Приводной кинематический узел беспилотного воздушного летательного аппарата

Реферат

 

Изобретение относится к авиастроению и касается конструирования приводного кинематического узла беспилотного воздушного летательного аппарата для передачи вращающего момента от двигателя на трансмиссию узла соосных несущих винтов. Сущность изобретения состоит в том, что в приводном кинематическом узле, содержащем подузлы сцепления двигателя и сцепления трансмиссии, соединенные приводным валом, подузел сцепления трансмиссии включает внешнюю шлицевую муфту и взаимодействующую с ней посредством зацепления зубчатую шлицевую муфту, причем внешняя шлицевая муфта соединена с одним из концов приводного вала посредством штырьево-манжетного соединителя, а узел сцепления двигателя включает внутреннюю шлицевую муфту и взаимодействующую с ней посредством дополнительных зубьев внешнюю шлицевую муфту, причем внутренняя шлицевая муфта соединена с другим концом приводного вала посредством штырьево-манжетного соединителя, согласно изобретению подузел сцепления двигателя снабжен коническим переходником, передающим вращающий момент от двигателя приводному валу через упорную муфту и шарикоподшипники, при этом упорная муфта жестко центрирована посредством шарикоподшипников между коническим переходником и внешней шлицевой муфтой. Подузел сцепления двигателя может быть снабжен цапфой, связанной с коническим переходником для передачи на него вращающего момента от конусного выходного вала двигателя. Технический результат реализации изобретения состоит в оптимизации конструкции вышеуказанного узла. 4 з.п. ф-лы. 32 ил.

Изобретение относится к приводному кинематическому узлу беспилотного воздушного летательного аппарата для передачи вращающего момента от двигателя на трансмиссию узла соосных несущих винтов.

Беспилотные летательные аппараты (БПЛА) используют для выполнения множества различных задач, в том числе для наблюдения, разведки, захвата цели, целеуказания, сбора данных, передачи данных в системах связи, в качестве ложных целей, для постановки помех и т.д. При этом главным образом используются БПЛА, имеющие типовую самолетную конфигурацию, т.е. фюзеляж, крылья с горизонтально установленными двигателями для горизонтального полета и хвостовое оперение, в противоположность БПЛА вертолетного типа, что объясняется целым рядом причин.

Во-первых, конструкция, изготовление и функционирование крылатых БПЛА являются экстраполяцией авиационной технологии пилотируемых аппаратов и, следовательно, могут выполняться относительно просто и экономично. В частности, аэродинамические характеристики таких БПЛА хорошо документированы, так что пилотаж таких летательных аппаратов, будь то с помощью дистанционных команд, передаваемых по каналу передачи данных на БПЛА, и/или программного обеспечения бортового компьютера, осуществляется относительно просто.

Во-вторых, радиус действия и скорость таких БПЛА обычно больше, чем у БПЛА вертолетного типа, а их более высокая грузоподъемность позволяет крылатым БПЛА нести большую целевую нагрузку и/или больший запас топлива, благодаря чему увеличивается боевая эффективность БПЛА. Эти качества делают крылатые БПЛА более пригодными, чем БПЛА вертолетного типа для решения задач определенного характера, для которых критичными являются рабочий ресурс, дальность действия и грузоподъемность.

Однако крылатые БПЛА имеют существенный недостаток, который ограничивает их применение. Так, для оптимального выполнения многих типовых задач, упомянутых выше, желательно, чтобы БПЛА имели возможность сохранять пространственную систему отсчета координат неподвижной относительно статических точек на земле в течение продолжительного периода времени, например, при захвате цели. Известно, что летные качества крылатых БПЛА не позволяют им сохранять пространственную систему отсчета координат неподвижной относительно статических точек на земле, т.е. зависать. Следовательно, аппаратура для выполнения задач на крылатых БПЛА должна включать в свой состав сложные, чувствительные и дорогостоящие средства компенсации движения, чтобы требуемым образом выполнять такие задачи, т.е. сохранять постоянный угол наблюдения для статических точек на земле.

В противоположность этому БПЛА вертолетного типа аэродинамически подходят для решения задач, требующих зависания. Несущими винтами главного узла несущих винтов таких БПЛА можно управлять для обеспечения зависания БПЛА в неподвижной пространственной системе отсчета координат относительно статических точек на земле.

Из патента США N 3002710 известно механическое устройство для передачи мощности от турбины через соединительный вал на зубчатую передачу для приведения во вращение несущего винта. Механизм отбора мощности от турбины содержит муфту свободного хода, имеющую стопорные ролики, установленные на выходном валу турбины. Муфта свободного хода заканчивается полым валом с внутренними шлицами, на котором со скольжением установлена втулка с внешними шлицами, имеющая оконечный фланец. На оконечном фланце этой втулки болтами закреплен колоколообразный элемент с внутренними шлицами, внутри которого установлен кольцеобразный элемент с внешними шлицами, входящий в зацепление с внутренними шлицами колоколообразного элемента. Кольцеобразный элемент с внешними шлицами закреплен болтами на оконечном фланце соединительного вала. Между кольцеобразным и колоколообразным элементами размещено амортизирующее средство. Любое расширение в осевом направлении компенсируется перемещением шлицов колоколообразного элемента относительно внешних шлицов кольцеобразного элемента. Устройство компенсации расширения такого же типа предусмотрено на конце соединительного вала вблизи зубчатой передачи трансмиссии.

Из патента США N 4207758 известен приводной кинематический узел вертолета, содержащий подузел сцепления вала, предназначенный для передачи вращающего момента от приводного вала, приводимого во вращение двигателем, к приводному валу для осуществления привода трансмиссии. Узел сцепления вала содержит муфты с элементами фланцевого типа, имеющими возможность соединения с соответствующим приводным валом посредством соединительных элементов в виде гибких строп из композиционного материала высокой прочности. В известной конструкции приводного узла, однако, имеется возможность существования углового рассогласования между осями ведущего (приводного) и ведомого валов, соединенных с муфтой подузла сцепления вала.

Анализ предшествующего уровня техники показывает, что существует потребность в БПЛА вертолетного типа, обеспечивающего решение широкого спектра рекогносцировочных и/или связных задач, особенно тактических рекогносцировочных задач. При этом конструкция такого БПЛА должна быть оптимизирована для получения требуемых эксплуатационных характеристик.

Задачей изобретения является создание приводного кинематического узла для БПЛА, конструкция которого оптимизирована для максимизации допустимых осевых, угловых и/или параллельных взаимных смещений между двигателем БПЛА и узлом несущих винтов, обусловленных механическими связями ведущего вала двигателя с подузлом трансмиссии посредством кинематической цепи элементов шлицевых соединений.

Кроме того, задачей изобретения является выполнение приводного вала для приводного кинематического узла в виде торсиона таким образом, чтобы обеспечить выполнение им функции предохранения трансмиссии и узла несущих винтов от вибрационных моментных нагрузок со стороны двигателя.

Указанный технический результат достигается тем, что в приводном кинематическом узле БПЛА для передачи вращающего момента от двигателя на трансмиссию узла соосных несущих винтов, содержащем подузлы сцепления двигателя и сцепления трансмиссии, соединенные приводным валом, при этом подузел сцепления трансмиссии включает внешнюю шлицевую муфту и взаимодействующую с ней посредством зацепления зубчатую шлицевую муфту, причем внешняя шлицевая муфта соединена с одним из концов приводного вала посредством штырьево-манжетного соединителя, а подузел сцепления двигателя включает внутреннюю шлицевую муфту и взаимодействующую с ней посредством дополнительных зубьев внешнюю шлицевую муфту, причем внутренняя шлицевая муфта соединена с другим концом приводного вала посредством штырьево-манжетного соединителя, в соответствии с изобретением подузел сцепления двигателя снабжен коническим переходником, передающим вращающий момент от двигателя приводному валу через упорную муфту и шарикоподшипники, при этом упорная муфта жестко центрирована посредством шарикоподшипников между коническим переходником и внешней шлицевой муфтой.

При этом подузел сцепления двигателя предпочтительно снабжен цапфой, связанной с коническим переходником для передачи на него вращающего момента от конусного выходного вала двигателя.

Кроме того, приводной вал предпочтительно выполнен в виде трубы, внутренний и внешний диаметры которой соответствуют значениям, обеспечивающим трубе свойство торсиона, выполняющего функцию предохранения трансмиссии и узла несущих винтов от вибрационных моментных нагрузок со стороны двигателя.

При этом внутренняя шлицевая муфта подузла сцепления двигателя и внешняя шлицевая муфта подузла сцепления трансмиссии предпочтительно могут быть снабжены балансировочным грузом приводного вала.

На фиг.1 изображен пространственный вид с вырывом варианта осуществления БПЛА соответственно изобретению; на фиг.2 - вид в поперечном сечении, иллюстрирующий предпочтительный аэродинамический профиль тороидального фюзеляжа БПЛА по фиг.1; на фиг.3 - вид в поперечном сечении, иллюстрирующий приводной кинематический узел для БПЛА, выполненный согласно изобретению; на фиг.4 - увеличенный вид в поперечном сечении части приводного кинематического узла по фиг.3; на фиг.5 -частичный вид в плане, иллюстрирующий вариант осуществления узла несущих винтов для БПЛА, соответствующего изобретению; на фиг.6 - вид в плане сверху варианта осуществления подузла кольца автомата перекоса для узла несущих винтов по фиг.5; на фиг.7 - вид сбоку подузла кольца автомата перекоса по фиг.6; на фиг.8 - вид в поперечном сечении предпочтительного варианта осуществления соосного подузла трансмиссии/центральной втулки для узла несущих винтов по фиг.5; на фиг.9 - вид в плане сверху опорной конструкции центральной втулки соосного подузла трансмиссии/центральной втулки по фиг. 8; на фиг. 10 показана конфигурация известного шлицевого/конусного опорного подузла для узла несущих винтов; на фиг.11 - конфигурация объединенного шлицевого/конусного опорного подузла узла несущих винтов для БПЛА, соответствующего изобретению; на фиг.12 дан вид в плане втулки несущих винтов объединенного шлицевого/конусного опорного подузла по фиг.11; на фиг. 13 - вид в поперечном сечении втулки несущих винтов по фиг.12; на фиг.14 - вид в плане узла верхнего несущего винта для БПЛА, соответствующего изобретению; на фиг.15 - боковой вид с вырывами узла несущего винта по фиг. 14; на фиг.16 - частичный увеличенный вид фиг.15 иллюстрирующий демпфирующий подузел для БПЛА, соответствующего изобретению; на фиг.17 - вид демпфирующего подузла в поперечном сечении по линии А-А на фиг.16; на фиг.18 - график рабочей кривой для БПЛА, соответствующего изобретению, в условиях резонанса узла несущих винтов; на фиг.19 - вид в поперечном сечении лонжеронного сегмента единого конструктивного узла торсионной трубы и лонжерона лопастного подузла для БПЛА, соответствующего изобретению; на фиг.20 - вид в поперечном сечении сегмента торсионной трубы единого конструктивного узла торсионной трубы и лонжерона лопастного подузла для БПЛА, соответствующего изобретению; на фиг.21 - график, определяющий предварительную закрутку гибкой балки лопасти несущего винта для БПЛА, соответствующего изобретению; на фиг.22 - частичный вид в плане оптимального расположения сочленения лопасти узла несущего винта БПЛА, соответствующего изобретению; на фиг.23 - график, показывающий смещение оптимальной позиции сочленения лопасти относительно внешнего центра тяжести лопастного подузла; на фиг. 24 показана схема известной установки опоры тяги управления шагом для обычного узла несущих винтов; на фиг.25 - схема установки опоры тяги управления шагом для узла несущих винтов согласно изобретению; на фиг. 26 представлен вид в плане варианта осуществления тороидального фюзеляжа БПЛА по фиг.1; на фиг.27 - вид профиля C-образной кольцевой конструкции тороидального фюзеляжа БПЛА, соответствующего изобретению; на фиг.28 - вид в поперечном сечении по линии Б-Б на фиг.26; на фиг. 29 - вид в поперечном сечении по линии В-В на фиг.26; на фиг.30 - вид в поперечном сечении по линии Г-Г на фиг.26; на фиг.31 - вид в поперечном сечении по линии Д-Д на фиг.26; на фиг.32 - увеличенный вид сопряженной поверхности тороидального фюзеляжа по линии Е-Е на фиг. 26.

Фиг. 1 и 2 иллюстрируют вариант осуществления БПЛА 10, соответствующего изобретению. БПЛА 10 содержит тороидальный фюзеляж 20, имеющий аэродинамический профиль 22, полетное и специальное оборудование 30, энергетическую подсистему 50 и узел 100 несущих винтов. Аэродинамический профиль 22 тороидального фюзеляжа 20 описываемого варианта осуществления может быть оптимизирован для минимизации моментов кабрирующего изменения шага во время горизонтального полета. Один из вариантов аэродинамического профиля 22 для БПЛА 10 описан в патенте США N 5150857. Другой вариант осуществления БПЛА 10, содержащего тороидальный фюзеляж, имеющий полуцилиндрический аэродинамический профиль, описан в патенте США N 5152478. Этот вариант использует циклический шаг для компенсации создаваемых фюзеляжем моментов кабрирующего изменения шага, испытываемых во время горизонтального полета.

В рассматриваемом варианте осуществления БПЛА 10 диаметр тороидального фюзеляжа 20 составляет около 1,98 м, высота оболочки тороидального фюзеляжа 20 - около 0,48 м, масса незагруженного БПЛА - около 79,3 кг, общая масса - около 113,4 кг. Тороидальный фюзеляж 20 имеет множество опорных распорок 24, которые жестко прикреплены к узлу 100 несущих винтов в фиксированном соосном положении с тороидальным фюзеляжем 20, т.е. ось вращения узла 100 несущих винтов совпадает с осью 12 фюзеляжа. Опорные распорки 24 выполнены полыми для минимизации общей массы БПЛА и обеспечения трубопроводов для взаимного соединения рабочих элементов БПЛА 10. Например, приводной вал двигателя проходит через одну из опорных распорок 24, как показано на фиг.2. Электропроводка для электронной управляющей сервоподсистемы проходит через другую опорную распорку 24.

Тороидальный фюзеляж 20 и множество опорных распорок 24 предпочтительно изготовлены из композиционного материала для обеспечения высокой прочности конструкции при минимальном весе. Тороидальный фюзеляж 20 является частично полой структурой и образует множество внутренних отсеков 26.

Расположенные впереди внутренние отсеки 26 обычно используются для размещения различного полетного и специального оборудования 30. Специальное оборудование 32 для выполнения задач предпочтительно размещают во внутреннем отсеке 26 в положении с азимутом 180o. Обычно специальное оборудование 32 полезной нагрузки состоит из пассивных датчиков, например инфракрасных обнаружителей, телевизионных камер и т.п., и/или активных устройств, например лазеров, аппаратуры радиосвязи, радара и т.п., и соответствующей аппаратуры обработки. Передний внутренний отсек 26 обеспечивает требуемое поле обзора для специального оборудования 32 полезной нагрузки. Другое оборудование, включая авиационные электронные системы 34, навигационную аппаратуру 36, бортовой компьютер 38, аппаратуру связи 40 (для ретрансляции данных реального времени от датчиков и приема входных командных сигналов реального времени), антенну и т.д., распределено по разным отсекам 26, как показано на фиг.1.

Размещение полетного и специального оборудования 30 оптимизируют во взаимосвязи с размещением энергетической подсистемы 50, как описано ниже.

Согласно фиг. 26 узел 100 несущих винтов включает в себя два тяговых несущих винта 200, 202 с противоположным вращением, соосно устаповленных в проточном канале 402, образуемом тороидальным фюзеляжем 20, и предназначенных для создания прямого нисходящего воздушного потока через проточный капал 402. Каждый несущий винт 200, 202 включает в себя четыре лопастных подузла 250, верхние концевые части 284 которых расположены с малым зазором относительно стенок проточного канала 402. Концевые части 284 при вращении несущих винтов задают плоскость 404 траекторий верхних концов. Малый зазор между верхними концевыми частями 284 и стенками проточного канала 402 минимизирует или устраняет завихрения от концов лопастей несущих винтов, что улучшает тяговую эффективность БПЛА 10.

Как показано на фиг.26, узел 100 несущих винтов поддерживается множеством распорок 24, которые крепятся к внутреннему краю или стенке проточного канала 402 тороидального фюзеляжа 20. Продольная ось 24А каждой распорки ориентирована радиально относительно оси 12 вращения несущего винта, причем продольные оси 24А образуют между собой сектора 120o. На фиг.26 также иллюстрируются три пары шпангоутных переборок 410, которые расположены по кругу на равном расстоянии друг от друга и размещены внутри тороидального фюзеляжа 20.

Каждая пара шпангоутных переборок 410 ограничивает между собой первую область 418, которая пересекается продольной осью 24А соответствующей распорки 24. Вторая область 420 ограничена смежными парами шпангоутных переборок 410. Первая область 418 задает сектор тороидального фюзеляжа предпочтительно не более примерно 45o и более предпочтительно менее 30o. Такой промежуток для каждой пары шпангоутных переборок 410 создает, по существу, жесткую конструктивную коробчатую секцию для противодействия подъемным нагрузкам от узла 100 несущих винтов, передаваемым на тороидальный фюзеляж 20 через соответствующие распорки 24. Поскольку жесткость первой области 418 зависит от размеров сектора, предпочтительнее относительно малый размер сектора по сравнению с второй областью 420. Для описываемого варианта осуществления тороидального фюзеляжа 20, имеющего три пары шпангоутных переборок 410, каждая вторая область 420 предпочтительно должна образовывать сектор больше примерно 75o. Очевидно, что чем больше число шпангоутных пар, тем меньше размеры сектора, заключенного в каждой второй области 420.

Инфраструктура тороидального фюзеляжа 20 иллюстрируется на фиг.27, 28, 29, 30 и 31 и содержит кольцевую конструкцию 430, имеющую в поперечном сечении C-образную конфигурацию. Первый и второй концы C-образной конструкции 430 обозначены на фиг.27, 28 позициями 432, 434 соответственно. C-образная кольцевая конструкция 430 образует стенку проточного канала 402 тороидального фюзеляжа 20 и ограничивает внутреннюю полость 436. Кольцевая конструкция 430 в сочетании с парами шпангоутных переборок 410 обеспечивает основные конструктивные элементы тороидального фюзеляжа 20. Внутренняя полость 436 тороидального фюзеляжа 20, ограниченная парами шпангоутных переборок 410, ограничивает внутренние отсеки 26.

Стенка проточного канала 402, образуемого C-образной конструкцией 430, предпочтительно включает в себя верхний и нижний краевые элементы жесткости 438 и 440, выполненные за одно целое со стенкой и расположенные во внутренней полости 436. Элементы жесткости 438, 440 обеспечивают жесткость непрерывного пути нагружения по окружности стенки проточного канала 402, тем самым обеспечивая дополнительную прочность на изгиб для тороидального фюзеляжа 20.

Множество расположенных на равном расстоянии друг от друга элементов жесткости 442, обращенных к внутренней полости 436, сформированы за одно целое в стенке проточного канала 402. Вертикальные элементы жесткости 442 сформированы лишь во вторых областях 420 тороидального фюзеляжа 20. Смежные вертикальные элементы жесткости 442 предпочтительно разделены углом примерно 15o с осью фюзеляжа.

Стенка проточного канала 402 дополнительно включает в себя выполненные за одно целое с ней элементы жесткости 444, обращенные лицевой стороной к внутренней полости 436. Элементы жесткости 444 проточного канала сформированы лишь в первых областях 418 тороидального фюзеляжа 20 между верхним и нижним краевыми элементами жесткости 438 и 440. Каждый элемент жесткости 444 предпочтительно проходит между парой шпангоутных переборок 410 и служит для них в качестве монтажной поверхности. Элементы жесткости 444 в сочетании с соответствующей парой шпангоутных переборок 410 создают, по существу, жесткую коробчатую конструкцию для противодействия тяговым нагрузкам несущих винтов, передаваемым на тороидальный фюзеляж 20 через распорки 24, как описано ниже.

Горизонтальная опорная плита 414 прикреплена к соответствующим боковым стенкам 412 соответствующих шпангоутных переборок 410 для увеличения жесткости коробчатых конструкций (фиг. 26). Кроме того, горизонтальные опорные плиты 414 обеспечивают конструктивный путь нагружения для передачи веса подузлов БПЛА 10 и оборудования 30 на коробчатую конструкцию, определяемую элементами жесткости 444 проточного канала в сочетании со шпангоутными переборками 410.

Вертикально ориентированные монтажные плиты 446 могут использоваться для крепления дополнительных подузлов БПЛА, например оборудования 30, энергетической подсистемы 50 и т.п., во внутренней полости 436 в одной или более вторых областей 420. Каждая монтажная плита 446 предпочтительно крепится по меньшей мере к двум смежным вертикальным элементах жесткости 442, благодаря чему обеспечивается соответствующее противодействие весу прикрепленного узла. Необходимо иметь в виду, что любой из подузлов БПЛА может быть прикреплен непосредственно к вертикальным элементам жесткости 442.

На фиг. 28 показан разрез по линии Б-Б на фиг.26 тороидального фюзеляжа 20, который отображает три конструктивных сегмента тороидального фюзеляжа 20: стенку проточного канала 402, нижний сегмент 450 и замыкающий сегмент 452, связывающий между собой сегмент 450 со стенкой проточного канала 402. Стенка проточного канала 402 содержит, по существу, цилиндрический главный сегмент 454, продольная ось которого соосна оси 12 фюзеляжа, и верхний краевой сегмент 456, который идет от верхнего края 458 цилиндрического главного сегмента 454. Сегмент 450 проходит радиально наружу от нижнего края 460 цилиндрического главного сегмента 454 стенки проточного канала 402. Стенка проточного канала 402 и нижний сегмент 450 образуют C-образную кольцевую конструкцию 430 тороидального фюзеляжа 20.

Замыкающий сегмент 452 тороидального фюзеляжа 20 ограничен двумя точками касания T1 и T2, где горизонтальные и вертикальные линии XX и YY пересекают самые верхние и радиально самые внешние сегменты тороидального фюзеляжа 20 соответственно. Верхний сегмент 462 замыкающего сегмента 452 предпочтительно выполняется за одно целое и с плавным переходом от верхнего краевого сегмента 456 стенки проточного канала 402. C-образная конструкция 430 включает в себя верхний сегмент 462 замыкающего сегмента 452, который обеспечивает дополнительную жесткость на изгиб и позиционирует первый конец 432 C-образной конструкции 430 вне профиля всасывания, который создается на тороидальном фюзеляже 20 при функционировании БПЛА 10. Конструктивная жесткость кольцевой C-образной конструкции 430 может быть дополнительно усилена путем расширения нижнего сегмента 450.

Замыкающий сегмент 452 включает в себя съемные панели 464, которые обеспечивают доступ к внутренней полости 436 тороидального фюзеляжа 20. Каждая панель 464 имеет достаточные размеры, обеспечивающие простоту установки и снятия полетного и специального оборудования 30 и энергетической подсистемы 50 внутри различных внутренних отсеков 26.

В предпочтительном варианте осуществления C-образной конструкции 430 цилиндрический главный сегмент 454 стенки проточного канала 402 изготовлен из сплошного пакета из шести слоев графито-эпоксидного материала, имеющих общую толщину 470 (фиг.28) около 0,077 см. Цилиндрический главный сегмент 454 включает в себя верхний и нижний краевые элементы жесткости 438 и 440, расположенные во внутренней полости 436, которая образует соответствующие карманы 472, 474 на внутренней поверхности 476 цилиндрического главного сегмента 454. Каждый карман 472, 474 имеет среднюю ширину 478 около 3,85 см и среднюю глубину 480 около 1,28 см. Сужение карманов 472, 474 по глубине 480 предусмотрено для упрощения изготовления.

Верхняя и нижняя контактные фрикционные полосы 482, 484 расположены внутри соответствующих карманов 472, 474 и выполнены из обычного пеноматериала. Каждая из полос 482, 484 имеет толщину и форму, обеспечивающие заполнение соответствующих карманов 472, 474. Соответствующие внутренние поверхности 486, 488, определяемые фрикционными контактными полосами 482, 484, расположены, по существу, заподлицо с внутренней поверхностью 476 цилиндрического главного сегмента 454. Контактные фрикционные полосы 482, 484 функционируют в качестве жертвенных элементов для защиты стенки проточного канала 402 от контакта с концами 284 лопастных подузлов 250 несущих винтов.

Контактные фрикционные полосы 482, 484 расположены в плоскости 404 перемещения концевых частей 284 при вращении несущих винтов 200, 202 в противоположные стороны. В предпочтительном варианте узел 100 несущих винтов включает в себя два несущих винта 200, 202 с противоположным вращением, которые определяют верхнюю и нижнюю плоскости 404 перемещения концевых частей, разделенные расстоянием 490 (фиг. 28) по вертикали, равным приблизительно 28,2 см. Концы 284 лопастей предпочтительно размещены в непосредственной близости относительно внутренней поверхности 476 цилиндрического главного сегмента 454, чтобы минимизировать или устранить турбулентности у концов лопастей и улучшить тем самым тяговую эффективность.

Верхний краевой сегмент 456 предпочтительно изготовлен из шести слоев графито-эпоксидного материала с общей толщиной 492 (фиг.28) приблизительно 0,077 см, что обеспечивает достаточную прочность при противодействии нагрузкам, обусловленным всасыванием, испытываемым верхним краевым сегментом 456 при функционировании БПЛА. Нижний сегмент 450 предпочтительно изготовлен из шести слоев графито-эпоксидного материала с общей толщиной 494 (фиг.28), равной приблизительно 0,077 см.

В предпочтительном варианте осуществления замыкающий сегмент 452 изготовлен из графито-эпоксидного материала, причем его верхний сегмент изготовлен из шести слоев, толщина 496 (фиг.28) которых приблизительно равна 0,077 см. Съемные панели 464 изготовлены из трех слоев, толщина 498 (фиг.28) которых приблизительно равна 0,038 см. Крепление съемных панелей 464 замыкающего сегмента 452 к первому и второму краям 432 и 434 C-образной кольцевой конструкции 430 может быть выполнено любым известным способом.

Первый и второй концы 432, 434 C-образной кольцевой конструкции 430 имеют обратные фланцы 500, 502 для повышения прочности на продольный изгиб и выпучивание первого и второго концов 432, 434, обеспечивающие также передачу нагрузок, приложенных к ним, от съемных панелей 464 замыкающего сегмента 452. Обратные фланцы 500, 502 включают в себя дополнительный слой, наращенный так, чтобы общая толщина 504 (фиг.28) составила приблизительно 0,12 см.

На фиг.29 представлен разрез по линии В-В на фиг.26 который иллюстрирует тороидальный фюзеляж 20 в месте расположения вертикального элемента жесткости 442 во второй области 420. Вертикальный элемент жесткости 442 проходит между верхним и нижним краевыми элементами жесткости 438, 440 и выполнен за одно целое со стенкой проточного канала 402, обращенной к внутренней полости 436. Вертикальные элементы жесткости 442 служат для увеличения жесткости всего тороидального фюзеляжа 20. Кроме того, вертикальные элементы жесткости 442 укрепляют стенку проточного канала 402 для предотвращения деформации под воздействием усилий всасывания, создаваемых потоком масс воздуха, перемещаемых вниз от несущих винтов. Вертикальный элемент жесткости 442 предпочтительно содержит сердечник 510 из пеноматериала. Сердечник 510 имеет высоту 512 ребра жесткости (фиг.29), достаточную для пересечения с верхним и нижним элементами жесткости 438 и 440. Глубина 514 ребра жесткости (фиг.29) вертикального элемента жесткости составляет примерно 1,28 см для обеспечения плавного перехода от верхнего и нижнего элементов жесткости 438 и 440 к вертикальному элементу жесткости 442.

На фиг.30 представлен разрез в поперечном сечении стенки проточного канала 402 по линии Г-Г на фиг.29 в месте расположения вертикального элемента жесткости 442. Вертикальный элемент жесткости 442 имеет трапецевидную конфигурацию при ширине нижнего основания 516 примерно 5,13 см и ширине верхнего основания 518 примерно 2,56 см. Вертикальный элемент жесткости 442 выполнен профилированным по глубине для облегчения изготовления. Сердечник 510 вертикального элемента жесткости 442 располагают в пакете слоев, который образует стенку канала 402 для повышения жесткости конструкции при передаче нагрузок. При изготовлении тороидального фюзеляжа 20 сердечник 510 помещают внутри пакета слоев, причем с каждой стороны сердечника 510 имеется три из шести слоев стенки канала.

На фиг. 31 показано поперечное сечение по линии Д-Д на фиг.26 в месте расположения элемента жесткости 444 канала, расположенного в пределах первой области 418 внутренней полости 436. Элемент жесткости 444 канала расположен между верхним и нижним краевыми элементами жесткости 438 и 440 и выполнен за одно целое на цилиндрическом главном сегменте 454 стенки проточного канала 402. Элемент жесткости 444 канала увеличивает прочность на изгиб всей тороидальной фюзеляжной конструкции 20 и, работая в сочетании с соответствующей парой шпангоутных переборок 410, создает, по существу, жесткую коробчатую конструкцию для крепления соответствующей распорки 24. Жесткое крепление распорки 24 к тороидальному фюзеляжу 20 минимизирует относительное перемещение тягового узла 100 несущих винтов относительно тороидального фюзеляжа 20 и обеспечивает путь для передачи нагрузок от тягового узла 100 несущих винтов.

Элемент жесткости 444 канала предпочтительно изготовлен из сотовой многослойной конструкции, лицевой лист 520 которой содержит три слоя графито-эпоксидного материала толщиной около 0,038 см. Элемент жесткости 444 канала имеет высоту 522, достаточную для пересечения с верхним и нижним краевыми элементами жесткости 438 и 440. Ширина 524 элемента жесткости 444 канала составляет предпочтительно около 1,28 см для обеспечения плавного перехода между верхним и нижним краевыми элементами жесткости 438 и 440 и элементом жесткости 444 канала. Элемент жесткости 444 канала размещается поверх и прикрепляется к пакету из шести слоев, образующему стенку проточного канала 402 с лицевым листом 520, обращенным наружу.

Каждая пара шпангоутных переборок 410 крепится к C-образной кольцевой конструкции 430 внутри внутренней полости 436. Пары шпангоутных переборок 410 действуют согласованно с элементом жесткости 444 канала. C-образная кольцевая конструкция 430 образует, по существу, жесткую коробчатую конструкцию для крепления распорки 24. Шпангоутные переборки 410 предпочтительно формируют из девяти слоев графито-эпоксидного материала толщиной около 0,12 см. Форма шпангоутных переборок 410 приблизительно определяет форму тороидального фюзеляжа 20. Шпангоутные переборки 410 включают в себя фланцевые части 530, 532, 534, соответствующие стенке проточного канала 402, нижний сегмент 450 и замыкающий сегмент 452 соответственно. Фланцевые части 530, 532 предназначены для крепления шпангоутных переборок 410 к C-образной кольцевой конструкции 430 во внутренней полости 436. Фланцевая часть 534 обеспечивает крепление съемной панели 464 к тороидальному фюзеляжу 20. Фланцевые части 530, 532, 534 изготовлены из пакетов графито-эпоксидных слоев и предпочтительно образованы за одно целое со шпангоутными переборками.

На фиг.31 также показана горизонтальная опорная плита 414, которая используется для монтажа самых тяжелых подсистем БПЛА 10 и/или оборудования 30, так что их вес передается на шпангоутные переборки 410. Горизонтальная опорная плита 414 также действует как дополнительный элемент жесткости, увеличивающий жесткость коробчатых структур, образованных шпангоутными переборками 410 и связанными с ними конструктивными элементами. Горизонтальные опорные плиты 414 предпочтительно изготавливают из графито-эпоксидного материала и крепят к боковым стенкам 412 соответствующих шпангоутных переборок 410. Внутри первой области 418 предпочтительно добавлены три дополнительных слоя к стенке проточного канала 402 и нижнему сегменту 450 для увеличения локальной жесткости.

На фиг.32 в увеличенном масштабе представлено крепленые съемных панелей 464 замыкающего сегмента 452 к соответствующей шпангоутной переборке 410. Для минимизации веса БПЛА 10 смежные съемные панели 464 образуют соответствующую переходную зону (стык) 540 для их крепления к фланцевой части 534 шпангоутной переборки 410. Стык 540 имеет пилообразную конфигурацию, в которой каждый выступ 542 одной съемной панели 464 сопрягается с впадиной 544 смежной съемной панели 464. Каждый сегмент 542 панели 464 крепится к фланцевой части 543 винтом или иным крепежным средством. Ширина основания 546 выступа 542 составляет примерно 5,13 см, а ширина вершины 548 выступа составляет приблизительно 2,56 см. Впадина 544 должна быть больше по размеру, чем сопрягаемый выступ 542 для обеспечения плотного контакта между ними.

Энергетическая подсистема 50 включает в себя топливные баки 52, двигатель 54 и приводной кинематический узел 60. Топливные баки 52 расположены внутри соответствующих внутренних отсеков 26 предпочтительно противоположно отсекам 26 оборудования в позициях с азимутом 90 и 270o, чтобы сохранить постоянное положение центра тяжести БПЛА 10 при эволюциях в полете. Двигатель 54 также установлен внутри внутреннего отсека 26. Положение двигателя 54 оптимизировано так, чтобы уравновесить вес оборудования 30 полезной нагрузки, которое предпочтительно расположено в противоположной части тороидального фюзеляжа 20. В рассматриваемом варианте осуществления БПЛА 10 используется роторно-поршневой двигатель фирмы Нортон Моторс модели NR801T, модифицированный, как описано ниже, обеспечивающий высокое отношение мощности к весу и хорошую характеристику потребления топлива при неполной мощности. Двигатель NR801T является двигателем с воздушно-жидкостным охлаждением и имеет мощность 45 л.с. при 6000 об/мин. Работа двигателя 54 контролируется и регулируется бортовым компьютером 38.

Стандартный двигатель Нортона включает в себя маховик, который предназначен для сохранения и высвобождения энергии вращения в требуемые моменты, вследствие чего он обеспечивает относительно постоянный выходной крутящий момент. Кроме того, стандартный двигатель Нортона включает в себя отдельный генератор Плесси, который приводится в действие двигателем, для выработки электрической энергии. Генератор Плесси стандартного двигателя Нортона является громоздким устройством, имеющим нестандартные размеры. Вследствие этого стандартный двигатель Нортона не может быть установлен во внутренних отсеках 26 БПЛА 10, ограниченных тороидальным фюзеляжем 20. Кроме того, вес стандартного двигателя Нортона привел бы к значительному увеличению общего веса БПЛА 10 и обусловил бы смещение наружу центра тяжести БПЛА 10, что создало бы проблемы в распределении веса и балансировке оборудования 30 полезной нагрузки.

Поэтому стандартный двигатель Нортона был модифицирован путем комбинирования функциональных особенностей маховика и генератора Плесси в объединенном подузле 55, как показано на фиг.3. Объединенный подузел 55 маховик/генератор предназначен для сохранения/высвобождения энергии крутящего момента в требуемые моменты, чтобы модифицированный двигатель 54 Нортона обеспечивал относительно стабильный выходной крутящий момент и одновременно вырабатывал требуемую электрическую мощность. Объединенный подузел 55 маховик/генератор включает в себя тонкий, большого диаметра ротор 56, внутри которого установлено множество магнитов 57 и множество жестко закрепленных статоров 58. Ротор 56 механически связан с коническим переходником приводного кинематического узла так, что модифицированный двигатель Нортона обеспечивает необходимый крутящий момент для вр