Опрашиваемый по радио пассивный датчик на поверхностных акустических волнах
Реферат
Пассивный датчик поверхностных акустических волн для определения измерительных значений, при котором измерительное значение от удаленного места передают по радио к блоку запросчика 1, который передает чувствительному элементу 5, 15 в качестве опросного импульса энергию по радио. Соответствующий изобретению датчик на поверхностных акустических волнах является пригодным для бесконтактной регистрации измерительных значений, причем устройство на поверхностных акустических волнах является чувствительным элементом и предусмотрен опорный элемент на поверхностных акустических волнах для фазовой дискриминации и/или измерения времени прохождения. В качестве дальнейшего развития указан приводимый в действие передаваемыми имеющими ширп сигналами датчик с имеющими ширп отражателями, при котором заменяющая опорный элемент опорная функция имеется в устройстве. Выполнение датчика с имеющей ширп функцией имеет свойство имманентно температурнокомпенсированного датчика для измерения других физических или других величин. 36 з.п.ф-лы, 16 ил.
Изобретение касается пассивного датчика, который работает по принципу устройств на поверхностных акустических волнах и сигналы чувствительного элемента которого могут опрашиваться по радио.
Во многих технических случаях применения важно сделать доступными интересующие измерительные значения беспроволочным путем и с известного расстояния и именно таким образом, что собственно примененный чувствительный элемент работает пассивно, то есть не требует никакого собственного источника энергии или токоснабжения. Например, представляет интерес возможность контроля или измерения температуры подшипников колес и/или тормозных колодок на проходящем мимо поезде. Другим случаем применения является измерение момента вращения вращающегося вала машины. Другой областью применения является медицина и химия, например определение парциального давления кислорода в крови живого организма, или охрана окружающей среды, возможность регистрации концентрации растворителей в воздухе и/или в воде уже на расстоянии, чтобы иметь и обрабатывать такие полученные, например, в зоне опасности измерительные данные в безопасном удаленном месте. Известные решения предлагали применять активные чувствительные элементы, которые питаются от батарей и телеметрически опрашиваются, или ведут постоянную передачу, или производить контроль оптическим путем с помощью телевизионной камеры. Известны устройства на поверхностных акустических волнах, при которых речь идет об электронно-акустических конструктивных элементах, которые состоят из подложки с пьезоэлектрической характеристикой по меньшей мере в частичных областях поверхности и из находящихся на или, соответственно, в этой поверхности пальцевых электродных структур. В упомянутой поверхности за счет электрического возбуждения, исходя из электроакустического (входного) гребенчатого преобразователя, создаются акустические волны. Акустические волны проходят в этой поверхности и создают из акустической волны электрический сигнал в другом (выходном) преобразователе. Существенным в этих конструктивных элементах является то, что за счет выбора структуры преобразователя и при необходимости других расположенных на поверхности структур является возможным преобразование электрического сигнала, заданного во входной преобразователь, в сигнал выходного преобразователя. Входной преобразователь и выходной преобразователь могут представлять собой одну и ту же преобразовательную структуру. Например, к входу может подводиться широкополосный высокочастотный сигнал, а на выходе иметься частотно-селективный, импульсно-сжатый сигнал, временное положение которого является задаваемой, зависящей от (измерительных значений) параметров характеристикой соответствующего устройства на поверхностных акустических волнах. На базе устройств на поверхностных акустических волнах работают уже десятилетия опознавательные маркеры (ID-Tags) (патенты США US-A-3273146, US-A-4725841), которые позволяют по радио устанавливать наличие или идентичность предметов или людей и которые работают пассивно. При этом имеет значение, что в устройстве на поверхностных акустических волнах вследствие сильного пьезоэлектрического эффекта подложки сигнал опроса может промежуточно запоминаться и, таким образом, дополнительное токоснабжение опознавательных маркеров является не нужным. Переданный блоком запросчика электромагнитный высокочастотный импульс запроса принимается антенной опознавательного маркера на поверхностных акустических волнах, то есть ID-Tags. С помощью работающего в качестве входа электроакустического гребенчатого преобразователя устройства на поверхностных волнах в нем создаются акустические поверхностные волны. За счет согласованных с соответствующей заданной величиной выбранных структур устройства на поверхностных волнах, причем эта заданная величина может задаваться совершенно индивидуально, созданная в устройстве поверхностная волна модулируется и на выходе восстанавливается модулированный электромагнитный сигнал. Через антенну устройства этот сигнал может также приниматься на расстоянии. Устройство на поверхностных волнах отвечает таким образом, на вышеупомянутый опросный импульс с жестко заданной для устройства (основной) задержкой (индивидуальным) высокочастотным идентифицирующим ключевым словом, которое должно анализироваться в соответствующем блоке запросчика. Такое устройство описано, например, в названном первым патенте США, 1966 г. Известно также применение работающих на основе устройств на акустических поверхностных волнах датчиков, например, в качестве термометра, датчика давления, измерителя ускорения, химического или биологического чувствительного элемента. Примеры этого описаны в публикациях "IEEE Ultrasonic Symp. Proc. (1975), с. 519-522; Proc. IEEE. т. 64 (1976), с. 754-756 и EP-0361729 (1988). Эти устройства работают на принципе генератора, который существенно отличается от принципа работы ID-Tags, и в качестве активных устройств они требуют также собственного токоснабжения. В DE-A-3438051 и US-A-4620191 (Skeie) описан пассивный (приемо)ответчик на основе устройства на акустических поверхностных волнах, который отвечает на опросный сигнал лишь закодированным в структуре на акустических поверхностных волнах специальным и, таким образом, заданным всегда одинаковым ответным сигналом. В патенте США US-A-4734658 в качестве дополнения к названным ранее публикациям указано, каким образом можно устранить описанную в IEEE, Ultrason. Symp. 1987, с. 583-585 исследованную температурную зависимость примененного в этом (приемо)ответчике устройства на поверхностных акустических волнах. С помощью стартового и стопового бита предусматривают нормирование всех времен прохождения или разностей фаз. Таким образом, дополнительно достигается температурная компенсация для известного (приемо)ответчика. Упомянутая выше температурная зависимость была исследована на стандартных опознавательных маркерах и была установлена линейная зависимость разницы фаз отраженных сигналов двух отражателей опознавательного маркера от температуры. Там указана также возможность применения в качестве дистанционно опрашиваемого температурного датчика на поверхностных акустических волнах. В Rev. of Scient. Instr. т. 60 (1989), с. 1297-1302 описан активный, то есть приводимый в действие от батарейного питания, работающий на поверхностных акустических волнах датчик для аэрозолей, который является известным уже более 10 лет. Датчик состоит из двух генераторов с необходимыми для их работы усилительными схемами. Другой, также активный датчик в качестве электрического измерителя напряжения с воздействием на скорость поверхностных акустических волн известен из EP-A-0166065. Индуктивная, питаемая энергией посредством петли связи, работающая на поверхностных акустических волнах система идентификации, которая используется в технике автоматизации, известна из DE-A-4025107. Путем оценки только не имеющих ошибок периодов сигнала достигается уменьшение ошибок записи/считывания. В IEEE, Ultrasonic Symp. 1982, с. 177-179 описан известный процессор преобразования ширина (Chirptransformprozessor), примененный в качестве спектроанализатора, и описано, каким образом можно уменьшить его температурную зависимость. Указанная там мера заключается в таком выборе внутренней рабочей частоты процессора, что иначе появляющаяся обусловленная температурой ошибка измерения сведена к минимуму. Задачей изобретения является указание принципа для датчиков с пассивно работающими, то есть не требующими собственного токоснабжения, чувствительными элементами, которые могут опрашиваться по радио или считываться на расстоянии бесконтактным путем. В частности, речь идет также о том, чтобы иметь целесообразную основу для сравнения и/или независимость от нежелательных воздействий; например о достижении температурной независимости при детектировании и измерении других величин, чем величина температуры. Эта задача решается признаками пункта 1 формулы изобретения, а дальнейшие формы развития следуют из зависимых пунктов и, в частности, из пункта 24 и последующих пунктов. Принцип реализации для соответствующего изобретению пассивного датчика на поверхностных акустических волнах заключается в том, что для этого датчика, как правило, предусмотрены по меньшей мере два устройства на поверхностных акустических волнах, из которых одно устройство работает в качестве опорного элемента, а другое устройство или, соответственно, множество других устройств имеют функцию соответствующего чувствительного элемента. Эти чувствительные элементы выдают на своем (каждый раз) работающем в качестве выхода гребенчатом преобразователе выходной сигнал, который является изменяемым с возможностью идентификации в соответствии с подлежащей измерению измерительной величиной относительно входного сигнала чувствительного элемента. Измеряться могут такие измерительные величины, которые оказывают воздействие на скорость или время прохождения акустической волны в устройстве на поверхностных акустических волнах. Этот входной сигнал является передаваемым по радио расположенным на расстоянии блоком запросчика высокочастотным сигналом, который подводится к работающему в качестве входа входному преобразователю чувствительного элемента. Высокочастотный сигнал подводится также к входу соответствующего опорного элемента, в котором производится соответствующая чувствительному элементу обработка сигнала и которым выдается также выходной сигнал. Выходной сигнал однако несущественно или только известным образом подвержен влиянию за счет физических или химических эффектов/воздействий подлежащих определению чувствительным элементом измерительных величин и является, таким образом, применимым опорным значением. Из сравнения выходного сигнала опорного элемента с выходным сигналом соответствующего чувствительного элемента или соответственно с выходным сигналом множества соответствующих чувствительных элементов соответствующего изобретению пассивного датчика получают, например, еще на месте измерения сигнал измерительного значения. Предпочтительно этой обработкой сигнала является сравнение фаз и/или времен прохождения или сравнение частот. Этот принцип работы является возможным без существенного внешнего подвода энергии в соответствующем изобретению пассивном датчике на поверхностных акустических волнах, точнее в его чувствительном элементе. Необходимая для передачи измерительного значения энергия передачи имеется в распоряжении в случае изобретения, как и в выше описанном опознавательном маркере, из энергии опросного импульса. Сравнение фаз и/или времен прохождения, однако, не должно обязательно производиться в месте нахождения чувствительного элемента или, соответственно, в месте измерения. Чувствительный элемент и опорный элемент могут, следовательно, предпочтительным образом быть расположены также пространственно отдельно друг от друга и быть функционально связанными между собой лишь по радио. Причина этого заключается в том, что по сравнению со скоростью распространения акустической волны в устройстве на поверхностных акустических волнах электромагнитная скорость распространения является примерно в 105 раз больше. Ошибка фаз или, соответственно, времен прохождения таким образом при таком раздельном расположении, как правило, является пренебрежимо малой. В остальном при известном расстоянии между чувствительным элементом и опорным элементом может быть предусмотрено соответствующее упреждение с точки зрения измерительной техники. Это пространственно разделенное расположение имеет преимущество, например, в случае, когда в одном общем месте должно опрашиваться множество измерительных точек. Поясняющий это пример представляет собой пример измерения температуры тормозных колодок и/или подшипников колес проходящего мимо заданного места железнодорожного поезда. Каждой тормозной колодке и/или подшипнику колеса придан в соответствие функционально и пространственно чувствительный элемент на поверхностных акустических волнах. Опорный элемент находится в блоке запросчика и оценки в заданном месте вдоль участка шинного пути, по которому проходит поезд. В обычном случае блок запросчика, с одной стороны, и блок приема и оценки, с другой стороны, расположены пространственно объединенными друг с другом. Также относящийся к изобретению принцип решения состоит в том, что вместо ранее описанного "явно" предусмотренного опорного элемента, опорная функция может быть интегрирована в принцип решения "неявно". Здесь вначале представленный только в нескольких словах (детальное описание следует ниже) этот вариант общего соответствующего изобретению принципа решения состоит в том, что предусмотрены по меньшей мере два выполненных в виде структур на поверхностных акустических волнах элемента с чувствительной характеристикой, которые, однако, можно задействовать "друг против друга" так, что общий способ функционирования обеих структур охватывает, как чувствительную функцию (сравнимую с функцией классического чувствительного элемента), так и опорную функцию (классического опорного элемента ранее описанной системы). Еще далее идущая форма развития изобретения состоит в том, чтобы использовать комбинацию из чувствительного элемента и опорного элемента, как это пояснялось относительно описанной вначале системы, для контроля/измерения заранее заданной физической величины, например, механической величины, однако эти элементы выбирать и эксплуатировать таким образом, чтобы за счет интегрального способа функционирования, подобно выше поясненному принципу решения, можно было бы компенсировать нежелательно появляющуюся другую физическую величину, которая оказывает воздействие на скорость акустической волны (акустических волн) в структурах на поверхностных акустических волнах, как, например, воздействие температуры. Предусмотренные согласно изобретению пассивные оценки сигнала представляют собой, например, фазовую дискриминацию, смешивание сигнала, измерение частоты и т.п. Примененные устройства на поверхностных акустических волнах являются базовыми элементами опорного элемента и, по меньшей мере одного чувствительного элемента или соответственно элементами комбинации с интегральной, неявно содержащейся опорной функцией. Таковыми являются фильтры, работающие на поверхностных акустических волнах. Этими работающими на поверхностных акустических волнах фильтрами могут быть резонаторы, линии задержки, а также таковые дисперсионного типа phase shift keying (PSK-) и/или конвольверы. В частности, эти устройства на поверхностных акустических волнах выполнены предпочтительным образом в виде фильтров с малыми потерями (Low-Loss-фильтр). Для принципа решения с интегрированной неявной опорной функцией, а также для формы дальнейшего развития, например, с температурной компенсацией пригодны имеющие ширп (gechirpte) отражательные и/или преобразовательные структуры. Эти устройства на поверхностных акустических волнах работают с использованием пьезоэлектрического эффекта материала подложки или, соответственно, находящегося на подложке пьезоэлектрического слоя. В качестве пьезоэлектрического материала, кроме особенно независимого от температуры, стабильного по частоте кварца, пригодными являются прежде всего таковой с высокой пьезоэлектрической связью, как ниобат лития, танталат лития, тетраборат лития и тому подобное (как монокристалл), окись цинка, в частности, для слоев, и пьезоэлектрическая керамика, которые, однако, имеют значительную зависимость от температуры. Выше уже говорилось о том, что опорный элемент и чувствительный элемент или, соответственно, множество чувствительных элементов могут быть пространственно расположены объединенными друг с другом. Преимущество такого устройства состоит в том, что фазовая оценка и/или оценка времен прохождения и тому подобное в значительной степени могут выполняться свободными от внешних помех, или, соответственно, внешние помехи могут быть сведены до минимума, например, путем подходящего экранирования. Естественно, при этом следует заботиться о том, чтобы опорный элемент, по меньшей мере, в значительной степени был свободным от физического влияния, которое оказывает подлежащая измерению величина, являющаяся, например, температурой. Для этого, например, опорный элемент и один или множество чувствительных элементов могут быть расположенными на отдельных друг от друга подложках и, соответственно, только чувствительный элемент подвержен влиянию измерительной величины. Для температурных измерений, например, может быть предусмотрено, применять в качестве подложки для опорного элемента кварц, в то время как для одного или нескольких чувствительных элементов предусматривается ниобат лития или другой материал подложки, имеющий относительно высокую зависимость от температуры. Температурные изменения кварцевой подложки опорного элемента воздействуют на его выходной сигнал для многих случаев еще в степени, которой можно пренебречь. Для (температурной) компенсации может быть также предусмотрено, введение заданной величины коррекции. Это может быть, например, достигнуто за счет того, что посредством одного из чувствительных элементов определяется мгновенная температура всего устройства на поверхностных акустических волнах и это значение температуры привлекается в качестве заданного значения для коррекции измерительных значений остальных чувствительных элементов, которые измеряют другие физические величины. Также для системы с интегрированной, неявной опорной функцией или для формы ее дальнейшего развития, например, с интегрированной температурной компенсацией является целесообразным объединенное расположение элементов, а для достижения высокой точности, как правило, даже обязательным. Для увеличения возможностей передачи между соответствующим изобретению устройством датчика (с или без содержащегося в нем опорного элемента) рекомендуется использовать известный способ растягивания диапазона и предусматривать согласованные фильтры (matched filter) с импульсным сжатием. Для устройств на поверхностных акустических волнах является известным рассчитывание их таким образом, что создаются и оцениваются волны Рэлея, поверхностные поперечные упругие волны, волны утечки и тому подобное. В случаях, в которых одним блоком запросчика должны опрашиваться множество чувствительных элементов на поверхностных акустических волнах, например, должно определяться множество различных измерительных величин и/или одинаковые измерительные величины в разных местах и/или объектах, отдельным (чувствительным) элементам могут быть предпочтительным образом также добавлены функции опознавания. Эта интеграция может выполняться на отдельном чипе подложки или во многих случаях предпочтительным образом также на том же самом чипе подложки. Эта функция опознавания соответствует такой функции, как она была пояснена в случае описанных вначале ID-маркеров. Такая функция опознавания может быть реализована в случае изобретения таким образом, что дополнительно интегрирована в предусмотренную для изобретения структуру на поверхностных акустических волнах и что между входом сигнала и выходом сигнала примененного для изобретения устройства на поверхностных акустических волнах введена еще одна соответствующая дополнительная структура (опознавания). Например, это может быть предусмотрено целесообразным образом для соответствующего чувствительного элемента. В случае жестко приданных друг другу чувствительного элемента и опорного элемента также и опорный элемент может содержать эту функцию опознавания. Другим применимым в случае изобретения мероприятием является то, что выбирают частоту собственно измерительного сигнала и частоту сигнала опознавания различно высокими. За счет этого мероприятия можно избежать такие взаимные помехи, которые иначе в частном случае нельзя с самого начала полностью исключить и которые при необходимости требуют учета. В области радиочастот соответствующего предусмотренного для изобретения блока запросчика для случаев, в которых предусмотрено множество соответствующих изобретению датчиков на поверхностных акустических волнах (чувствительных элементов), которые должны поставлять различные друг от друга измерительные значения, можно предусмотреть предварительные меры так, что каждый из этих датчиков работает на своей собственной частоте, отвечает только после основного времени прохождения (времени задержки относительно опросного импульса) и/или согласован с индивидуальной импульсной последовательностью передачи. Можно также предусматривать пространственное разделение чувствительных элементов и антенны и производить соединение только с помощью проводящего высокие частоты кабеля и/или за счет электропроводящих стенок резервуара. Для множества соответствующих изобретению датчиков можно применять одну и ту же антенну. Может быть также предусмотрено расположение антенны на (соответствующей) подложке соответствующего датчика (чувствительного элемента) на поверхностных акустических волнах в интегральном выполнении. Путем применения имеющих ширп (gechirpter) структур на поверхностных акустических волнах, в частности, имеющих ширп отражательных структур могут быть достигнуты другие предпочтительные эффекты с датчиком по принципу изобретения. Во первых, применение имеющих ширп отражательных структур и/или преобразователей вместо не имеющих ширпа отражательных структур позволяет достичь большей чувствительности соответствующего изобретению датчика. Применением согласованных с этим имеющих ширп опросных сигналов может достигаться, кроме того, сжатие (динамического диапазона) ответных сигналов, что также облегчает оценку. С помощью up-chirp-опросного сигнала с определяемой или подлежащей определению интенсивностью ширпа (chirprate) и с согласованной с этим down-chirp-структурой в датчике можно даже нацеленно использовать истинную, то есть достигнутую не только компенсацией, независимость от температуры. На фиг. 1 показан соответствующий изобретению датчик на поверхностных акустических волнах; на фиг. 2(a и b) интегральные выполнения с одним опорным элементом и одним чувствительным элементом; при соответствующем выполнении этих элементов и следующего отсюда применяемого принципа работы фиг. 2 дает также пример для системы с неявной опорной функцией; на фиг. 3(a и b) формы выполнения с опорным элементом и чувствительным элементом, расположенными на различных подложках; на фиг. 4 выполнение изобретения, при котором опорный элемент находится в блоке запросчика; на фиг. 5 форма выполнения с дополнительной функцией опознавания с различными частотами или (в частности, при одинаковой частоте) с различным временем прохождения сигнала чувствительного элемента и сигнала опознавания; на фиг. 6 принципиальная схема для выполнения с одним блоком запросчика и множеством соответствующих изобретению чувствительных элементов на поверхностных акустических волнах или, соответственно, матрицей датчиков с множеством отдельных датчиков, которые работают с различными частотами; на фиг. 7 другое расположение с дополнительным находящимся на датчике устройством для пассивной обработки сигнала; на фиг. 8 принцип передачи и приема с имеющими ширп сигналами; на фиг. 9 (a и b) формы выполнения к фиг. 8; на фиг. 10 графическое представление к принципу согласно фиг. 8; на фиг. 11 графическое представление, из которого можно понять повышение чувствительности за счет применения имеющих ширп структур; на фиг. 12 другая форма выполнения соответствующего датчика; на фиг. 13 температурнокомпенсированный датчик согласно первой форме дальнейшего развития; на фиг. 14 то же согласно второй форме дальнейшего развития; на фиг. 15 и 16 формы выполнения с кодированными структурами. Фиг. 1 показывает блок запросчика 1, который является составной частью соответствующего изобретению пассивного датчика на поверхностных акустических волнах. Этот блок запросчика 1 содержит в качестве составных частей передающую часть 2, приемную часть 3 и следующую составную часть, образующую блок оценки 4. Позицией 5 обозначен собственно пассивный датчик с устройством на поверхностных акустических волнах. При работе существует радиосвязь 6 от передающей части 2 к датчику 5 и радиосвязь 7 от датчика 5 к приемной части 3. Необходимая для радиосвязи 7 энергия содержится в сигнале, передаваемом по радиосвязи 6 к датчику 5. Датчик 5 находится в месте измерения, и его чувствительный элемент 15, который является составной частью датчика 5, подвержен подлежащему измерению физическому, химическому или тому подобному воздействию. Фиг. 2, a показывает подложку 5' датчика на поверхностных акустических волнах с двумя устройствами на поверхностных акустических волнах 15' и 25'. Гребенчатые преобразователи на поверхностных акустических волнах 21 и 22 являются соответственно входным преобразователем и выходным преобразователем чувствительного элемента 15'. Позициями 23 и 24 обозначены соответствующие гребенчатые преобразователи опорного элемента 25'. Позициями 16 и 17 указаны антенны, которые служат для приема радиосигнала канала 6 и для передачи сигнала радиоканала 7. При некоторых обстоятельствах может быть достаточным в качестве антенны 16 и/или 17 предусматривать только печатный проводник или симметричную вибраторную антенну на подложке 20 датчика на поверхностных акустических волнах. Однако можно предусматривать и обычную антенну. Фиг. 2 показывает интегральное выполнение датчика в качестве формы выполнения датчика 5 фиг.1. Фиг. 2, b показывает соответствующее фиг. 2,a выполнение с отражателями 22a и 24a вместо преобразователей 22 и 24. Здесь преобразователи 21 и 23 являются входом и выходом устройства на поверхностных акустических волнах этой фигуры. Фигура 3, a показывает устройство с чувствительным элементом и опорным элементом в месте измерения. Позицией 30 обозначен материал носителя для пьезоэлектрической подложки на поверхностных акустических волнах 130 чувствительного элемента 15" и для пьезоэлектрической подложки на поверхностных акустических волнах 230 опорного элемента 25". Преобразовательные структуры 21 -24 могут иметь такую же форму выполнения, что и на фиг. 2. Например, подложка 130 является таковой из ниобата лития, танталата лития и тому подобного. Этот материал является сильно зависящим от температуры относительно его существенных для поверхностных акустических волн свойств. В частности, в противоположном обычной практике смысле для устройств на поверхностных акустических волнах может быть выбран такой срез кристаллического материала, который показывает большую зависимость от температуры. Для температурного датчика здесь для подложки 230 опорного элемента должен целесообразно применяться кварц, который мало зависит от температуры. Позициями 16 и 17 снова обозначены антенны. Фиг. 3,b показывает соответствующую фиг. З,a форму выполнения с отражателями 22a и 24a, как на фиг. 2,b, и вместо преобразователей 22 и 24. Фиг. 4 показывает форму выполнения, при которой, как описано выше в качестве возможности реализации изобретения, в качестве дополнительной составляющей части в блоке запросчика 1' содержится опорный элемент 25. Пассивный чувствительный элемент на поверхностных акустических волнах со своей подложкой 130' обозначен позицией 15. Позициями 16 и 17 или соответственно. 116 и 117 обозначены соответствующие антенны чувствительного элемента и блока запросчика. Предусмотрены также переключатели 41 43, которые должны замыкаться для соответствующей рабочей фазы, чтобы можно было производить сравнение фаз и/или времен прохождения между (соответствующим) чувствительным элементом 15 и опорным элементом 25. Фиг. 5 показывает принципиально соответствующее форме выполнения фиг. 4 устройство согласно изобретению, которое однако еще содержит дополнительно средства для реализации функции опознавания. Блок запросчика с содержащимся в нем опорным элементом 25 обозначен позицией 1'. Позицией 6 обозначена радиосвязь от блока запросчика 1' к датчику 151. Датчик 151 охватывает два чувствительных элемента 115 и 115'. Чувствительный элемент 115 рассчитан на первую частоту f1. Чувствительный элемент 115' содержит обозначенную позицией 26 кодирующую структуру. Входы и выходы обоих чувствительных элементов 115 и 115' включены параллельно относительно антенны 16. Радиосвязь к блоку оценки 1' опять обозначена позицией 7. В соответствии с кодированием акустический отрезок пути чувствительного элемента 115' поставляет характеристический ответный сигнал. Оба чувствительных элемента 115 и 115' могут также обладать различным основным временем прохождения или также как различной частотой, так и различным основным временем прохождения. В качестве принципиальной схемы фиг. 6 показывает представление с множеством чувствительных элементов 151, 152, 153 до 15N, которые все (одновременно) лежат в радиополе блока запросчика. Для каждого из этих чувствительных элементов заранее задана собственная частота f1, f2, f3 до fN. Блок запросчика 1, 2' содержит необходимые для запроса чувствительных элементов 151. 15N и для обработки принятых от этих чувствительных элементов сигналов измерительных значений схемные компоненты. Каждым отдельным чувствительным элементом 151. 15N может измеряться отдельно по одной физической величине. Фиг. 7 показывает другое устройство для изобретения. Это устройство с пассивной обработкой сигнала, например оценка с фазовой дискриминацией. На чипе или, соответственно, носителе 30 находятся чувствительный элемент 15 и опорный элемент 25. Фазовый дискриминатор обозначен позицией 11 и также расположен на носителе 30. Антенна передает сигнал дискриминатора. Ниже описываются дополнительные подробности к уже описанному выше принципу решения с интегрированной неявной опорной функцией примененных структур, или соответственно, элементов на поверхностных акустических волнах, а именно на примере температурного датчика. Этот принцип решения, однако, ни коим образом не ограничивается измерением температуры, а может также применяться для измерения сил, значений давления, света, корпускулярного излучения, влажности и газового балласта. Для измерения таких физических величин может дополнительно также быть предусмотрен имеющий физическую, химическую и/или биологическую активность слой, который со своей стороны также может дополнительно оказывать усиливающее сигнал действие. Такой слой может быть нанесен на поверхность подложки на предусмотренные устройства на поверхностных акустических волнах. Как уже описано выше, система этого другого принципа решения охватывает также чувствительные элементы на поверхностных акустических волнах и относящийся сюда блок запросчика с передающей частью, приемной частью и блоком оценки. В датчике содержатся имеющие ширп структуры на поверхностных акустических волнах. Для опросного сигнала такая структура, как известно, имеет не только определенное время прохождения t, но и внутри структуры также зависящее от частоты опросного сигнала место ответа. Как время прохождения (как и в до сих пор описанных примерах выполнения), так и это место являются зависимыми от внешних влияний, то есть зависимыми от детектируемых датчиком по этой причине измерительных величин, которые оказывают влияние на время прохождения. Такой измерительной величиной является, например, температура датчика. Блоком запросчика излучается опросный сигнал и принимается структурой на поверхностных акустических волнах, которая предпочтительно обладает ширпом. При этом речь идет о высокочастотном сигнале, который в заданной ширине полосы в течение временного интервала опроса имеет частоту, изменяющуюся от одного граничного значения частоты до другого граничного значения частоты. Понятие ширп "chirp" является известным из справочника по высокочастотной технике Meinke, Gundlach "Taschenbuch der Hochfrequenztechnick", главы Q61 и L68. Предусмотренные элементы на поверхностных акустических волнах и область полосы частот опросного сигнала согласованы друг с другом. Фиг. 8 показывает принципиальную схему дальнейшего развития. Позицией 1 обозначен блок запросчика с передающей частью 2, приемной частью 3 и блоком оценки 4. Целесообразным образом здесь одновременно или также последовательно передают два опросных сигнала, один из которых является up-chirp-сигналом (возрастающая частотная модуляция), а другой down-chirp-сигналом (падающая частотная модуляция). Передающая часть посылает таким образом, например, одновременно два импульса передачи 101 и 102, один из которых является - up-chirp-сигналом, а другой down-chirp-сигналом. Датчик 5 принимает эти оба имеющие ширп сигнала. Датчиком 5 передаются два ответных сигнала 103 и 104, которые попадают обратно в приемную часть 3 блока запросчика 1. Фиг. 9 показывает в качестве примера форму выполнения относящегося к этому принципу датчика 5 с преобразователем 121' с антенной 16 и с двумя отражательными устройствами на поверхностных акустических волнах, которые приданы преобразователю для комплектного устройства на поверхностных акустических волнах и находятся на подложке этого устройства или, соответственно, датчика 5. Как видно из фиг. 9,а, речь идет о имеющих ширп отражателях с соответственно изменяющейся в пределах рефлектора периодичностью (и изменяющейся шириной полосы). Их расположение относительно преобразователя 121 выбрано таким образом, что для отражательной структуры 124 ее высокочастотный конец (down-chirp-структура), а для отражательной структуры 125 ее низкочастотный конец (up-chirp-структура) обращен к преобразователю 121. Отражатель 124 действует как устройство сжатия (компрессор) для down-chirp-сигнала, а отражатель 125 как компрессор для up-chirp-сигнала. Одновременная передача двух имеющих ширп (узкополосных) опросных сигналов, соответствующая дисперсия которых согласована с соответствующей им отражательной структурой датчика, приводит в устройстве, как оно показано на фиг. 9,а, к тому, что через преобразователь 121 и антенну 16 в качестве ответного сигнала устройства на поверхностных акустических волнах передаются обратно два сжатых по времени (широкополосных) импульса. Можно также работать с опросными импульсами или с не дисперсивным опросным сигналом (сигналами) и с ведущей к разнице времени прохождения в качестве результата датчика дальнейшей обработкой сигнала. Временной интервал опросных импульсов друг от друга является при данном имеющем ширп расположении отражательных полос отражательных структур 124, 125 зависящим от скорости распространения акустической волны на поверхности материала подложки датчика. Если скорость распространения изменяется, например, при изменяющейся температуре материала подложки или за счет подлежащей измерению газовой нагрузки и тому подобного, то изменяется временной интервал между двумя названными импульсами. Имп