь, углерод, оксидо- и карбидообразующий элемент, отличающийся тем, что в качестве оксидо- и карбидообразующего элемента он содержит титан при следующем соотношении компонентов, мас. Титан 1,2 2,8 Углерод 0,1 0,3 Медь ОстальноерРИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4QB4A Регистрация лицензионного договора на использование изобретения
Лицензиар(ы): Шалунов Евгений Петрович
Вид лицензии*: НИЛ
Лицензиат(ы): Общество с ограниченной ответственностью "Завод механически легированных материалов "ДИСКОМ"
Договор № РД0027016 зарегистрирован 25.09.2007
Извещение опубликовано: 10.11.2007 БИ: 31/2007
* ИЛ - исключительная лицензия НИЛ - неисключительная лицензия