Система связи

Реферат

 

Изобретение может быть использовано для передачи и приема дискретной информации широкополосными системами с последовательными многочастотными (ПМЧ) сигналами. Повышение помехозащищенности системы связи достигается тем, что к известным блокам: датчику информации, генератору ПМЧ-сигналов, коммутатору, выходному блоку, входному блоку, блоку перестраиваемых фильтров ПМЧ-сигналов, решающему блоку, генераторам тактовых импульсов, генераторам псевдослучайных перестановок и датчикам опорных частот на передающей и приемной сторонах введены новые блоки: два Р-канальных мультиплексора и два формирователя частотно-временного псевдослучайного латинского квадрата (по одному на передающей и приемной сторонах), которые осуществляют псевдослучайную перестановку строк, столбцов и переименование элементов латинского квадрата и модуляцию информационной последовательностью символов сообщения, которая заключается в выборе псевдослучайной строки латинского квадрата, отвечающей передаваемому в данный момент информационному символу и определяющей порядок следования частот элементов ПМЧ-сигнала, что исключает имитацию информационного символа. Формула изобретения - двухзвенная, во втором пункте которой конкретизировано устройство формирователя частотно-временного псевдослучайного латинского квадрата, включающего блок управления, два счетчика, три оперативных запоминающих устройства, постоянное запоминающее устройство, преобразователь последовательного кода в параллельный, два ключа и элемент ИЛИ. 1 з.п. ф-лы, 6 ил.

Изобретение относится к системам связи, в частности, может быть использовано для передачи и приема дискретной информации широкополосными системами с последовательными многочастотными сигналами.

Известны системы связи с последовательными многочастотными (ПМЧ) сигналами, называемыми также дискретными частотно-модулированными (манипулированными) сигналами [1-3].

Из известных систем связи наиболее близкой по совокупности существенных признаков и достигаемому при ее использовании эффекту является система, описанная в [4] . Эта система связи (прототип) содержит на передающей стороне датчик опорных частот (ОЧ), последовательно соединенные датчик информации, модулятор, генератор последовательных многочастотных (ПМЧ) сигналов и выходной блок, а также последовательно соединенные генератор тактовых импульсов (ТИ), генератор псевдослучайных перестановок (ПСПЕР) и коммутатор, информационные входы которого соединены с выходами датчика ОЧ, а выход подключен к информационному входу модулятора, при этом второй выход генератора ТИ соединен с входом датчика ОЧ и вторыми входами генератора ПСПЕР и генератора ПМЧ-сигналов, а третий выход подключен к входу датчика информации, а на приемной стороне датчик ОЧ, последовательно соединенные генератор ТИ, генератор ПСПЕР, коммутатор, информационные входы которого соединены с выходами датчика ОЧ, и частотный модулятор, а также последовательно соединенные входной блок, блок перестраиваемых фильтров и решающий блок, при этом второй выход генератора ТИ соединен с вторым входом генератора ПСПЕР и входом датчика ОЧ, а третий выход подключен к дополнительному входу решающего блока и вторым входам перестраиваемых фильтров, третьи входы которых соединены с выходами частотного модулятора.

Структурная схема прототипа представлена на фиг.1 и 2, где 1 - датчик информации, 2 - генератор ПМЧ-сигналов, 3 - выходной блок, 4, 11 - генераторы ТИ, 5, 12 - генераторы ПСПЕР, 6, 15 - коммутаторы, 7, 13 - датчики ОЧ, 8 - входной блок, 9-1,..., 9-P - перестраиваемые фильтры, 10 - решающий блок, 14 - модулятор, 16 - частотный модулятор.

Передача и прием в системе связи прототипа производятся следующим образом.

На передающей стороне (фиг.1) генератором 5 ПСПЕР, идентичным генератору 12 на приемной стороне, за длительность Т последовательного многочастотного (ПМЧ) сигнала вырабатывается H различных K-разрядных (2K=M, HM) чисел (псевдослучайная перестановка из H чисел), которые последовательно во времени, с тактом ( = T/H) по K адресным цепям поступают на вход коммутатора 6, на информационные входы которого от датчика 7 подается сетка из M опорных частот, получаемых, например, путем деления одной опорной частоты Fоп. Коммутатор 6 в зависимости от того, какой код (текущее значение псевдослучайной перестановки) поступил на его адресные входы, разрешает прохождение сигнала на вход модулятора 14 от одного из M информационных выходов датчика 7 опорных частот. В информационном модуляторе 14 входной сигнал манипулируется поступающими по D (D K) цепям от датчика 1 информации символами дискретного сообщения, скажем символами 0 или 1, если информационная последовательность от датчика 1 является двоичной, или символами 0, 1,..., P-1, если информационная последовательность P-ичная (P=2D, PM). В первом случае при информационном символе 0 кодовая последовательность, определяющая порядок смены частот ПМЧ-сигнала, проходит модулятор 14 без изменений, при информационном символе 1 - инвертируется, т.е. в модуляторе 14 информационная последовательность суммируется по модулю 2 с кодовой последовательностью с выхода коммутатора 6. Во втором случае (при P-ичной информационной последовательности) в модуляторе 14 производится суммирование по модулю P последовательностей, поступающих на его входы. Таким образом, если a1, a2, ..., aH - псевдослучайная перестановка, вырабатываемая генератором 5 за время T (длительность ПМЧ-сигнала), то в модуляторе 14 осуществляются операции: для передачи где - суммирование по модулю P.

Промодулированная в модуляторе 14 кодовая последовательность, определяющая порядок переключения частот в ПМЧ-сигнале, поступает на вход генератора 2, вырабатывающего элементарное колебание ПМЧ-сигнала, которое усиливается по мощности и излучается антенной в выходном блоке 3.

На приемной стороне сигнал, принятый антенной, усиливается, подвергается предварительной фильтрации во входной блоке 8 и поступает на входы перестраиваемых фильтров 9-1,..., 9-P (P=2D) ПМЧ-сигналов, на другие входы которых с частного модулятора 16 поступают сдвинутые на дискретное число позиций сигналы датчика 13 опорных частот, переключаемые коммутатором 15 по сигналам от генератора 12 ПСПЕР, синхронизированного с генератором 5 ПСПЕР на передающей стороне. На перестраиваемый фильтр 9-1 сигнал с выхода коммутатора 15 подается, например, с нулевым сдвигом, на фильтр 9-2 - со сдвигом на одну позицию, на фильтр 9-3 - на 2 позиции и т.д. Перестраиваемые фильтры по сигналу от генератора 12 ПСПЕР настраиваются последовательно во времени на частоты элементарных колебаний излученного ПМЧ-сигнала, причем первый фильтр 9-1 настраивается в точности на те частоты, которые задаются генератором 12, второй фильтр 9-2 настраивается со сдвигом всех частот на одну позицию, третий фильтр 9-3 - на 2 позиции и т.д. Таким образом, решающий блок 10, на входы которого поступают сигналы с выходов всех перестраиваемых фильтров 9-1, . . . 9-P, отберет наибольший сигнал того фильтра, настройка которого совпадает с дискретным сдвигом псевдослучайной последовательности в результате информационной модуляции элементов ПМЧ-сигнала на передающей стороне.

Синхронизация генераторов 5, 12 ПСПЕР, датчиков 7, 13 опорных частот, датчика 1 информации, генератора 2 ПМЧ-сигналов, перестраиваемых фильтров 9-1, ..., 9-P, решающего блока 10 осуществляется генераторами 4, 11 тактовых импульсов, идентичными на передающей и приемной сторонах.

Примечание. В первоисточнике прототипа [4] генераторы 5 и 12 названы генераторами кодовой последовательности (ГЧМ) частотно-манипулированного (ЧМ) широкополосного сигнала (ШПС). В нашем же описании генераторы 5 и 12 переименованы в генераторы псевдослучайных перестановок, потому что, как отмечено в первоисточнике, "всего используется M частот, и ни одна из них не применяется дважды в одном ШПС", ПМЧ-сигнале в нашей терминологии, а это означает, что за длительность T ПМЧ-сигнала генераторы 5 и 12 вырабатывают набор из H различных псевдослучайных чисел a1, a2,..., aH, который, как известно, называется перестановкой (см.,например. Бронштейн И.Н. Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУзов. -М.: 1957, с.163 или - М.: 1980, с.199).

Модуляция ПМЧ-сигнала сдвигом его элементарных частотных сигналов на некоторую фиксированную позицию, связанную со значением информационного сигнала, вырабатываемого датчиком 1 информации, допускает простую техническую реализацию модулятора 14 на передающей и частотного модулятора 16 на приемной сторонах, однако имеет существенный недостаток - позволяет имитировать информационный сигнал, например, переизлучением ПМЧ-сигналов с постоянным сдвигом его элементов на одно и то же значение частоты. Действительно, пусть, например, ПМЧ-сигнал формируется из 16 частот, т.е. M=16. Следовательно, алфавит информационных символов также не превышает 16. Будем, для конкретности, считать, что в качестве информационных символов используются числа 0, 1, . .., 15. Тогда, как уже отмечалось, передаче информационного символа, скажем 2, соответствует сдвиг в информационном модуляторе 14 псевдослучайных чисел a1, ... aH на две позиции: a1 2,...,aH 2 , что, в свою очередь, соответствует сдвигу частоты элементов ПМЧ-сигнала на выходе генератора 2 также на две позиции: f1 2,..., fH 2 . Ясно, что если передается информационный символ 2 и одновременно переизлучаются элементы ПМЧ-сигнала большей мощности со сдвигом, например, на 3 позиции, то решающий блок 10 на приемной стороне выделит ПМЧ-сигнал f1 5,..., fM 5 , т.е. сигнал, соответствующий информационному символу 5.

Аналогичный недостаток - детерминированный характер функции модуляции псевдослучайной последовательности, определяющей закон переключения элементов ПМЧ-сигнала, информационной последовательностью - присущ и аналогам. Так, в системе из кн. Журавлев В.И. Поиск и синхронизация в широкополосных системах. - М. : Радио и связь, 1986, с.9, рис. 1.3 используется метод модуляции, аналогичный уже описанному, когда "широкополосный сигнал (ШПС) дополнительно манипулируют символами двоичного сообщения, причем символу 1 соответствует исходный ШПС, а символу 0 - его инверсия" (для этого в устройство введен преобразователь абсолютного кода в относительный код (АК/ОК), на вход которого поступают двоичные сигналы дискретного сообщения d(t)).

Целью изобретения является повышение помехозащищенности системы связи.

Поставленная цель достигается тем, что в систему связи, содержащую на передающей стороне датчик информации, датчик опорных частот, коммутатор, последовательно соединенные генератор тактовых импульсов и генератор псевдослучайных перестановок, а также последовательно соединенные генератор последовательных многочастотных сигналов и выходной блок усиления мощности, при этом третий выход генератора тактовых импульсов подключен к входу датчика информации, на приемной стороне датчик опорных частот, последовательно соединенные генератор тактовых импульсов и генератор псевдослучайных перестановок, а также последовательно соединенные входной блок предварительной фильтрации, блок перестраиваемых фильтров и решающий блок, при этом третий выход генератора тактовых импульсов подключен к вторым входам блока перестраиваемых фильтров и дополнительному входу решающего блока, на передающей стороне введены P-канальный мультиплексор и формирователь частотно-временного псевдослучайного латинского квадрата, причем информационные входы P-канального мультиплексора соединены с выходами датчика опорных частот, а выходы соединены с информационными входами коммутатора, адресные входы и выхода которого подключены к выходам датчика информации и первому входу генератора последовательных многочастотных сигналов, первый, второй, третий и четвертый входы формирователя частотно-временного псевдослучайного латинского квадрата соединены соответственно с третьим, вторым, первым выходами генератора тактовых импульсов и выходами генератора псевдослучайных перестановок, а первый, вторые и третий выходы подключены соответственно к второму входу генератора псевдослучайных перестановок, адресным входам и объединенным стробирующему входу P-канального мультиплексора, входу датчика опорных частот и второму входу генератора последовательных многочастотных сигналов, а на приемной стороне - P-канальный мультиплексор и формирователь частотно-временного псевдослучайного латинского квадрата, причем информационные входы P-канального мультиплексора соединены с выходами датчика опорных частот, а выходы соединены с третьими входами блока перестраиваемых фильтров, первый, второй, третий и четвертый входы формирователя частотно-временного псевдослучайного латинского квадрата соединены соответственно с третьим, вторым, первым выходами генератора тактовых импульсов и выходами генератора псевдослучайных перестановок, а первый, вторые и третий выходы подключены соответственно к второму входу генератора псевдослучайных перестановок, адресным входам P-канального мультиплексора и объединенным стробирующему входу P-канального мультиплексора и входу датчика опорных частот.

Формирователь частотно-временного псевдослучайного латинского квадрата состоит из блока управления, первого и второго счетчиков, первого, второго и третьего оперативных запоминающих устройств, постоянного запоминающего устройства, первого и второго ключей, преобразователя последовательного кода в параллельный и элемента ИЛИ, причем первым и третьим входами, первым и третьим выходами формирователя частотно-временного псевдослучайного латинского квадрата являются первый и третий входы, первый и четвертый выходы блока управления, объединенные установочный вход первого счетчика и второй вход блока управления являются вторым входом формирователя частотно-временного псевдослучайного латинского квадрата, четвертым входом и вторыми выходами которого являются соответственно объединенные информационные входы первого, второго и третьего оперативных запоминающих устройств и выходы преобразователя последовательного кода в параллельный, при этом выходы первого счетчика соединены с адресными входами первого оперативного запоминающего устройства и через последовательно соединенные первый ключ, второй ключ и элемент ИЛИ с адресными входами третьего оперативного запоминающего устройства, выходы второго счетчика соединены с адресными входами второго оперативного запоминающего устройства и входами второго ключа, выходы первого оперативного запоминающего устройства соединены с первыми адресными входами постоянного запоминающего устройства, вторые адресные входы и выходы которого соединены соответственно с выходами второго оперативного запоминающего устройства и вторыми входами элемента ИЛИ, второй, третий, четвертый, пятый, шестой и седьмой выходы блока управления соединены соответственно с объединенными счетным входом первого счетчика и тактовым входом преобразователя последовательного кода в параллельный, объединенными управляющим входом первого ключа и первым управляющим входом первого оперативного запоминающего устройства, объединенными счетным входом второго счетчика, управляющим входом постоянного запоминающего устройства и установочным входом преобразователя последовательного кода в параллельный, объединенными управляющим входом второго ключа и первым управляющим входом второго оперативного запоминающего устройства, объединенными установочным входом второго счетчика и вторыми управляющими входами первого, второго и третьего оперативных запоминающих устройств и первым управляющим входом третьего оперативного запоминающего устройства, выходы которого соединены с входами преобразователя последовательного кода в параллельный.

Структурная схема заявляемой системы связи представлена на фиг. 3 (передающая часть) и фиг. 4 (приемная часть), где 1 - датчик информации, 2 - генератор последовательных многочастотных сигналов, 3 - выходной блок усиления мощности, 4, 11 - генераторы тактовых импульсов, 5, 12 - генераторы псевдослучайных перестановок, 6 - коммутатор, 7, 13 - датчики опорных частот, 8 - входной блок предварительной селекции, 9-1,...,9-P - перестраиваемые фильтры, 10 - решающий блок, 14, 16 - P-канальные мультиплексоры, 15, 17 - формирователи частотно-временного (ЧВ) псевдослучайного латинского квадрата, 15-1, 15-2 (17-1, 17-2) - первый, второй ключи, 15-3 (17-3) - преобразователь последовательного кода в параллельный, 15-4, 15-10 (17-4, 17-10) - первый, второй счетчики, 15-5, 15-6, 15-9 (17-5, 17-6, 17-9) - первое, второе, третье оперативные запоминающие устройства, 15-7 (17-7) - постоянное запоминающее устройство, 15-8 (17-8) - элемент ИЛИ, 15-11 (17-11) - блок управления.

В предлагаемой системе связи на передающей стороне (фиг. 3) генератор 4 ТИ первым выходом подключен к последовательно соединенным генератору 5 ПСПЕР, формирователю 15 ЧВ псевдослучайного латинского квадрата, P-канальному мультиплексору 14, коммутатору 6, генератору 2 ПМЧ-сигналов и выходному блоку 3 усиления мощности, при этом адресные входы коммутатора 6 и информационные входы P-канального мультиплексора 14 соединены с выходами соответственно датчика 1 информации и датчика 7 ОЧ, третий, второй и первый выходы генератора 4 ТИ соединены соответственно с первым, вторым и третьим входами формирователя 15, первый и третий выходы которого подключены соответственно к второму входу генератора 5 ПСПЕР и объединенным стробирующему входу P-канального мультиплексора 14, входу датчика 7 ОЧ и второму входу генератора 2 ПМЧ-сигналов.

В формирователе 15 (идентичном ему формирователе 17 на приемной стороне (фиг. 4)) первым входом и вторыми выходами являются первый вход блока 15-11 (17-11) управления и выходы преобразователя 15-3 (17-3) последовательного кода в параллельный, объединенные установочный вход первого счетчика 15-4 (17-4) и второй вход блока 15-11 (17-11) управления являются вторым входом формирователя, четвертыми, третьими входами, первым и третьими выходами которого являются соответственно объединенные информационные входы первого, второго и третьего ОЗУ 15-5, 15-6 и 15-9 (17-5, 17-6 и 17-9), третий вход, первый и четвертый выходы блока 15-11 (17-11) управления, при этом выходы первого счетчика 15-4 (17-4) соединены с адресными входами первого ОЗУ 15-5 (17-5) и через последовательно соединенные первый ключ 15-1 (17-1), второй ключ 15-2 (17-2) и элемент ИЛИ 15-8 (17-8) - с адресными входами третьего ОЗУ 15-9 (17-9), выходы второго счетчика 15-10 (17-10) соединены с адресными входами второго ОЗУ 15-6 (17-6) и входами второго ключа 15-2 (17-2), выходы первого ОЗУ 15-5 (17-5) соединены с первыми адресными входами ПЗУ 15-7 (17-7), вторые адресные входы и выходы которого соединены соответственно с выходами второго ОЗУ 15-6 (17-6) и вторыми входами элемента ИЛИ 15-8 (17-8), второй, третий, четвертый, пятый, шестой и седьмой выходы блока 15-11 (17-11) управления соединены соответственно с объединенными счетным входом первого счетчика 15-4 (17-4) и тактовым входом преобразователя 15-3 последовательного кода в параллельный, объединенными управляющим входом первого ключа 15-1 (17-1) и первым управляющим входом первого ОЗУ 15-5 (17-5), объединенными счетным входом второго счетчика 15-10 (17-10), управляющим входом ПЗУ 15-7 (17-7) и установочным входом преобразователя 15-3 (17-3) последовательного кода в параллельный, объединенными управляющим входом второго ключа 15-2 (17-2) и первым управляющим входом второго ОЗУ 15-6 (17-6), объединенными установочным входом второго счетчика 15-10 (17-10) и вторыми управляющими входами первого, второго и третьего ОЗУ 15-5, 15-6 и 15-9 (17-5, 17-6 и 17-9) и первым управляющим входом третьего ОЗУ 15-9 (17-9), выходы которого соединены с входами преобразователя 15-3 (17-3) последовательного кода в параллельный.

На приемной стороне (фиг. 4) входной блок 8 предварительной селекции выходом подключен к входам перестраиваемых фильтров 9-1,...,9-P, выходы которых соединены с соответствующими входами решающего блока 10; генератор 11 ТИ первым выходом подключен к последовательно соединенным генератору 12 ПСПЕР, формирователю 17 ЧВ псевдослучайного латинского квадрата и P-канальному мультиплексору 16, информационные входы которого соединены с выходами датчика 13 ОЧ, а выходы подключены к третьим входам перестраиваемых фильтров 9-1,... ,9-P, при этом третий выход генератора 11 ТИ соединен с первым входом формирователя 17, вторыми входами перестраиваемых фильтров 9-1,...,9-P и дополнительным входом решающего блока 10, второй, первый выходы генератора 11 ТИ соединены соответственно с вторым, третьим входами формирователя 17, первый и третий выход которого подключены соответственно к второму входу генератора 12 ПСПЕР и объединенным стробирующему входу P-канального мультиплексора 16 и входу датчика 13 ОЧ.

Принцип функционирования предлагаемой системы иллюстрируется фиг. 5 и 6.

Формирование ПМЧ-сигналов в системе связи прототипа сводится к генерации за время Т (длительности ПМЧ-сигнала) псевдослучайной перестановки a1, a2,.. . , aH, модуляции этой последовательности информационным символом (скажем, суммированию по модулю P значений перестановки и информационного символа J: a1 J,..., aM J , где J = 0,1,...,P-1) и последовательном излучении с -тактом ( = T/H) элементов ПМЧ-сигнала на частотах fK, отвечающих значениям aK J , K = 1,...,H модифицированной (промодулированной) псевдослучайной перестановки.

Основное отличие предлагаемой системы состоит в том, что за время Т длительности ПМЧ-сигнала формируется не одна строка из псевдослучайной перестановки, а набор строк - матрица из PH псевдослучайных чисел, a11 a12 ... a1H a21 a22 ... a2H . . .

. . . (1) . . .

aP1 aP2 ... aPH, строки и столбцы которой являются соответственно H-перестановками (HM) и P-перестановками (PM), т.е. перестановками, состоящими из H и P элементов.

Такую матрицу будем называть частотно-временным (ЧВ) латинским (PH) прямоугольником (частотно-временным - так как прямоугольник определяет порядок переключения частоты элементов ПМЧ-сигнала за его длительность T; латинским - потому что все элементы в строках и столбцах прямоугольника различны), а блок, вырабатывающий ее, - формирователем ЧВ псевдослучайного латинского квадрата (блоки 15 и 17 соответственно на передающей и приемной сторонах).

Примечание. Латинским (PH)-прямоугольником называется прямоугольная таблица размера PH, в каждой строке и каждом столбце которой элементы не повторяются (являются соответственно H и P перестановками). Например, расположение 2 1 5 7 3 1 3 2 4 6 7 4 1 8 5 является латинским (35)-прямоугольником, строки и столбцы которого являются соответственно 5- и 3-перестановками (т.е. состоят из 5 и 3 элементов) для множества чисел {1,2...,8}.

Латинским квадратом порядка M называется квадратная таблица размера MхM, заполненная M различными элементами так, что каждый элемент входит по одному разу в каждую строку и каждый столбец (см., например, Холл М. Комбинаторика. М.: Мир, 1970; Комбинаторный анализ. Задачи и упражнения. Под ред. Рыбникова К. А. М. : Наука, 1982; Рыбников К.А. Введение в комбинаторный анализ. М.: МГУ, 1985).

Псевдослучайный характер ЧВ (PH)-латинского прямоугольника (1) обеспечивается псевдослучайной перестановкой строк, столбцов и переобозначением элементов латинского квадрата порядка M, P,HM (составной частью которого он является), записанного в постоянное запоминающее устройство 15-7 (17-7) формирователя 15 (17), что иллюстрируется фиг. 5 на примере стандартного латинского квадрата порядка M=6.

Очевидно, что любой латинский квадрат перестановкой строк и столбцов может быть переведен к такой форме, что его элементы в первой строке и первом столбце расположены в заранее фиксированном порядке (чаще всего 1,2,..., M). Такой латинский квадрат называют стандартным или нормализованным (см., например, Рыбников К. А. Введение в комбинаторный анализ. М.: МГУ, 1985). Стандартный латинский квадрат порядка M=6, элементы которого определяются выражением aij=ixj (mod(M+1)), 1iM, 1jM, представлен на фиг. 5а.

Рассмотрим преобразование строк, столбцов и элементов этого латинского квадрата с помощью, например, подстановок (конструкций, в первой строке которых - естественный порядок, во второй - нарушенный, реализация какой-либо перестановки элементов 1,2,...,6): При подстановке А на место первой строки следует поставить шестую строку, вторая строка остается без изменений и т.д., при подставке B на место первого столбца ставится четвертый и т.д., при подставке C элемент 1 заменяется элементом 3 и т.д.

После подстановки A (перестановки строк) получаем латинский квадрат, изображенный на фиг. 5б, после подстановки B (перестановки столбцов) - латинский квадрат на фиг. 5в, после подстановки C (переименования элементов) - латинский квадрат на фиг. 5г. Взяв из последнего латинского квадрата (фиг. 5г), скажем, первые 4 строки и первые 5 столбцов (разумеется, ничто не мешает использовать и весь латинский квадрат), получим (4 5) - латинский прямоугольник, который можно рассматривать как псевдослучайный, если подстановки A, B, C являются реализациями генератора псевдослучайных перестановок (в нашем случае генератора 5 (12)).

Модуляция информационным символом J (J = 0, ..., P-1) ЧВ латинского прямоугольника, точнее опорных частот датчика 7, отвечающих значениям псевдослучайных перестановок, вырабатываемых генератором 5 ПСПЕР (посредством формирователя 15 ЧВ псевдослучайного латинского квадратора), в предлагаемой системе осуществляется выбором строки матрицы (1), соответствующей значению передаваемого символа J. Предположим, значению J=O соответствует первая строка a11 ... a1H, значению J=1 - вторая строка a21 ... a2H и т.д., тогда передаче символа J будет соответствовать выбор строки a(J+1)1 ... a(J+1)H, J = 0,1,2,...,P-1.

При таком методе модуляции сохраняется преимущество прототипа (в одном ПМЧ-сигнале "используется M частот и ни одна из них не применяется дважды"), и в то же время появляется новое качество: при различных значениях информационного символа результаты модуляции - строки ЧВ-матрицы (1) - не связаны друг с другом функциональной зависимостью, что исключает возможность имитации непередаваемого символа регулярным воздействием на передаваемые элементы ПМЧ-сигнала, например, переизлучением элемента со сдвигом его частоты на фиксированное число позиций.

Более детально система работает следующим образом.

Генераторы 4 ТИ, 5 ПСПЕР, датчик 7 опорных частот, P-канальный мультиплексор 14 и формирователь 15 ЧВ псевдослучайного латинского квадрата на передающей стороне (фиг. 6) идентичны соответствующим блокам 11, 12, 13, 16 и 17 на приемной стороне (фиг. 4).

Синхронизация блоков на передающей и приемной сторонах осуществляется генераторами 4 и 11 тактовых импульсов, которые вырабатывают на вторых выходах сигналы с периодом, равным длительности элемента ПМЧ-сигнала (циклограмма 2, фиг. 6; далее, для краткости указывается только циклограмма), на третьих выходах - с периодом T = H (HM), равным длительности ПМЧ-сигнала (циклограмма 1), на первых выходах - с периодом ( << )..

Тактовые импульсы генераторов 4 и 11, подаваемые на первые, вторые и третьи входы формирователей 15 и 17 с периодами соответственно T, и , являются, в свою очередь, синхросигналами для блоков 15-11 и 17-11, которые непосредственно управляют работой блоков 15-1 - 15-10 и 17-1 - 17-10 и по первым, вторым, третьим выходам формирователей - работой генераторов 5 и 7 ПСПЕР, Р-канальных мультиплексоров 14 и 16, датчиков 7 и 13 опорных частот и генератора 2 ПМЧС (на передающей стороне).

На передающей стороне (фиг. 3) на каждом T-такте по переднему фронту -импульса (циклограмма 2) на первом выходе блока 15-11 управления вырабатываются последовательно три импульса (циклограмма 3), которые подаются по первому выходу формирователя 15 на второй вход генератора 5 ПСПЕР для его запуска. Генератор 5 вырабатывает три пачки из М различных К-разрядных (2К= М) чисел, которые по К цепям последовательно подаются по четвертому входу формирователя 15 на объединенные информационные входы первого, второго и третьего ОЗУ 15-5, 15-6 и 15-9.

Каждая пачка из М чисел тактируется синхропоследовательностью (циклограммы 4.1, 4.2 и 4.3), подаваемой с второго выхода блока 15-11 управления на счетный вход первого счетчика 15-4 до М, который предварительно обнуляется по установочному входу передним фронтом -импульса, подаваемого на второй вход формирователя 15 с второго выхода генератора 4 ТИ. Сигналы с выхода счетчика 15-4 поступают по K цепям на адресные входы первого ОЗУ 15-5 непосредственно, на адресные входы второго ОЗУ 15-6 через первый ключ 15-1 и на адресные входы третьего ОЗУ 15-9 через последовательную цепочку: первый ключ 15-1 - второй ключ 15-2 и элемент ИЛИ 15-8.

Оперативные запоминающие устройства 15-5, 15-6 и 15-9 управляются по двум цепям - первым и вторым управляющим входам. По первым управляющим входам ОЗУ 15-5, 15-6 и 15-9, подключенным соответственно к третьему, пятому и седьмому выходам блока 15-11 управления, поддерживается режим "Запись/Считывание", скажем сигналом "0", или режим "Хранение информации, скажем сигналом "1" (циклограммы 5, 6, 7). По вторым управляющим входам ОЗУ 15-5, 15-6 и 15-9, объединенным и подключенным к шестому выходу блока 15-11, поддерживается режим "Запись", скажем сигналом "0", или режим "Считывание", скажем сигналом "1" (циклограмма 8).

При подаче первой пачки синхроимпульсов на счетный вход счетчика 15-4 (циклограмма 4.1) сигналы "0" (циклограммы 5 и 8) поступают на первые и вторые управляющие входы только первого ОЗУ 15-5, при этом сигнал "0", поданный одновременно на управляющий вход первого ключа 15-1, закрывает последний, блокируя прохождение сигналов с выхода счетчика 15-4 на адресные входы второго и третьего ОЗУ 15-6 и 15-9. Поэтому выходные сигналы счетчика 15-4, работающего с коэффициентом счета M (в нем осуществляется циклический перебор М= 2K устойчивых состояний), поступают по K цепям только на адресные входы первого ОЗУ 15-5, в который по адресам, скажем 1,2,...,M, записывается пачка из M различных чисел (псевдослучайная перестановка), подаваемая на его информационные входы с выходов генератора 5 ПСПЕР. Последний импульс пачки (M-й импульс) на счетном входе счетчика 15-4 устанавливает его в нулевое (исходное) состояние.

С приходом второй пачки синхроимпульсов на счетный вход счетчика 15-4 (циклограмма 4.2) сигналы "0" (циклограммы 6 и 8) подаются только на первые и вторые управляющие входы второго ОЗУ 15-6, при этом первый ключ 15-1 открыт сигналом "1" на его управляющем входе (циклограмма 5), а второй ключ 15-2 закрыт сигналом "0" на его управляющем входе (циклограмма 6) и выходные сигналы счетчика 15-4 поступают по K цепям на адресные входы второго ОЗУ 15-6, в который по адресам, также скажем 1,..., M, записывается вторая пачка из M различных чисел (псевдослучайная перестановка), подаваемая на его информационные входы с выходов генератора 5 ПСПЕР.

Аналогично третья пачка из M чисел (псевдослучайная перестановка), подаваемая на информационные входы всех ОЗУ, записывается только в третье ОЗУ 15-9, поскольку выходные сигналы счетчика 15-4, при наличии на его счетном входе третьей пачки синхроимпульсов (циклограмма 4.3), воздействуют на адресные входы только третьего ОЗУ, ибо только на его первый и второй управляющие входы подается сигнал "0" (циклограммы 7 и 8), при этом ключи 15-1 и 15-2 открыты сигналами "1" на их управляющих входах (циклограммы 5,6).

Заметим, что хотя выходные сигналы счетчика 15-4 при воздействии на его счетный вход второй, третьей пачек синхроимпульсов поступают также на адресные входы соответственно ОЗУ 15-5 и ОЗУ 15-5, 15-6, перезапись информации в указанные ОЗУ не производится, так как они находятся в режиме "Хранение информации", поскольку на их первые управляющие входы в этом время подаются сигналы "1" (циклограммы 5 и 6).

С приходом на счетный вход счетчика 15-4 четвертой пачки синхроимпульсов (циклограмма 4.4) на первые управляющие входы ОЗУ 15-5, 15-6 и 15-9 с третьего, пятого и седьмого выходов блока 15-11 управления подаются сигналы "0" (циклограммы 5-7), запирающие ключи 15-1 и 15-2 и поддерживающие режим "Запись/Считывание", а на вторых объединенных управляющих входах указанных ОЗУ сигнал с шестого выхода блока 15-11 переключается из режима "Запись" (сигнал "0") в режим "Считывание" (сигнал "1") (циклограмма 8), при этом своим срезом (перепадом из 0 в 1), поданным на установочный вход счетчика 15-10, устанавливает последний в нулевое состояние. Одновременно с ОЗУ переходит в режим "Считывание" и постоянное запоминающее устройство (ПЗУ) 15-7 сигналом "0", подаваемым на его управляющий вход с четвертого выхода блока 15-11 (циклограмма 9).

В режиме "Считывание" сигналы с выхода первого ОЗУ 15-5 подаются на первые адресные входы (строчные) ПЗУ 15-7, сигналы с выхода второго ОЗУ 15-6 - на вторые адресные входы (столбцовые) ПЗУ 15-7, а сигналы с выхода третьего ОЗУ 15-9 - на входы преобразователя 15-3 последовательного кода в параллельный.

За длительность четвертой пачки синхроимпульсов адреса ячеек первого ОЗУ 15-5, задаваемые выходными сигналами первого счетчика 15-4, изменяются от 1 до M (за счет циклического перебора всех состояний счетчика пачкой синхроимпульсов на его входе), адрес ячейки второго ОЗУ 15-6, задаваемый выходным сигналом второго счетчика 15-10, изменяется на единицу (на первом -такте принимает значение 1) сигналом, скажем "0", поданным на его счетный вход с четвертого выхода блока 15-11 (циклограмма 9), а адреса ячеек третьего ОЗУ 15-9 задаются выходными сигналами ПЗУ 15-7, подаваемыми через элемент 15-8 на его адресные входы.

В результате перехода ОЗУ 15-5, 15-6, 15-9 и ПЗУ 15-7 в режим "Считывание" осуществляются перестановка строк, столбцов латинского квадрата, записанного в ПЗУ 15-7, и переименование его элементов, характер которых определяется псевдослучайными перестановками, записанными в первое ОЗУ 15-5 (управляет перестановкой строк), второе ОЗУ 15-6 (управляет перестановкой столбцов) и третье ОЗУ 15-9 (осуществляет переименование элементов).

Столбец латинского квадрата (порядок считывания элементов которого (перестановка строк) определяется выходным сигналом первого ОЗУ 15-5, подаваемым на первый адресный вход ПЗУ 15-7, а номер столбца задается выходным сигналом второго ОЗУ 15-6, подаваемым на второй адресный вход ПЗУ 15-7) поступает поэлементно через элемент ИЛИ 15-8 на адресный вход третьего ОЗУ 15-9, определяя, в свою очередь, адрес записанного в это ОЗУ по информационным входам элемента перестановки, который с выхода по K цепям подается на вход преобразователя 15-3 последовательного кода в параллельный.

Преобразования в ОЗУ 15-5, 15-6, 15-9 и ПЗУ 15-7 на первом такте -импульса проиллюстрируем на примере латинского квадрата порядка M=6 (фиг. 5).

Перестановка строк, как уже упоминалось, задается подстановкой A, перестановка столбцов - подстановкой B, а переименование элементов - подстановкой C.

Адресу 1 первого ОЗУ 15-5 (см. верхнюю строку подстановки A) соответствует цифра 6, записанная в его память (см. нижнюю строку подстановки A), а адресу 1 второго ОЗУ 15-6