Передаточное устройство

Реферат

 

Передаточное устройство предназначено для автоматического уменьшения передаточного отношения при ускорениях и может быть использовано в коробках передач. Оно состоит из передаточного механизма с по меньшей мере двумя передаточными отношениями, средств сцепления, средств реагирования на крутящий момент для управления средствами сцеплении и средств восприятия осевых нагрузок для осевого перемещения зубчатых колес. Средства реагирования на крутящий момент образованы двумя косозубыми колесами, которые имеют возможность совместного скольжения в осевом направлении. Передаточный механизм может быть планетарным. В нем эпициклическая шестерня соединена с входным валом, водило - с выходным валом. Солнечная шестерня блокируется муфтой свободного хода в момент, когда сцепление расжато. В этот момент устройство работает как редуктор. Солнечная шестерня вращается с эпициклической шестерней и с водилом, когда сцепление сжато. Осевые усилия, воздействующие на солнечную шестерню и на эпициклическую шестерню при работе в режиме редуктора, которые создаются при использовании косозубых колес, стремятся сжать через упорный подшипник пружины и расжать сцепление. Начиная от положения прямого зацепления и при преодолении некоторого предела крутящего момента, сцепление пробуксовывает, что способствует возникновению вышеуказанных осевых сил, которые сжимают пружину и ускоряют выключение сцепления. Устройство работает в режиме редуктора до тех пор, пока крутящий момент на входном валу не уменьшится для того, чтобы обеспечить возможность пружинам вновь сжать сцепление. Передаточное устройство позволяет автоматизировать частично или полностью передачу мощности, в частности, в автомашинах и устранить недостатки, присущие известным автоматическим передачам. 26 з.п.ф-лы, 25 ил.

Изобретение относится к устройствам передачи по крайней мере с двумя передаточными отношениями, в частности, для автомашин.

Кроме устройств передачи с ручным управлением известны также устройства, называемые "автоматической передачей", где планетарные передачи, называемые также "эпициклоидальными передачами", управляются системой гидравлического привода, который сам управляется гидравлической или электрической системой управления, работающей в зависимости от измерения крутящего момента и скорости вращения двигателя и/или автомашины. Измерение крутящего момента проводится косвенно по устройству, определяющему положение педали газа. Вход в автоматическую передачу осуществляется через гидравлическое устройство, называемое "преобразователем крутящего момента", где мощность двигателя передается жидкостью под давлением в момент, когда скорость вращения двигателя превышает режим работы на малых оборотах. Обычно в передачах для автомашин используют шестерни со спиральными зубьями для снижения вибраций и шума при работе.

Несмотря на усилия, которые предпринимались уже в течение 50 лет для усовершенствования классических автоматических передач, они сохраняли большую часть своих первоначальных недостатков таких, как большой вес, чрезмерно высокая стоимость, низкий коэффициент полезного действия, снижение технических характеристик автомашины по сравнению с коробкой передач с ручным управлением.

Цель изобретения - предложение различных устройств, которые позволят автоматизировать частично или полностью передачу мощности, в частности, в автомашинах и устранить недостатки, присущие автоматическим передачам.

В передаточном устройстве, содержащем по меньшей мере передаточный механизм с по меньшей мере двумя передаточными отношениями, включающий корпус, входной и выходной элементы, сочетание зубчатых колес, имеющее косозубые колеса для передачи мощности между входным и выходным элементами, средства сцепления для избирательного соединения части элементов сочетания зубчатых колес для установления двух различных передаточных отношений и средства регулирования на крутящий момент для управления избирательными средствами сцепления, согласно изобретению средства реагирования на крутящий момент образованы двумя косозубыми колесами из сочетания зубчатых колес, которые имеют возможность совместного скольжения в осевом направлении, а передаточный механизм имеет средства восприятия осевых нагрузок для передачи осевого перемещения зубчатых колес по меньшей мере косвенно избирательным средствам сцепления, которые имеют ограниченную способность передачи крутящего момента.

В результате зацепления двух шестерен с косыми зубьями на этих зубчатых венцах возникают осевые силы, действующие согласно изобретению избирательные средства сцепления выполнены с возможностью передачи переменного крутящего момента в зависимости от прилагаемой к ним осевой нагрузки.

Избирательные средства сцепления могут содержать противодействующее поджимающее средство, установленное таким образом, что его осевое воздействие на избирательные средства сцепления противоположно по направлению осевому перемещению двух косозубых колес, образующих средства реагирования на крутящий момент, при этом зацепление избирательных средств сцепления разгружает указанные косозубые колеса.

Избирательные средства сцепления могут представлять собой фрикционные сцепления.

Упомянутый по меньше мере один передаточный механизм установлен в качестве входного механизма между входным элементом и промежуточным передаточным элементом, при этом противодействующие поджимающие средства расположены с возможностью поджима избирательного средства сцепления по направлению к тому его состоянию, которое соответствует более высокому из упомянутых двух передаточных отношений, передаточное устройство, кроме того, содержит по меньшей мере один второй передаточный механизм, установленный между промежуточным передаточным элементом и выходным элементом и имеющий средство, реагирующее на крутящий момент и на скорость вращения, которые он передает для автоматического выбора относительно низкого передаточного отношения, когда крутящий момент относительно высок, и для автоматического выбора относительно высокого передаточного отношения, когда крутящий момент относительно низок и/или скорость вращения относительно высока.

Согласно изобретению входной механизм может содержать противодействующие поджимающие средства, которые создают в основном постоянную нагрузку, и по меньшей мере один второй передаточный механизм, также может содержать косозубые колеса, выполненные с возможностью взаимного скольжения в осевом направлении, и средство для осевого смещения косозубых колес по меньшей мере косвенно к средствам избирательного сцепления, которые имеют ограниченную способность передачи крутящего момента.

Противодействующие поджимающие средства входного механизма могут содержать упругие средства.

Противодействующие поджимающие средства могут содержать тахометрическое средство.

Противодействующие поджимающие средства могут содержать тахометрическое средство, создающее осевую нагрузку, которая изменяется как функция скорости вращения в передаточном механизме.

Противодействующее поджимающее средство представляет собой средство центробежного типа.

При этом между тахометрическим средством и избирательным средство сцепления может быть установлено упругое средство.

Согласно изобретению передаточное устройство может быть снабжено центробежным сцеплением, ведомый диск которого соединен с входным элементом.

Упомянутое центробежное сцепление может иметь систему управления, подсоединенную к ведомому диску для совместного вращения.

Согласно изобретению передаточное устройство может содержать два передаточных механизма, входной из которых с двумя передаточными отношениями установлен между входным и промежуточным элементами, второй механизм выполнен многоступенчатым и установлен между промежуточным и выходным элементами.

Предпочтительно, чтобы входной механизм представлял собой реагирующий на крутящий момент механизм включения понижающей передачи.

Кроме того, согласно изобретению передаточное устройство содержит средство для незначительного увеличения порога крутящего момента при включении во входном механизме пониженной передачи со скоростью вращения входного элемента.

Согласно изобретению избирательные средства сцепления и сочетание зубчатых колес установлены параллельно друг другу.

Кроме того, передаточное устройство может содержать упорные подшипники для взаимного опирания двух зубчатых колес при их аксиальном смещении.

Согласно изобретению между входным и выходным элементами могут быть последовательно установлены передаточные механизмы в форме модулей с двумя передаточными отношениями, поджимающее средство каждого из которых имеет тахометрическое средство.

При этом первый из упомянутых модулей имеет поджимающее средство для включения повышающей передачи.

Сочетание зубчатых колес может быть установлено между входным элементом и одним фрикционным сцеплением и взаимодействовать с ним с возможностью передачи для создания в нем трения, а тахометрическое средство установлено с возможностью избирательного отключения этого фрикционного сцепления и приведения в действие другого фрикционного сцепления.

Согласно изобретению передаточное устройство содержит масляную ванну для работы фрикционного сцепления.

Также согласно изобретению в передаточном устройстве два передаточных механизма могут быть выполнены планетарными, первый из которых имеет косозубые шестерни и в которых входной элемент связан с солнечной шестерней первого планетарного механизма, и посредством избирательного средства сцепления - с солнечной шестерней второго планетарного механизма с возможностью осевого перемещения под действием осевой нагрузки, создаваемой косыми зубьями солнечной шестерни первого планетарного механизма, а тахометрическое противодействующее поджимающее средство введено в контакт с избирательным средством сцепление таким образом, чтобы обеспечить передачу мощности между входным элементом и эпициклической шестерней первого планетарного механизма через второй планетарный механизм.

При этом тахометрическое противодействующее поджимающее средство установлено на входном элементе для совместного вращения.

Кроме того, эпициклические шестерни обоих планетарных механизмов могут быть связаны с корпусом через муфты свободного хода.

Избирательное средство сцепления может содержать второе избирательное средство, которое выполнено с возможностью прямого включения в одном из планетарных механизмов посредством центробежного устройства, установленного с возможностью осевого воздействия на одну из эпициклических шестерен планетарного механизма в направлении, противоположном осевой нагрузке, создаваемой косозубым зацеплением.

И, наконец, входной элемент может быть связан для совместного вращения и осевого перемещения с одним из косозубых колес, образующих средства реагирования на крутящий момент, с одним из элементов избирательного средства сцепления со скосом, введенным для радиального сближения с упомянутым элементом избирательного средства и с установленными между последним и скосом массивными роликами тахометрического средства.

На фиг. 1 представлен схематический вид в перспективе в разрезе планетарной передачи известного типа с указанием некоторых усилий, оказывающих воздействие при работе; на фиг. 2 и 3 - в плане частичные виды зубчатых венцов планетарной шестерни и соответственно эпициклической шестерни планетарного механизма на фиг. 1; на фиг. 4 - вариант кривой крутящего момента теплового двигателя в зависимости от скорости вращения для различных степеней открытия дроссельной заслонки; на фиг. 5 - половина вида в осевом разрезе механизма с двумя передаточными отношениями согласно изобретению; на фиг. 6 и 7 - половина видов одного и того же механизма при включении его высокого передаточного отношения и соответственно его низкого передаточного отношения; на фиг. 8 - половина вида в осевом разрезе второго механизма согласно изобретению; на фиг. 9-12 - частичные виды в разрезе центробежного сцепления механизма, представленного на фиг. 8 во время этапов работы; на фиг. 13 - вид, аналогичный фиг.8, но показывающий на своей правой части механизм, который работает при прямом зацеплении, а на левой части механизм работает согласно своему второму передаточному отношению; на фиг. 14 - часть устройства, представленного на фиг. 8, на которой изображены некоторые опоры во время работы, согласно первому передаточному отношению; на фиг. 15 - вид части устройства фиг. 11, на котором изображены некоторые опоры во время работы на режиме торможения согласно второму передаточному отношению; на фиг. 16 - вид, аналогичный виду на фиг.8, но для третьего варианта выполнения изобретения; на фиг. 17 - вид части устройства, изображенного на фиг.16, при выходе из процесса сцепления; на фиг. 18 и 19 - половины осевых видов двух других вариантов выполнения изобретения; на фиг. 20 - вид в перспективе в разрезе другого варианта выполнения изобретения; на фиг. 21-24 - половины видов передачи, изображенной на фиг.20, в четырех различных рабочих положениях, при этом корпус передачи изображен только на фиг. 20; фиг. 25 - вид в разрезе устройства заднего хода варианта выполнения согласно фиг. 20.

Как представлено на фиг. 1, планетарный механизм содержит солнечную шестерню 1 с косыми зубьями и с наружным зацеплением, эпициклическую шестерню 2 с косыми зубьями и с внутренним зацеплением, диаметр которой больше диаметра зубчатого венца солнечной шестерни 1, и сателлиты 3, расположенные между солнечной шестерней 1 и эпициклической шестерней 2, входящие в зацепление с солнечной шестерней 1 и эпициклической шестерней 2.

Во время вращения сателлиты опираются на водило 4, изображенное только тонкой линией. Если предположить, что вал 6, с которым за одно целое выполнена солнечная шестерня 1, является, например, входным элементом, то можно, например, блокировать эпициклическую шестерню 2, что позволит водилу 4 воспринимать вращающее движение соосно валу 6, но менее быстрое, чем движение вала 6. В этот момент планетарный механизм работает как понижающий редуктор с понижающим относительно высоким передаточным отношением. Если, напротив, блокируют солнечную шестерню 1 и соединяют эпициклическую шестерню 2 с входом и водило 4 с выходным элементом, то планетарный механизм работает еще как понижающий редуктор, но с меньшим понижающим передаточным отношением, чем в предыдущем случае. Если же, напротив, соединяют друг с другом эпициклическую шестерню 2 с водилом 4 или водило 4 с валом 6, или еще эпициклическую шестерню 2 с валом 6, то весь планетарный механизм вращается как одно целое и представляет собой устройство прямого зацепления. Можно еще также блокировать водило 4, при этом вал 6 и эпициклическая шестерня 2 будут вращаться в противоположном направлении и, таким образом, будет создано устройство заднего хода, понижающее в случае, если вход осуществляется на вал 6, и повышающее, если вход осуществляется на эпициклическую шестерню 2.

Для варианта работы в качестве редуктора или в качестве устройства заднего хода стрелками Fp и Fc указаны усилия на зубчатых венцах солнечной шестерни 1 и на эпициклической шестерне 2, когда, например, эпициклическая шестерня блокирована и когда солнечная шестерня 1 передает крутящий момент в направлении по стрелке C. Реактивная сила, которую зубья сателлитов 3 прилагают на зубья солнечной шестерни 1, обозначенная стрелкой Fp, направлена в противоположном направлении стрелки C вокруг оси механизма. Сателлит 3 воспринимает крутящий момент H и передает, таким образом, эпициклической шестерне 2 усилие Fc, которое ориентировано в одном и том же направлении, что и усилие Fp вокруг оси механизма.

Эти усилия Fp и Fc оказывают воздействие на боковые поверхности зубьев солнечной шестерни 1 и соответственно эпициклической шестерни 2. Благодаря тому, что эти боковые поверхности наклонены относительно оси механизма ввиду винтовой формы зубчатого венца, усилия Fp и Fc направлены в действительности под наклоном (фиг. 2 и 3) относительно оси механизма, т.е. перпендикулярно поверхности контакта зубьев (за исключением влияния трения). Эти усилия Fp и Fc, возникающие при контакте, имеют окружную составляющую Fcp и Fcc, которая полезна для передачи крутящего момента, и осевую составляющую FAP и FAC, которую будут использовать согласно изобретению.

Зубья солнечной шестерни 1 наклонены (фиг. 1) в противоположном направлении относительно зубьев эпициклической шестерни 2 и относительно оси механизма таким образом, что осевое усилие FAP, воздействующее на солнечную шестерню 1, ориентировано в противоположном направлении относительно осевого усилия, воздействующего на эпициклическую шестерню 2 (фиг.3). Следовательно, в варианте, представленном на фиг.1, с учетом направления C крутящего момента, передаваемого солнечной шестерней 1, на последнюю воздействует осевое усилие в сторону к лицу, смотрящему на фиг.1, в то время как эпициклическая шестерня воспринимает нагрузку в осевом противоположном направлении. Что касается сателлитов 3, на которые воздействуют две осевые противоположные реакции в их точках зацепления, то они полностью уравновешены. Таким образом, солнечные и эпициклические шестерни с косыми зубьями образуют средство реагирования на крутящий момент.

При работе в положении прямого зацепления с помощью сцепления, соединяющего вход с выходом планетарного механизма, зубчатые соединения не передают более крутящий момент и, следовательно, осевые усилия исчезают, например, посредством соединения эпициклической шестерни и водила в то время, как вход осуществляется на солнечную шестерню, то осевые усилия существуют на солнечной шестерни и на водиле.

Теперь прокомментируем со ссылками на фиг. 4 кривые крутящего момента Cм, которые выражены в примере мН в зависимости от скорости вращения двигателя. Видно, что когда двигатель работает на полном газе, то крутящий момент проходит через максимальное значение для среднего режима, т.е. порядка 3000 об/мин, вследствие этого крутящий момент уменьшается до 6000 об/мин, что является максимальным режимом нормального использования двигателя.

Таким образом, крутящий момент составляет не только измерение усилия, которое требует водитель от двигателя, но также по крайней мере начиная от некоторого режима, приблизительно равного 1500 об/мин, измерение скорости вращения двигателя.

Иначе, если крутящий момент выше в примере 160 мН, величина, которая отмечена горизонтальной линией, то знают, что режим двигателя не может превышать 4500 об/мин.

Теперь будут описаны различные варианты выполнения изобретения, в которых использованы приведенные положения со ссылками на фиг.5 - 25, где, в частности, зазоры и осевые ходы увеличены для облегчения понимания, в реальности же эти зазоры и ходы могут быть просто трудноразличимы при наблюдении невооруженным глазом.

Передаточное устройство (фиг. 5) представляет собой механизм с двумя передаточными отношениями с автоматическим переключением передач в зависимости от крутящего момента, присутствующего на входном элементе 7, который жестко соединен с эпициклической шестерней 2 планетарного механизма 5, а также с первым элементом 8 многодискового сцепления с масляной ванной. С одной стороны водило 4 планетарного механизма выполнено за одно целое с другим элементом 11 сцепления 9, с другой стороны - с выходным элементом 12 механизма. Солнечная шестерня 1 планетарного механизма установлена для того, чтобы вращаться вокруг выходного элемента 12 в направлении, называемом "прямая направлением", т.е. в нормальном направлении вращения элементов 7 и 12. Напротив, муфта свободного хода 14, установленная между планетарной шестерней 1 и корпусом 16 механизма, который изображен частично, препятствует вращению солнечной шестерни в обратном направлении.

Солнечная шестерня 1, эпициклическая шестерня 2 и водило 4 установлены таким образом, что каждый момент может скользить свободно относительно двух других. Упорный осевой подшипник 17 установлен между солнечной шестерней 1 и водилом 4 для того, чтобы обеспечить возможность солнечной шестерни 1 опираться на водило 4 в направлении разжатия (выключения) сцепления 9, косозубые венцы планетарного механизма ориентированы таким образом, что осевая реакция FАР, воздействующая на солнечную шестерню 1 во время вращения относительно сателлитов 3, была бы направлена в направлении, при котором солнечная шестерня 1 прижималась бы к водилу 4 через упорный подшипник 17.

Это толкающее осевое усилие, воздействующее на водило 4, уравновешивается тарированным противодействующим поджимающим средством, которое оказывает воздействие в противоположном направлении, и состоит из сжимающей пружины 18, установленной между стенкой 19, выполненной за одно целое с эпициклической шестерней 2, и толкателем 21, установленным с возможностью скольжения в осевом направлении относительно стенки 19, и опираться на водило 4 через осевой упорный подшипник 22 таким образом, чтобы усилие пружины 18 воздействовало на водило 4 в противоположном направлении относительно осевой реакции FАР.

В нерабочем положении (фиг.6) усилие пружины 18 не уравновешивается никакой реакцией солнечной шестерней 1, и, следовательно, толкатель 21 толкает водило 4 в его крайнее положение влево относительно эпициклической шестерни 2, что приводит к сжатию избирательного средства сцепления 9. Вследствие этого сжат упорный подшипник 22, а упорный подшипник 17 сжат. При запуске, если передаваемый крутящий момент не превышает некоторого порога, соответствующего мощности передачи сцепления 9 при сжатии с усилием пружины 18, то сцепление 9, которое соединяет жестко друг с другом эпициклическую шестерню 2 и водило 4, обеспечивает работу планетарного механизма при прямом зацеплении, т. е. при этом выходной элемент 12 вращается с одной и той же скоростью, что и входной вал 7. Передаваемый крутящий момент не оказывает никакого осевого усилия на солнечную шестерню 1, так как он передается не с помощью зубчатого зацепления, а сцеплением 9, которое замыкает, так сказать, зубчатые соединения.

Если на входном элементе 7 крутящий момент превышает передающую мощность сцепления 9, последнее начинает пробуксовывать и происходит некоторое относительное вращение между зубчатыми венцами эпициклического ряда. Это относительное вращение вызывает в этой эпициклической шестерне 2 некоторое осевое усилие FAC (фиг. 7), а в сателлите 3 осевое усилие направлено в противоположную сторону (не показано), передаваемое водилу 4. Эти два осевых усилия стремятся разжать сцепление 9 в противоположном направлении усилию пружины 18 таким образом, что пробуксовка в сцеплении увеличивается и так далее до полного расжатия сцепления 9. В определенный момент пробуксовка сцепления 9 становится такой, что солнечная шестерня 1 стремиться в противоположном направлении, чему препятствует муфта свободного хода 14. С этого момента осевое усилие в сателлитах исчезает (фиг. 7). После блокировки солнечные шестерни 1 муфтой свободного хода 14, водило 4, а вместе с ним выходной элемент 12 вращаются в прямом направлении со скоростью, меньшей скорости входного элемента 7. В этот момент механизм работает как редуктор. Если бы не было муфты свободного хода 14, то приводимая в движение нагрузка, создаваемая автомашиной, остановила бы элемент 12 и солнечная шестерня 1 вращалась бы без всякой пользы в противоположную сторону.

Если на входном элементе 7 крутящий момент снова уменьшится до такой степени, что осевое усилие FAP станет меньше усилия пружины 18, последняя вызывает возврат в положение, представленное на фиг. 6. Порог крутящего момента, начиная от которого это происходит, является нижним порогом, который ниже верхнего порога, и начиная от него сцепление 9 пробуксовывает. Действительно, можно обеспечить зависимость этих двух различных порогов, верхний порог определяется передающей мощностью сцепления под действием пружин 18, нижний порог определяется углом наклона зубьев зубчатого зацепления относительно оси также относительно усилия пружин 18. Оба порога могут выбираться независимо друг от друга при конструировании. В момент, когда пружина 18 производит возврат в прямое зацепление, сцепление 9 резко включается без чрезмерной пробуксировки, так как передаваемый крутящий момент ниже нижнего порога, т.е. ниже значительно верхнего порога, соответствующего передающей мощности сцепления 9.

Если предположить (фиг. 4), что пружина 18 тарирована так, что сцепление 9 пробуксовывало при крутящем моменте, превышающем 160 мН, то при режиме работы двигателя, превышающем 1400 об/мин и ниже 4500 об/мин, если водитель резко увеличивает мощность двигателя, например, для обгона или преодоления преграды, то крутящий момент, развиваемый двигателем, превысит верхний порог 160 мН, планетарный механизм будет функционировать как редуктор, увеличивая крутящий момент, подводимый к колесам автомашины, по сравнению с крутящим моментом, развиваемым двигателем. Режим работы двигателя увеличивается и возможно перейдет в полосу, где крутящий момент ниже верхнего порога, не снижаясь между тем ниже нижнего порога. Как только водитель отпускает педаль газа, крутящий момент резко уменьшается и пружина 18 переводит механизм в прямое зацепление.

Так как известен максимальный режим, равный 4500 об/мин в примере, начиная от которого крутящий момент не может более достигнуть или превысить порог 160 мН, то можно быть уверенным, что автоматический переход на работу в режиме редуктора в зависимости от крутящего момента на входном элементе 7 не может привести к чрезмерной перегруженному режиму для мотора, при одном условии, если понижающее передаточное отношение, вводимое планетарным механизмом, было бы ниже отношения между максимальным режимом и режимом, для которого крутящий момент верхнего порога предназначен. Например, если крутящий момент верхнего порога обеспечивает до 4500 об/мин и максимальный режим двигателя равен 6000 об/мин, то необходимо, чтобы понижающее передаточное отношение было бы максимально приблизительно равно 1,3, так как 600/4500 = 1,33.

Работа при режиме торможения происходит при прямом зацеплении, так как крутящий момент меняет направление реакции на планетарной шестерне 1 и эпициклической шестерне 2 таким образом, что пружина 18 удерживает при любых обстоятельствах сцепление во включенном состоянии.

Согласно другому варианту (фиг. 8) входной элемент 7 соединен при вращении с ведомым диском 23 центробежного сцепления 24, содержащего, кроме того, ведущий диск 26. Как показано на фиг. 9 - 12, ведущий диск 26 жестко соединен с цилиндрической опорой 27, на которой закреплены пластинчатые пружины 28 одним из своих концов в точках, расположенных по периферии сцепления. Другой конец пластинчатой пружины 28 закреплен к колодке 29, имеющей накладку 31 и фрикционную накладку 32.

Ведомый диск 23 имеет также сам цилиндрическую опору 33, диаметр которой точно меньше опоры 27 ведущего диска 26. Аналогично пластинчатые пружины 34, закрепленные одним из своих концов к опоре 33, снабжены на другом конце колодками 36, содержащими накладку 37 и фрикционную колодку 38, расположенную напротив обода 39, который охватывает их и который закреплен к внутренней в радиальном направлении стенке цилиндрической опоры 27.

Когда скорость на одной из двух опор 27 и 33, жестко соединенных с двумя дисками 26 и 23, не превышает некоторый нижний порог, равный, например, 1200 об/мин, то пластинчатые пружины 28 и 34 удерживают колодки 29 и соответственно 36 в отведенном положении от цилиндрической внутренней поверхности 41 ведомого диска 23 и соответственно внутренней цилиндрической поверхности обода 39 (фиг. 9).

Если, начиная от этого положения, скорость ведущего диска увеличивается, то пластинчатые пружины 28 и колодки 29 создают в себе центробежную силу, которая превышает усилие, действующее в обратном направлении в результате изгиба и создаваемое пластинчатыми пружинами 28 таким образом, что колодки задевают и трутся о стенку 41 в направлении создания заклинивания на пластинчатых пружинах 28.

В результате диск 23 приводится во вращение в том же направлении, в котором вращается ведущий диск 26. В свою очередь опора 33 приводится во вращение, также как и пластинчатые пружины 34 и колодка 36, которые после того как ведомый диск 23 достигнет некоторой скорости начинают в свою очередь задевать обод 39, создавая трение, что увеличивает силу трения между двумя дисками.

Функцией опоры 33, соединенной с ведомым диском 23, и колодок 36, взаимодействующих с ободом 39, является предупреждение хорошо известного недостатка центробежных совпадений, который не позволяет вновь включать сцепление, если двигатель остановлен, в то время как сцепление было в выключенном положении. Это опасно в случае, когда автомашина движется на спуске.

В случае (фиг. 12) сцепления, выполненного согласно изобретению, опора 33 и колодки 36 приводятся в этом случае во вращение, а колодки 36 входят во фрикционный контакт с ободом 39, который приводит в движение ведущий диск 26 и, следовательно, заводит вновь двигатель автомашины. После достижения этого результата или в момент его достижения колодки 29 прижимаются в свою очередь к стенке 41 и положение (фиг. 1) будет вновь достигнуто.

Входной элемент 7 входит в зацепление (фиг. 8) посредством шлицов для осевого скольжения с солнечной шестерней 51 планетарного механизма 49, водило 54 которого может быть соединено с выходным элементом 62 посредством устройства заднего хода 63.

Устройство заднего хода 63 содержит планетарный механизм, эпициклическая шестерня 66 которого выполнена за одно целое с водилом 54, солнечная шестерня 67 выполнена за одно целое с выходным элементом 62, а водило 68 может быть введено с помощью подвижного зубчатого колеса с ручным приводом 69 в кулачковое зацепление 71 с водилом 54 механизма 49 для осуществления прямого зацепления водила 54 с выходным элементом 62 (фиг. 8) или введено в кулачковое зацепление 72 с корпусом 16 для того, чтобы водило 68 не могло вращаться и осуществляло изменение направления движения в обратном направлении между водилом 54 планетарного механизма 49 и выходным элементом 62, который приводит автомашину в движение заднего хода.

Водило 54, солнечная шестерня 51 и эпициклическая шестерня 52 установлены с такой возможностью, что каждый из них может скользить в осевом направлении относительно двух других.

Эпициклическая шестерня 52 планетарного механизма 49 выполнена за одно целое с первым элементом 58 сцепления 59, другой элемент 61 которого выполнен за одно целое с водилом 54. Согласно своей функции обгонная муфта 64 расположена между эпициклической шестерней 52 и корпусом 16 для того, чтобы воспрепятствовать вращению эпициклической шестерни 52 в обратном направлении, когда она освобождена избирательным средством сцепления 59.

Сцепление 59 является многодисковым сцеплением и приводится в действие грузиками 73, шарнирно закрепленными вокруг вертикальной оси 74 относительно водила 54 таким образом, чтобы поворачиваться в радиальном направлении наружу вокруг оси 74, в то время как носок 76 этих грузиков сжимает посредством толкателя 77 фрикционный диск сцепления 59. Для удобства грузики 73 состоят из вырубленных из листа совершенно одинаковых деталей (фиг. 8). В осевых плоскостях механизма они удерживаются соответствующими прорезями 78 элемента сцепления 61. В направлении к оси планетарного механизма каждый грузик 73 удлинен за счет лапки 81, которая опирается в кольцо 82, вращающееся с водилом, так как они прижаты в осевом направлении к корпусу 16 осевым упорным подшипником 83. Благодаря наличию кольца 82 грузики 73 могут поворачиваться в радиальном направлении наружу только тогда, когда водило 54 планетарного механизма 49 перемещается в осевом направлении налево (фиг. 8 и 13). Однако (фиг. 14) такому перемещению препятствует осевая реакция FAP солнечной шестерни 51, когда последняя передает крутящий момент сателлитам 53 планетарного механизма 49, при этом эта осевая реакция передается водилу 54 посредством упорного подшипника 57. В таком случае осевая реакция в противоположном направлении FAC, воздействующая на эпициклическую шестерню 52, воспринимается элементом 7 через осевой упорный подшипник 84 и стопорное кольцо 86.

Элемент 7 также прижат другим стопорным кольцом 87 к фланцу 88, шлицы которого входят в зацепление со шлицами элемента 7. Вблизи периферии этого фланца расположены грузики 89, шарнирно установленные относительно этого фланца вокруг оси 91 с возможностью отклоняться в радиальном направлении от оси планетарного механизма, в то время как носик этих грузиков опирается в ведомый диск 23, который застопорен в осевом направлении. Это оказывает на фланец 88 давление, передаваемое на элемент 7 в направлении, противоположном направлению реакции FAC эпициклической шестерни 52. Муфта свободного хода 93, установленная между эпициклической шестерней 52 и солнечной шестерней 51, заставляет солнечную шестерню 51 вращаться по крайней мере также быстро, как и эпициклическая шестерня 52. Следовательно, при работе на удержание планетарный механизм 49 работает таким образом, чтобы скорость входного элемента 7 была по крайней мере равна скорости выходного элемента 62.

Передаточное устройство содержит другой планетарный механизм 94, содержащий солнечную шестерню 101, приводимую во вращение элементом 7 посредством шлицов с возможностью скольжения в осевом направлении, водило 104, которое соединено с эпициклической шестерней 52 планетарного механизма 49 через муфту свободного хода 96, которая не позволяет ему вращаться с большей скоростью, чем эпициклическая шестерня 52, и эпициклическую шестерню 102, которая соединяется избирательно с корпусом 16 через многодисковое сцепление 109. Три элемента 101, 102, 104 установлены таким образом, что каждый может скользить в осевом направлении относительно двух других. Косозубые венцы планетарного механизма 94 наклонены в противоположном направлении относительно зубчатых венцов планетарного механизма 49 таким образом, чтобы осевое усилие венца эпициклической шестерни 102 (фиг. 13) было бы направлено направо в направлении, соответствующем сжатию сцепления 109. Осевое усилие солнечной шестерни 101 ориентировано налево (фиг. 13) и оно передается корпусу 16 посредством водила 104 и двух осевых упорных подшипников 97 и 98. Другими словами, солнечная шестерня 101 и эпициклическая шестерня 102 работают как клещи, сжимающие между своими губками сцепление 109, часть корпуса 16, осевой упорный подшипник 98, часть водила 104 и осевой упорный подшипник 97. Наличие водила 104 в этом "сендвиче" преследует единственную цель - позволить водилу 104 дойти до муфты свободного хода 96.

Кроме того, на элементе 7 установлен ободок 11, опирающиеся на эпициклическую шестерню 102 через осевой подшипник 112 в направлении, способствующем сжатию сцепления 109, т.е. в одном и том же направлении с направлением осевого усилия эпициклической шестерни 102. Солнечная шестерня 101 может опираться в том же самом направлении в стопорное кольцо 86 элемента 7.

Передаточное устройство работает следующим образом.

При запуске (фиг. 8) все сцепления разжаты. Если двигатель переходит от своего режима работы на низких оборотах, то происходит сперва сжатие центробежного сцепления 24, т.е. приведение в движение входного элемента 7 и солнечной шестерни 51, точнее стремление эпициклической шестерни 52 вращаться в обратном направлении, так как нагрузка от груза, приводимого в движение, передаваемая на водило 54, стремится затормозить последнее. Поскольку муфта свободного хода 64 не позволяет эпициклической шестерне 52 вращаться в обратном направлении, то она остается в неподвижном положении и блокированная муфтой свободного хода 64 и водилом 54 начинает вращаться с уменьшенной скоростью, например со скоростью, в четыре раза меньшей, чем скорость входного элемента 7. Вал 62 также приводится в движение при такой же скорости, так как кулачковое