Способ получения трансгенного растения кукурузы
Реферат
Способ предназначен для получения фертильных трансгенных растений кукурузы и может быть использован для введения в хромосому рекомбинантной ДНК. Реципиентные клетки, полученные из способной к регенерации рыхлой эмбриогенной каллусной культуры, обстреливают микрочастицами, покрытыми ДНК. Используется каллусная культура незрелых зародышей в виде комочков 30 - 80 мг, которая культивируется на твердой питательной среде. Вводимая ДНК может содержать ген, кодирующий белок семян, в результате чего содержание аминокислот увеличивается. 3 з.п.ф-лы. 8 ил., 9 табл.
Изобретение относится к получению трансгенных растений, в частности трансгенных растений кукурузы, и может быть использовано в сельском хозяйстве.
Генетическая инженерия растений, которая предполагает изоляцию и обработку генетического материала (обычно в форме ДНК или РНК) с последующим введением этого генетического материала в растение или растительные клетки, открывает значительные перспективы для современного сельского хозяйства и селекции растений. Методами генетической инженерии можно увеличивать пищевую ценность сельскохозяйственных культур, повышать урожай, снижать затраты на производство продукции, обеспечивать устойчивость к вредителям, стрессу и засухе, осуществлять производство фармацевтического сырья, химических соединений и биологических молекул, а также получать другие полезные результаты. После идентификации, клонирования и переконструирования гена его необходимо также внедрить в нужное растение таким образом, чтобы полученное растение было одновременно фертильно и способно передавать данный ген своему потомству. В настоящее время разработано и доступно множество методов трансформации различных растений и растительных клеток при помощи ДНК. В основном это относится к двудольным растениям, но имеются также сообщения и об определенных достижениях в трансформации некоторых однодольных злаков. Однако некоторые виды злаков до сих пор было невозможно трансформировать каким-либо методом. Так, до настоящего изобретения не были известны технологии, которые позволяли бы получать устойчиво трансформированные растения Zea mays, в которых внесенная рекомбинантная ДНК передавалась бы в течение по крайней мере одного полового цикла. Отсутствие достижений в данной области подтверждается литературой и обсуждалось в ряде последних обзоров [40, 50, 5]. Некоторые испытанные или предложенные способы введения ДНК в клетки кукурузы предполагают использование электропорации, микроинъекции, обстрела микроскопическими частицами, слияния с липосомами, переноса, опосредованного Agrobacterium, макроинъекции или обработки раствором очищенной ДНК. Так например, в [14 и 37] сообщается о введении ДНК в кукурузу путем смешивания пыльцевых зерен с растворами ДНК и последующего нанесения этой пыльцы на пестики кукурузы. В упомянутых работах отсутствуют молекулярные данные, подтверждающие введение экзогенной ДНК в клетки кукурузы. В [54] описывается инкубация ДНК с пыльцой кукурузы с последующим опылением початков кукурузы и образованием семян. Сообщается, что растения, выращенные из этих семян, содержат внесенную ДНК, но отсутствует указание на то, что внесенная ДНК передается в течение полного полового цикла. В [19] сообщается о трансформации проростков Zea mays, опосредованной Agrobacterium. Доказательства были основаны на экспериментах, которые иногда могут быть ненадежными. К настоящему времени не сообщалось о дальнейших успехах в области трансформации с использованием пыльцы или переноса, опосредованного Agrobacterium. Сообщалось также, что в результате обстрела микрочастицами получались трансформированные клетки кукурузы. Данный метод описан в [45], а также в [55] . В [29] описывается получение трансформированных клеток кукурузы с помощью бомбардировки микрочастицами. Использованные клетки, однако, не были способны образовывать растения путем регенерации. Таким образом, не существует опубликованных протоколов, описывающих введение ДНК путем бомбардировки в способные к регенерации культуры кукурузных клеток любого типа. Не сообщалось также о стабильном введении гена в результате бомбардировки кукурузного каллуса с последующей регенерацией фертильных растений и передачей введенного гена в течение хотя бы одного полового цикла. В [53] описывается бомбардировка ДНК кукурузной пыльцы, нанесение ее на рыльца и образование семян, которые, по сообщению авторов, содержат экзогенную ДНК. Однако при этом отсутствуют доказательства того, что эта ДНК передавалась в течение полного полового цикла, и данная группа исследователей не сообщала о получении ими дальнейших результатов. Согласно [16] электропорация кукурузных протопластов приводила к образованию трансформированных клеток, хотя эти клетки не образовывали регенерированных растений. Следующая серьезная проблема, мешающая успешному получению фертильных растений кукурузы, заключается в отборе этих немногих трансформантов таким образом, чтобы ни регенерационная способность (в случае использования протопластов или клеточных культур), ни фертильность трансформантов не были нарушены. В связи с общей низкой частотой трансформантов, полученных при трансформации, та или иная процедура отбора часто оказывается необходимой. Такой отбор, однако, обычно предполагает использование какого-либо токсичного агента, например гербицида или антибиотика, который может отрицательно влиять на регенерационную способность или фертильность получаемых растений. С другой стороны, известно, что нетрансформированные протопласты, культивируемые клетки и каллусы кукурузы по меньшей мере могут регенерировать с образованием зрелых растений и что получаемые растения часто фертильны. Так, например, в [46] и [41] обсуждаются методы получения протопластов из клеточных культур и восстановления фертильных растений из этих протопластов. В [42] описываются попытки регенерации растений кукурузы из протопластов, изолированных из культур эмбриогенных клеток кукурузы. Однако до сих пор исследователям не удавалось определить, какие ткани или культуры кукурузы являются подходящими реципиентами экзогенной ДНК, в частности содержат полезное число клеток, которые рецептивны к экзогенной ДНК и будут стабильно ее интегрировать, и, в то же время, являются частью зародышевой линии, т.е. частью клеточной линии, ведущей к следующему поколению растений. Таким образом, исследования сталкиваются с дилеммой. В то время как некоторые способы трансформации приводили, по данным исследований, к получению трансформированных клеток кукурузы и определенные клетки и ткани были предложены в качестве потенциальных реципиентов в связи с их способностью образовывать растения путем регенерации, исследователям не удалось найти комбинацию приемов, которые обеспечили бы успешное получение трансформированных растений кукурузы, способных передавать введенную ДНК в течение одного полного полового цикла. Известен [43] способ получения трансгенного растения кукурузы (Zea mays), включающий в себя получение из растения реципиентных клеток, их трансформацию, отбор трансформированных клеток и регенерацию из них растения, причем реципиентные клетки представляют собой протопласты, а трансформацию осуществляют путем электропорации. Однако полученные растения являются стерильными, кроме того, использованные методы получения клеточной линии были невоспроизводимы. Таким образом, задачей данного изобретения является создание способа получения трансгенных растений Zea mays, который бы позволил получить фертильные растения, которые бы передавали введенный ген потомству, а метод получения клеточной линии был бы воспроизводимым. Данная задача решается тем, что предложен способ получения трансгенного растения Zea mays, содержащего стабильно интегрированную в хромосому рекомбинантную ДНК, включающий получение реципиентных клеток, их трансформацию путем введения в них экзогенной ДНК, отбор трансформированных клеток и последующую регенерацию из них растений, в котором, согласно изобретению, реципиентные клетки получают из способной к регенерации рыхлой эмбриогенной каллусной культуры, а трансформацию осуществляют путем обстрела реципиентных клеток микрочастицами, покрытыми рекомбинантной ДНК. Целесообразно получать каллусную культуру из незрелых зародышей. Целесообразно для обстрела микрочастицами использовать каллусную культуру, имеющую вид комочков, масса каждого из которых составляет 30 - 80 мг. Целесообразно каллусную культуру культивировать на твердой питательной среде. На фиг. 1,а показана карта плазмидного вектора pHYGI1, использованного в примере 1. На фиг. 1,б показана соответствующая часть линеаризированного плазмидного вектора pHYGI1, включающая кодирующую последовательность НРТ и ассоциированные регуляторные элементы. Номера пар оснований начинаются с 5'-нуклеотида в последовательности, распознающейся указанными рестрикционными ферментами, начиная с сайта EcоRI на 5'-конце промотора 35S ВТМ. На фиг. 2,а показана карта плазмидного вектора pBII221, использованного в примере 1. На фиг. 2,б показан линеаризованный вектор pBII221, в частности участок от сайта расщепления Hind III до сайта EcoRI. На фиг. 3 показаны Саузерн-блот ДНК изолированной из каллусной линии РН1 и из контрольной нетрансформированной каллусной линии, а также схематическое изображение зондов pHYGIl, использованных в эксперименте. На фиг. 4 показаны Саузерн-блот ДНК листьев, изолированной из растений R0, регенерированных из линии РН1 и из нетрансформированного каллуса, а также схематическое изображение зондов PHYGI1, использованных в эксперименте. На фиг. 5 показаны Саузерн-блот ДНК листьев, изолированной из потомства R1 растений R0 PH1 и нетрансформированных растений R0, а также схематическое изображение зондов pHYGI1, использованных в эксперименте. На фиг. 6 показаны Саузерн-блот ДНК, изолированной из каллусной линии PH2 и из нетрансформированной контрольной каллусной линии, а также схематическое изображение зондов pHYGI1, использованных в эксперименте. На фиг. 7,а показана карта плазмидного вектора pZ27Z10, использованного в примере 2. На фиг. 7,б показана линеаризованная плазмида pZ27Z10, включающая кодирующую последовательность Z10 и ассоциированные регуляторные элементы. На фиг. 8 схематически показано положение ПЦР-праймеров в пределах химерного гена Z27 - Z10. Изобретение направлено на получение фертильных трансгенных растений и семян вида Zea mays, преимущественно имеющих повышенную пищевую ценность, растений, растительных тканей и семян, получаемых из этих трансгенных растений, а также их потомства и получаемых из них продуктов. Описанным способом могут быть получены любые растения данного вида, включая полевую, сладкую, кормовую кукурузу, а также другие разновидности кукурузы. "Трансгенными" в данном случае считаются любые клетки, клеточные линии, каллусы, ткани, части растений или растения, генотипы которых были изменены присутствием рекомбинантной ДНК (называемой в генной инженерии также гетерологичной, экзогенной или чужеродной ДНК), которая была введена в генотип растения в процессе генной инженерии или же была первоначально введена в генотип родительского растения в ходе такого процесса и затем передана последующим поколениям путем полового процесса или бесполого размножения. Генотипом в данном случае считается совокупность всего генетического материала клетки как хромосомного, так и внехромосомного. Таким образом, используемый в данном случае термин "трансгенный" не включает растения, генотипы которых изменены обычными методами скрещивания растений или в результате имеющих место в природе процессов случайного оплодотворения, вирусной инфекции или спонтанного мутирования. "Наследуемой" считается ДНК, способная передаваться в течение по меньшей мере одного полового цикла растения, то есть от растения через его гаметы к растению-потомку. В соответствии с данным изобретением трансгенные растения могут быть получены путем (1) основания способной к регенерации клеточной культуры, предпочтительно рыхлого эмбриогенного каллуса, (2) трансформации упомянутой клеточной культуры методом обстрела микрочастицами, (3) идентификации или отбора трансформированных клеток и (4) регенерации фертильных трансгенных растений из трансформированных клеток. Некоторые из растений, описываемых в данном изобретении, могут быть получены из трансгенных семян, полученных от фертильных трансгенных растений с использованием обычных методов скрещивания с целью получения трансгенных элитных линий и сортов или коммерческих гибридных семян, содержащих рекомбинантную ДНК. Линии растений и культуры тканей Особенно полезными для получения фертильных трансгенных растений кукурузы оказались клетки каллусов, способные к регенерации как до, так и после селекционных процедур, детально описанных ниже. Такие клетки получают в основном из меристемной ткани, содержащей клетки, не прошедшие терминальную дифференцировку. Эта ткань у злаков вообще и у кукурузы в частности включает ткани, находящиеся в основаниях молодых листьев, молодых кистей, незрелых зародышах и узлах стеблей. Использовались преимущественно незрелые зародыши. Методы получения и поддержания каллуса из таких растений и таких тканей хорошо известны и подробно описаны в литературе, например в [39]. Конкретный используемый каллус должен быть способен образовывать путем регенерации фертильное растение. Специфическая регенерационная способность определенного каллуса важна для успеха используемого в данном случае процесса обстрела/отбора, поскольку в ходе селекции регенерационная способность существенно снижается. Поэтому важно работать с самого начала с культурами, имеющими максимально возможную регенерационную способность. Было установлено, что каллус в возрасте от 3 до 36 месяцев имеет достаточно высокую способность к регенерации и поэтому предпочтителен. Регенерационная способность конкретной культуры легко может быть определена путем перенесения проб этой культуры на регенерационную питательную среду и отслеживания роста побегов, корней и проростков. Относительное число проростков на чашку Петри или на грамм живого веса ткани может быть использовано для грубой количественной оценки регенерационной способности. В целом предпочтительна культура, производящая по меньшей мере одно растение на грамм ткани каллуса. Хотя каллусные культуры кукурузы могут быть основаны от различных тканей растения, использованные в данном случае культуры получаются предпочтительно из незрелых зародышей кукурузы, которые извлекаются из зерновок, находящихся в початке кукурузы, при достижении зародышами длины 1 - 3 мм. Такого размера они достигают обычно через 9 - 14 дн после опыления. Зародыши в стерильных условиях помещаются на обычную твердую среду таким образом, чтобы эмбриональная ось была направлена вниз (скутеллюмом вверх). Каллусная ткань появляется на скутеллюме через несколько дней или недель. После значительного подрастания каллуса пролиферация клеток скутеллюма может быть оценена на рыхлость и на присутствие сформированных зародышей. Под "рыхлостью" понимается способность ткани легко диспергироваться без повреждения клеток. Ткань такой морфологии переносится затем на свежую среду и пассируется обычными методами через каждые 2 недели. Просеивание с целью уменьшения образования комков и или для увеличения поверхности клеток также может использоваться при пассировании. Для инициации каллуса используются предпочтительно твердые среды. В предпочтительном варианте среда для основания и поддержания каллуса принципиально основана на солевой среде N 6 по [9], как описано в [3], или на солевой среде MS [34]. К минимальной среде добавляется сахароза и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Было установлено, что добавки типа L-пролина и гидролизата казеина увеличивают частоту образования каллусных культур, а также улучшают их рост и морфологию. Обычно культуры поддерживаются в темноте, хотя возможно также использование низкой освещенности. Содержание синтетического гормона 2,4-Д, необходимого для поддержания и наращивания каллуса, обычно должно составлять от 0,3 до 3,0 мг л. Хотя в данном случае успешная трансформация и регенерация была достигнута с использованием рыхлого эмбриогенного каллуса, это не обязательно означает, что для получения фертильных трансгенных растений, предлагаемых в данном изобретении, не могут быть использованы другие способные к трансформации и регенерации клетки, ткани и органы. Единственное обязательное требование к трансформируемым клеткам заключается в том, что после трансформации они должны быть способны образовывать путем регенерации растения, несущие рекомбинантные ДНК, после использования каких-либо процедур отбора или скрининга. Например, могут быть использованы клетки, выращенные в жидкой суспензионной культуре. Для основания таких культур каллус второго типа в возрасте 4 - 6 месяцев переносится в жидкую ростовую среду. Методы получения способных к регенерации суспензионных клеточных культур и соответствующие ссылки приводятся в [21, 39 и 48]. Обычно жидкие ростовые среды для суспензионных культур сходны по составу с твердыми средами для индукции каллусов. Для повышения регенерационной способности и жизнеспособности культуры в жидкие ростовые среды может добавляться абсцизиновая кислота (АВА) в концентрации 10-7 М. Предпочтительно не просеивать каллус перед внесением в жидкую среду. Жидкие культуры пассируются так, как это необходимо для поддержания их активного роста и регенерационных свойств. В предпочтительном варианте применения культуры пассируются один раз в неделю путем разбавления свежей ростовой средой в отношении 1:8 - 1:9. ДНК, использованная для трансформации Используемый термин "рекомбинантная ДНК" означает в данном случае ДНК, произведенную или выделенную (изолированную) из любого источника, которая затем может быть химически изменена и введена в Zea mays. Примером рекомбинантной ДНК, "произведенной" из некоторого источника, может быть последовательность ДНК, идентифицированная как полезный фрагмент в геноме какого-либо организма и затем химически синтезированная в практически чистом виде. Примером рекомбинантной ДНК, "выделенной" из некоторого источника, может быть полезная последовательность ДНК, вырезанная или извлеченная из этого источника химическими методами, например с использованием рестрикционных эндонуклеаз, таким образом, что в дальнейшем она может быть подвергнута обработке, например амплификации, с целью ее введения в организм методами генетической инженерии. Таким образом, понятие "рекомбинантная ДНК" включает в себя полностью синтетическую ДНК, полусинтетическую ДНК, ДНК, выделенную из биологических источников, и ДНК, происходящую от введенной РНК. Обычно рекомбинантная ДНК не происходит из генотипа Zea mays, являющегося реципиентом этой ДНК, но данное изобретение предусматривает возможность выделения гена из некоторого генотипа Zea mays с последующим введением множественных копий этого гена в тот же самый генотип, например с целью увеличения выхода продукта данного гена, например запасного белка. Рекомбинантные ДНК включают в себя ДНК генов растений или нерастительные гены, такие как гены бактерий, дрожжей, животных или вирусов, модифицированные гены, участки генов, химерные гены, включающие гены из того же самого или другого генотипа Zea mays; этот перечень, однако, не является исчерпывающим. Используемые для трансформации рекомбинантные ДНК могут быть кольцевыми или линейными, одно- или двунитевыми. Обычно ДНК присутствует в форме химерной, например плазмидной ДНК, которая может также включать кодирующие участки, фланкированные регуляторными последовательностями, обеспечивающими экспрессию рекомбинантной ДНК в полученных растениях кукурузы. Например, рекомбинантная ДНК может сама включать или нести промотор, активный в Zea mays, или может использовать промотор, уже существующий в генотипе Zea mays и являющийся мишенью трансформации. Состав и методы конструирования рекомбинантной ДНК, способной трансформировать определенные растения, хорошо известны опытным специалистам, и эти методы и составы могут быть использованы для получения ДНК, применяемой в данном случае. Конкретный состав ДНК не является принципиальным для данного изобретения, и при осуществлении изобретения могут использоваться различные рекомбинантные ДНК. В [50] описаны подходящие компоненты ДНК, пригодные для отбора маркерные гены, энхансеры, интроны и т.д., а также приведены соответствующие ссылки на получаемые составы. В [44] предложены подходящие методы конструирования. Обычно рекомбинантная ДНК относительно невелика, т.е. не превышает по длине 30 kb (30 000 пар оснований), что необходимо для снижения чувствительности к физической, химической или ферментативной деградации, которая, как известно, возрастает с увеличением размера ДНК. В качестве рекомбинантных ДНК в данном случае приемлемы любые ДНК, обеспечивающие или усиливающие какое-либо полезное свойство получаемого в результате трансгенного растения кукурузы. Эти ДНК могут кодировать белки или антисмысловые РНК-транскрипты, способствующие повышению пищевой ценности, устойчивости к вредителям, болезням и гербицидам и т.п. Например, ДНК может кодировать DHDP-синтетазу, как это делает ген dap A, что повышает количество получаемого лизина, бактерии Bacillus thuringiensis (Bt), -эндотоксин или ингибитор протеазы, что повышает устойчивость к насекомым, бактериальную EPSP-синтетазу, увеличивающую устойчивость к гербицидам, хитиназу или глюкан-эндо-1,3-- гликозидазу, сообщающие растениям фунгицидные свойства. Важное значение для повышения пищевой ценности имеют гены, кодирующие белки, содержащие большие количества незаменимых аминокислот. Например, для обеспечения адекватного питания и поддержания оптимального роста цыплят в корм, приготовляемый из кукурузы и сои, обычно добавляют синтетический метионин или аналог метионина. Создание сортов кукурузы с более высоким содержанием метионина может уменьшить потребность в добавках этого вещества. Создание линий кукурузы с высоким содержанием метионина может быть достигнуто путем внедрения в геном кукурузы активно экспрессирующихся гена или генов, кодирующих белок с высоким содержанием метионина. Примерами генов, кодирующих белки с высоким содержанием метионина, являются: (1) ген, кодирующий кукурузный белок zein размером 15 кДа (11% метионина) [38] , (2) ген, кодирующий запасной белок бразильского ореха (18% метионина) [2], и (3) ген, кодирующий белок zein размером 10 кДа (22,5% метионина) [27] . Предпочтительно использование гена белка zein размером 10 кДа, поскольку это собственный ген кукурузы, продукт которого в норме накапливается в зерновках и по содержанию метионина вдвое превышает белок размером 15 кДа. Для достижения высокого уровня экспрессии в семенах кодирующая последовательность этого гена может быть слита с регуляторной последовательностью активно экспрессирующегося специфичного для семян гена. С другой стороны, возможно также введение дополнительных копий интактного гена белка эндосперма размером 10 кДа в геном кукурузы, что также увеличит содержание метионина в семенах кукурузы. Лизин, аминокислота, незаменимая в диетах человека и животных с простым желудком, является одной из трех аминокислот, недостаточное количество которых ограничивает пищевую ценность основных сельскохозяйственных культур, в частности злаковых. Следовательно, основанные на зерне диеты должны дополняться синтетическим лизином или белковой пищей, содержащей лизин. Далее, поскольку большинство масляно-зерновых диет сами по себе не являются адекватными источниками лизина, уравновешивание пищевых смесей по лизину часто приводит к их перегрузке другими, менее необходимыми питательными веществами. Таким образом, повышение содержания лизина в злаках, или масляно-зерновых культурах, или в том и в другом привел бы к значительному увеличению пищевой ценности, а также к существенному снижению затрат для конечных потребителей, таких как производители свинины и домашней птицы. Один из возможных подходов к увеличению содержания лизина в злаковых культурах заключается в нарушении биосинтетических путей, позволяющем накапливаться свободному лизину. Ген dap A Escherichia coli кодирует синтетазу дигидродипиколиновой кислоты (DHDPS), ключевой регуляторный фермент, активность которого у растений сильно ингибируется лизином по принципу обратной связи. Бактериальный фермент приблизительно в 200 раз менее чувствителен к ингибированию лизином. Введение гена dap A и его экспрессия в растительных клетках позволили бы продолжать синтез свободного лизина после того, как нативная синтетаза DHDPS растения будет полностью ингибирована. Особое значение для поддержания урожайности кукурузы и значительного снижения затрат на ее выращивание имеет защита кукурузы от вреда, наносимого насекомыми. В США в число основных вредителей кукурузы входят различные вредители из отряда Lepidoptera, например европейский кукурузный сверлильщик, озимый червь и др., а также различные виды Goleoptera, например Diabrotica spp. Защита кукурузы от вреда, наносимого насекомыми, требует больших затрат со стороны производителей и использования периодически вносимых токсичных химических инсектицидов. Поскольку традиционные способы разведения и селекции не позволили создать новые линии кукурузы, имеющие хорошую устойчивость к основным насекомым-вредителям, внесение и наследование в растениях кукурузы генов или последовательностей, обеспечивающих устойчивость к насекомым, в соответствии с настоящим изобретением, позволило бы снизить затраты производителя, уменьшить использование токсичных химических инсектицидов, а также обеспечило бы более эффективное снижение численности насекомых-вредителей. Существенной особенностью изобретения является введение гена устойчивости к насекомым в клетку кукурузы, митотическая репликация его таким образом, что он оказывается встроенных в растение кукурузы и в конечном итоге наследуется потомством этого растения в процессе митотических и мейотических делений. Бактерии Bacillus thuringlensis (Bt), включающие около 20 известных подвидов бактерий, продуцируют эндотоксические полипептидазы, токсичные для многих насекомых при поглощении с пищей. Биология и молекулярная биология эндотоксических белков (Bt-белков) и соответствующих генов (Bt-генов) была рассмотрена в [51] и (25]. Гены, кодирующие различные Bt-белки, были клонированы и секвинированы. Исследования показали, что сегмент Bt-полипептида, существенный для токсичности по отношению к различным вредителям из отряда Lepidoptera, содержится приблизительно в первой половине этого полипептида. Следовательно, укороченный полипептид, кодируемый укороченным Bt-геном, во многих случаях сохранит свою токсичность для многих вредоносных Lepidoptera. Было показано, что Bt-полипептиды HD73 и HD1 токсичны для личинок важных американских вредителей кукурузы из отряда Lepidoptera, таких как европейский кукурузный сверлильщик, озимый червь и др. Гены, кодирующие Bt-полипептиды HD73 и HD1, были клонированы и секвинированы соответственно Гайзером [17] и Адангом [1]; они могут быть клонированы из штаммов HD1 и HD73, полученных из коллекции культур (например. Bacillus Genetic Stock Center, Columbus, Ohio, или USDA Bt stock collection, Peoria, Illinois) c использованием стандартных процедур. ДНК, кодирующие новые, ранее не охарактеризованные Bt-токсины, могут быть клонированы из хозяйского организма Bacillus с использованием протоколов, ранее применявшихся для клонирования Bt-генов. Эти протоколы предполагают создание банка ДНК, изолированной из организма Bacillus, в подходящем плазмидном или фаговом векторе, реплицируемом в подходящем хозяине, и использование антител против Bt-белка или ДНК, изолированной из гомологичной последовательности Bt-гена, для идентификации трансформантов, несущих клонированную последовательность Bt. Приблизительное местоположение кодирующей последовательности Bt может быть первоначально определено делекционным картированием клонированной ДНК. Точное положение кодирующей последовательности Bt может быть определено с использованием различных стандартных методов, включая определение последовательности клонированного сегмента ДНК, определение наличия в этой последовательности протяженной открытой рамки считывания, которая могла бы кодировать Bt-белок, и подтверждение того, что эта последовательность ДНК действительно кодирует Bt-белок, путем сравнения аминокислотной последовательности, выведенной на основании последовательности ДНК, с последовательностью, полученной при частичном аминокислотном секвинировании Bt-белка. Химерный Bt-ген, используемый в данном изобретении, включает 5'-последовательность ДНК, включающую, в свою очередь, последовательность ДНК, делающую возможной инициацию транскрипции (промотор) и трансляцию расположенной ниже последовательности Bt в растении кукурузы. Химерный Bt-ген включает также 3'-последовательность ДНК, включающую последовательность, происходящую из 3'-некодирующего района гена, который может экспрессироваться в кукурузе. Наиболее важно то, что химерный Bt-ген будет включать последовательность ДНК, кодирующую токсичный Вt-полипептид, продуцируемый бактериями Bacillus thuringiensis, или его сегменты, обуславливающие токсичность или имеющие с ним значительную гомологию по аминокислотной последовательности. Кодирующая последовательность Bt включает : (1) последовательности ДНК, кодирующие белки с инсектицидной активностью, имеющие значительную гомологию с Bt-эндотоксинами, активными по отношению к насекомым-вредителям кукурузы, например Bt-последовательности HD73 или HD1; (2) последовательности, кодирующие сегменты эндотоксического Bt-полипептида, имеющие инсектицидную активность, например имеющие инсектицидную активность полипептиды HD73 или HD1, укороченные с карбоксильного или аминоконца; (3) укороченную Bt-последовательность, соединенную в рамке считывания с последовательностью или последовательностями, кодирующими полипептид, обеспечивающий некоторые дополнительные преимущества, например; (а) с генами, доступными для отбора, например генами, сообщающими устойчивость к антибиотикам или гербицидам, (b) с репортерными генами, продукты которых легко выявляются или анализируются, например генами люциферазы или -глюкуронидазы (с) с последовательностями ДНК, кодирующими последовательности полипептидов, дополнительно стабилизирующие Bt-белок против деградации или увеличивающие эффективность Bt-белка по отношению к насекомым, например ингибиторами протеазы; (D) с последовательностями, способствующими транспорту Bt-белка в специфические компартменты внутри или вне клеток кукурузы, например сигнальными последовательностями. Для достижения оптимального синтеза Bt-белка в кукурузе может также оказаться целесообразной корректировка последовательности Bt-гена с тем, чтобы она более приближалась к последовательности генов, эффективно экспрессирующихся в кукурузе. Поскольку частота использования кодонов во многих Bt-генах, включая гены HD73 и HD1, более сходна с этой частотой у видов Bacillus и не сходна с этой частотой в генах, экспрессирующихся в кукурузе, экспрессия Bt-гена в клетках кукурузы может быть повышена путем замены редко используемых кодонов Bacillus на кодоны, наиболее часто употребляющиеся у кукурузы [35] . Такая замена кодонов потребует замены оснований без изменения аминокислотной последовательности результирующего Bt-полипептида. Bt-полипептид будет идентичен по своей последовательности продукту бактериального гена или его сегментов. Полная кодирующая Bt-последовательность или ее участки, содержащие более значительную долю кодонов часто встречающихся у кукурузы чем первоначальный бактериальный ген, могут быть синтезированы по стандартным протоколам химического синтеза и введены в Bt-ген или соединены с ним также по стандартным методикам, например с использованием сайт-специфического мутагенеза или полимеризации и лигирования ДНК и т.п. Помимо рекомбинантных последовательностей ДНК, служащих единицами транскрипции или их участками, полезны могут быть также рекомбинантные ДНК, несущие регуляторную или структурную функцию. Кроме того, ДНК может быть использована также в качестве генетического инструмента для генерирования мутантов или идентификации, выделения или генетического маркирования участков ДНК кукурузы. Дополнительные примеры могут быть найдены в [50]. Рекомбинантные ДНК, предназначенные для внедрения в растительные клетки, обычно должны включать также селективный маркер, или репортерный ген, или то и другое, что облегчает идентификацию и отбор трансформированных клеток. В другом варианте селективный маркер может находиться на отдельном сегменте ДНК и использоваться в котрансформации. Как селективные маркеры, так и репортерные гены могут быть фланкированы подходящими регуляторными последовательностями, делающими возможной их экспрессию у растений. Полезные селективные маркеры хорошо известны в литературе и включают, например, гены устойчивости к антибиотикам и гербицидам. Конкретные примеры селективных маркерных генов даны в [50]. Предпочтительным селективным маркерным геном является последовательность, кодирующая гигромицин-фосфотрансферазу (НРТ), которая может быть получена из E.coll и которая сообщает устойчивость к антибиотику гигромицину В. Другие селективные маркеры включают ген аминогликозид-фосфотрансферазы транспозона Tn5 (AphII), сообщающий устойчивость к антибиотикам канамицину, неомицину и G418, а также гены, обеспечивающие устойчивость или толерантность к глифосфату, 2,2- дихлоропропионовой кислоте, метатрексату, имидазолиновым гербицидам, гербицидам на основе сульфонилмочевины, бромоксинилу, фосфинотрицину и другим веществам с гербицидными свойствами. Селективные маркерные гены, обуславливающие устойчивость или толерантность к этим фитотоксическим соединениям, также придают коммерческую ценность получаемым трансформированным растениям. Селективные маркерные гены, кодирующие ферменты, сообщающие устойчивость к фитотоксическим соединениям, приведены в табл. 1. Репортерные гены используются для идентификации потенциально трансформированных клеток и для функциональных свойств регуляторных последовательностей. Репортерные гены, кодирующие легко анализируемые маркерные белки, хорошо известны в литературе. Обычно в качестве репортерного выбирается ген, отсутствующий или не экспрессирующийся в реципиентном организме и кодирующий белок, экспрессия которого влияет на легко анализируемое свойство, например на фенотип или на ферментативную активность. Примеры таких генов представлены в [50]. Используемые гены предпочтительно включают ген хлорамфеникол-ацетилтрансферазы (cat), транспозона Tn9 E.coli, ген -глюкуронидазы (gus) локуса uidA E. coli и ген люцеферазы огневки Photinus pyralis. Экспрессия репортерного гена анализируется через нужное время после введения ДНК в реципиентные клетки. Предпочтительный вариант такого анализа предполагает использование гена -глюкуронидазы (GUS) [26]. Трансформированные клетки кукурузы, экспрессирующие данный ген, будут окрашиваться в синий цвет при соприкосновении с субстратом 5-бромо-4-хлоро-3-индолил--D-глюкоронидом (X-GLUC), добавляемым во внеклеточную среду. Используемые в данном случае регуляторные последовательности включают специфичные для органов, тканей или стадий развития индуцибельные или конститутивные промоторы, способные экспрессироваться в клетках конкретного растения. Пригодные для данного случая промоторы описаны в [50]. Ниже приводится частичный выборочный список промоторов, пригодных для наших целей: регуляторные последовательности Т-ДНК Agrobacterium tumifaciens, включающей манопинсинтетазу, нопалинсинтетазу и октопинсинтетазу; промотор алкогольдеги