Способ получения ароматических углеводородов

Реферат

 

Изобретение может быть использовано в нефтехимической промышленности. Ароматические углеводороды получают путем контакта легкоуглеводородного сырья, включающего олефины и парафины, с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем, содержащим фиксированный каталитический слой, состоящий из цеолитового катализатора, осуществляя тем самым реакцию каталитической циклизации легкоуглеводородного сырья. При этом реакцию каталитической циклизации проводят в условиях, которые удовлетворяют следующим требованиям: 1) цеолитовый катализатор имеет начальную каталитическую активность 0,2 (c-1) или более в терминах константы скорости начальной стадии первого порядка разложения н-гексана, катализируемой цеолитовым катализатором, измеренной при температуре 500oC и атмосферном давлении; 2) слой катализатора имеет температуру 450-650oC; 3) слой катализатора имеет распределение температуры по отношению к расстоянию от входа в слой катализатора до выхода из слоя катализатора, при этом распределение температуры имеет хотя бы одно максимальное значение; 4) температура на выходе из слоя катализатора находится в пределах 40oC по отношению к температуре на входе в слой катализатора. Указанный способ позволяет стабильно получать ароматические углеводороды с высоким выходом в течение продолжительного периода времени. 32 з. п.ф-лы, 13 табл., 9 ил.

Настоящее изобретение относится к способу получения ароматических углеводородов из легких углеводородов. Более конкретно, настоящее изобретение относится к способу получения ароматических углеводородов из легких углеводородов, который включает подачу легкоуглеводородного сырья, содержащего по меньшей мере один компонент, выбранный из группы, включающий олефины и парафины, в адиабатический реактор с фиксированным слоем, содержащим фиксированный каталитический слой, состоящий из цеолитового катализатора, чтобы тем самым привести в контакт легкоуглеводородное сырье с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем и осуществить реакцию каталитической циклизации легкоуглеводородного сырья, где цеолитовый катализатор обладает специфической активность, и реакцию каталитической циклизации проводят при конкретных температурных условиях по отношению к каталитическому слою.

По способу настоящего изобретения могут не только быть получены ароматические углеводороды с высоким выходом, но и снижение каталитической активности является небольшим, так что получение ароматических углеводородов можно стабильно осуществлять в течение продолжительного периода времени. Способ по настоящему изобретению может быть успешно использован в нефтехимической промышленности и при рафинировании нефти, особенно при получении ароматических соединений высокооктановых бензинов.

Широко известны различные способы, по которым ароматические углеводороды получают с использованием цеолита, такого как ZSM-5 в качестве катализатора. Например, в японской патентной заявке, прошедшей экспертизу, N 56-42639 (соответствующая патенту США N 3756942) описан способ, по которому ароматические углеводороды получают из углеводородного сырья, состоящего из парафинов, олефинов и/или нафтенов, каждый имеющий 5 или более атомов углерода, и которое имеет содержание ароматических углеводородов 15% по массе или менее, с использованием цеолитового катализатора типа ZSM-5. В японской патентной заявке, прошедшей экспертизу, N 4-5712 описан способ, по которому ароматические углеводороды получают из углеводородного сырья, содержащего насыщенные углеводороды, имеющие 4 или менее атомов углерода, ненасыщенные углеводороды, имеющие от 2 до 4 атомов углерода и цельную нефть в определенном количественном отношении, используя цеолитовый катализатор типа ZSM-4.

Кроме того, в патенте США N 3845150 описан способ, по которому углеводород, содержащий от 20 до 65% по массе насыщенных углеводородов и от 20 до 50% по массе ненасыщенных углеводородов, подвергают контактированию с цеолитовым катализатором типа ZSM-5, так что процесс, включающий реакцию циклизации (экзотермическую) ненасыщенных углеводородов и реакцию циклизации (эндотермическую) насыщенных углеводородов, может быть проведен в условиях теплового баланса, получая ароматические углеводороды путем изотермической реакции.

В нерассмотренной заявке на японский патент (kohyo) N 3-503656 (соответствующая патенту США N 4851602) описан способ, по которому фракцию углеводородов, содержащую низшие алканы и низшие алкены, подвергают контактированию с ожиженным слоем цеолитного катализатора кислотного типа, имеющего средние размеры пор в первой конверсионной зоне, тем самым получая реакционную смесь (поверхностный поток), содержащий ароматические углеводороды, обогащенные высшими алифатическими углеводородами, и полученную реакционную смесь подвергают контактированию с ожиженным слоем цеолитного катализатора кислотного типа, имеющего средний размер пор во второй конверсионной зоне, тем самым получая продукт, который обогащен алкилированными ароматическими углеводородами, и который содержит бензины, имеющие 5 или более атомов углерода.

Кроме того, в выложенном описании нерассмотренной заявки на японский патент N 63-69888 (соответствующее патенту США N 4720602) описан способ, по которому углеводородное сырье, содержащее не менее 50% по массе C2-C12 алифатических углеводородов, преобразуют в ароматические соединения, используя кристаллический цеолитовый катализатор, имеющий специфическую активность.

В выложенном описании нерассмотренной заявки на японский патент N 63-14732 описан способ, по которому ароматические углеводороды получают из легких углеводородов, используя цеолитовый катализатор типа ZSM-5, содержащий цинк и имеющий специфические свойства.

В выложенном описании нерассмотренной заявки на японский патент N 3-182592 (соответствующее патенту США N 4885420) описан способ, по которому углеводородное сырье, содержащее олефины, подвергают реакции гидрирования, используя водород и катализатор гидрирования, а затем полученный в результате продукт подвергают реакции дегидроциклодимеризации в реакторе, содержащем катализатор дегидроциклодимеризации, получая тем самым ароматические углеводороды.

Однако в указанных известных способах при попытке получения ароматических углеводородов с использованием адиабатического реактора с фиксированным слоем (который является коммерчески более выгодным, поскольку он не только является простым по конструкции, но и имеет высокую эффективность), возникают проблемы, такие как выход желаемого продукта на основе ароматических углеводородов становится низким или протекает интенсивное коксование, так что становится трудным стабильно осуществлять процесс получения желаемых ароматических углеводородов. Поэтому обычно считается невозможным стабильно получать желаемые ароматические углеводороды с высоким выходом при использовании адиабатического реактора с фиксированным слоем. Для получения ароматических углеводородов с высоким выходом был предпринят ряд попыток. Например, в выложенном описании публикации нерассмотренной заявки на японский патент N 3-182592 предложен способ, по которому олефины, содержащиеся в сырье, сначала подвергают гидрированию, а затем фракцию подвергают дегидроциклодимеризации для получения ароматических углеводородов. Этот процесс, однако является невыгодным, поскольку он должен проводиться в две стадии. Далее в некоторых из обычно предлагаемых способах для получения ароматических углеводородов с высоким выходом, является невыгодным, но необходимым использование реакторов, имеющих сложные конструкции (таких как изотермический реактор, реактор с подвижным слоем и реактор с ожиженным слоем).

Как рассмотрено выше (патент США N 3845150), описан процесс, по которому фракция, содержащая насыщенные углеводороды и ненасыщенные углеводороды в конкретном весовом соотношении, используется так, что делает возможным проведение процесса в условиях теплового баланса. В этом процессе, хотя тепло из внешнего источника почти не подают, ароматические углеводороды получают практически с тем же выходом, как и по способу, по которому в реакционную систему подают большое количество тепла. Однако в этой ссылке отсутствует описание, касающееся распределения температуры в реакционной системе или того, как поддерживать стабильную работу, при которой подавляется понижение каталитической активности, вызываемое коксованием катализатора. В вышеуказанной нерассмотренной заявке на патент Японии (konyo) N 3-503656 описан способ, по которому углеводородное сырье, содержащее низшие алканы и низшие алкены в таком весовом отношении, чтобы поддерживать почти изотермические условия реакции в конверсионной зоне, используется для получения продукта, который обогащен алкилированными ароматическими углеводородами и содержит бензины, имеющие 5 или более атомов углерода. По этому способу реактор с ожиженным слоем (по которому как каталитическая реакция, так и регенерация катализатора могут проводиться непрерывно) используется для того, чтобы предотвратить понижение каталитической активности, вызванное коксованием катализатора. Однако реактор с ожиженным слоем, используемый в этом способе, имеет сложную конструкцию, поэтому затраты становятся высокими.

Заявители провели широкие и интенсивные исследования с целью решения указанных проблем, известных из уровня техники. В результате неожиданно было обнаружено, что при получении ароматических углеводородов из легких углеводородов, где исходный продукт легких углеводородов, содержащий хотя бы один компонент, выбранный из группы, включающей олефины и парафины, подают в адиабатический реактор с фиксированным слоем, содержащий фиксированный слой катализатора, состоящий из цеолитового катализатора, тем самым приводя в контакт исходный продукт легких углеводородов с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем и осуществляя реакцию каталитической циклизации легкоуглеводородного сырья, в том случае, когда используется цеолитовый катализатор, имеющий специфическую активность, и когда реакцию каталитической циклизации проводят в определенных температурных условиях по отношению к слою катализатора, то не только могут быть получены с высоким выходом желаемые ароматические углеводороды, но также небольшим является понижение каталитической активности, поэтому получение желаемых ароматических углеводородов может стабильно проводиться в течение длительного периода времени. Настоящее изобретение выполнено на основе указанного выше обнаружения.

Поэтому первым объектом настоящего изобретения является способ получения ароматических углеводородов путем приведения в контакт легкоуглеводородного сырья, содержащего хотя быть один компонент, выбранный из группы, включающей олефины и парафины, с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем, где желаемые ароматические углеводороды могут быть получены с высоким выходом и стабильно в течение длительного периода времени.

Последующие и другие объекты, признаки и преимущества настоящего изобретения будут понятны из последующего подробного описания и формулы изобретения, принимая во внимание прилагаемые рисунки.

На фиг. 1 приведена блок-схема, представляющая один из режимов способа настоящего изобретения; фиг. 2 - блок-схема, представляющая другой режим способа настоящего изобретения; фиг. 3 - диаграмма, представляющая один из предпочтительных профилей распределения температуры в слое катализатора, используемый в способе настоящего изобретения; фиг. 4 - диаграмма, представляющая один из предпочтительных профилей однородного распределения температуры во время обработки паром слоя катализатора, содержащего цеолитовый катализатор, который должен быть использован в способе настоящего изобретения, представленный вместе с профилем неоднородного распределения температуры; фиг. 5 - блок-схема, представляющая один из режимов разделения реакционной смеси, полученной по способу настоящего изобретения; фиг. 6 - блок-схема, представляющая другой режим разделения реакционной смеси, полученной по способу настоящего изобретения; фиг. 7 - блок-схема, представляющая один из режимов регенерации цеолитового катализатора, используемого в способе настоящего изобретения; фиг. 8 схематически представлен вид изотермического реактора, который должен быть использован для оценки активности цеолитового катализатора, который должен быть использован в способе настоящего изобретения; фиг. 9 - блок-схема, представляющая один из режимов рециклирования реакционного продукта, полученного с помощью настоящего изобретения.

В фиг. 5 и 6 подобные части и детали обозначены одинаковыми цифрами или буквами.

По существу в настоящем изобретении предложен способ получения ароматических углеводородов из легких углеводородов путем каталитической циклизации, который включает подачу легкоуглеводородного сырья, включающего хотя бы один компонент, выбранный из группы, включающей олефины и парафины, в адиабатический реактор с фиксированным слоем катализатора, содержащий фиксированный слой катализатора, состоящий из цеолитового катализатора, тем самым приводя в контакт легкоуглеводородное сырье с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем и осуществляя реакцию каталитической циклизации легкоуглеводородного сырья, и где цеолитовый катализатор является хотя бы одним из компонентов, выбранных из группы, состоящей из по существу свежего цеолитового катализатора и обработанного паром цеолитового катализатора, заключающийся в том что реакцию каталитической циклизации проводят в условиях, которые удовлетворяют следующим требованиям (1), (2), (3) и (4): (1) цеолитовый катализатор имеет начальную каталитическую активность 0,2 (с-1) или более в терминах константы скорости начальной стадии реакции первого порядка разложения н-гексана, катализируемой цеолитовым катализатором, измеренной при температуре 500oC и при атмосферном давлении; (2) слой катализатора имеет температуру в диапазоне от 450 до 650oC; (3) слой катализатора проявляет распределение температуры по отношению к расстоянию от входа в слой катализатора до выхода из слоя катализатора, отличающееся тем, что распределение температуры имеет хотя быть одно максимальное значение; (4) температура на выходе из слоя катализатора находится в пределах 40oC по отношению к температуре на входе в слой катализатора.

В настоящем изобретении термин "по существу свежий цеолитовый катализатор" предназначен для обозначения не только не обработанного паром цеолитового катализатора, но также и цеолитового катализатора, который обрабатывали паром в такой степени, что существенной модификации цеолитового катализатора не достигалось. Термин "существенная модификация" обозначает модификацию, при которой достигается степень деалюминирования, которая обычно предполагается при обработке цеолитового катализатора паром.

Для легкого понимания настоящего изобретения основная конструкция и различные предпочтительные воплощения настоящего изобретения представлены ниже.

1. Способ получения ароматических углеводородов путем каталитической циклизации, который включает подачу легкоуглеводородного сырья, содержащего хотя бы один компонент, выбранный из группы, включающей олефины и парафины, в адиабатический реактор с фиксированным слоем, содержащий фиксированный слой катализатора, состоящий из цеолитового катализатора, тем самым приводя в контакт легкоуглеводородное сырье с цеолитовым катализатором в адиабатическом реакторе с фиксированным слоем и осуществляя реакцию каталитической циклизации легкоуглеводородного сырья, и где цеолитовый катализатор является хотя бы одним из компонентов, выбранных из группы, состоящей по существу из свежего цеолитового катализатора и обработанного паром цеолитового катализатора, отличающийся тем, что реакцию каталитической циклизации проводят в условиях, которые удовлетворяют следующим требованиям (1), (2), (3) и (4): (1) цеолитовый катализатор имеет начальную каталитическую активность 0,2 (с-1) или более в терминах константы скорости начальной стадии реакции первого порядка разложения н-гексана, катализируемой цеолитовым катализатором, измеренной при температуре 500oC при атмосферном давлении; (2) слой катализатора имеет температуру в диапазоне от 450 до 650oC; (3) слой катализатора проявляет распределение температуры по отношению к расстоянию от входа в слой катализатора до выхода из слоя катализатора, отличающееся тем, что распределение температуры имеет хотя бы одно максимальное значение; (4) температура на выходе из слоя катализатора находится в пределах 40oC по отношению к температуре на входе в слой катализатора.

2. Способ по п. 2 выше, отличающийся тем, что цеолитовый катализатор состоит по существу из цеолита.

3. Способ по п. 1 выше, отличающийся тем, что цеолитовый катализатор включает смесь цеолита и хотя бы одного компонента, выбранного из группы, включающей металл, принадлежащий к группе VIII, Iб, IIб или IIIб Периодической таблицы и его производные.

4. Способ по п. 3 выше, отличающийся тем, что цеолитовый катализатор содержит смесь цеолита и хотя бы одного компонента, выбранного из группы, включающей цинк и его производные.

5. Способ по п. 4 выше, отличающийся тем, что цеолитовый катализатор содержит смесь цеолита, хотя бы одного компонента, выбранного из группы, включающей цинк и его производные, и окись алюминия.

6. Способ по п. 4 выше, отличающийся тем, что цеолитовый катализатор включает смесь цеолита и продукта, полученного путем тепловой обработки в паре смеси окиси алюминия и хотя бы одного компонента, выбранного из группы, включающей цинк и его производные.

7. Способ по п. 4 выше, отличающийся тем, что цеолитовый катализатор включает смесь цеолита и алюмината цинка.

8. Способ по любому из пп. 4-7 выше, отличающийся тем, что содержание хотя бы одного компонента, выбранного из группы, включающей цинк и его производные, в цеолитовом катализаторе составляет от 5 до 25% по массе по отношению к количеству цинка.

9. Способ по п. 1 выше, отличающийся тем, что цеолит в цеолитовом катализаторе замещается металлом, принадлежащим к группе VIII, Iб, IIб или IIIб Периодической таблицы.

10. Способ по любому из пп. 1-9 выше, отличающийся тем, что цеолит цеолитового катализатора имеет атомное отношение Si/Al не менее 12 в его цеолитовой структуре, и имеет содержание натрия 500 по массе миллионных долей или менее.

11. Способ по любому из пп. 1-10 выше, отличающийся тем, что цеолитовый катализатор содержит цеолит ZSM-5.

12. Способ по любому из пп. 1-11 выше, отличающийся тем, что цеолитовый катализатор является по существу свежим цеолитовым катализатором.

13. Способ по любому из пп. 1-11 выше, отличающийся тем, что цеолитовый катализатор является обработанным паром цеолитовым катализатором, который получают путем обработки паром по существу свежего цеолитового катализатора.

14. Способ по п. 13 выше, отличающийся тем, что цеолитовый катализатор включает смесь обработанного паром цеолитового катализатора, который получают путем обработки паром по существу свежего цеолитового катализатора, состоящего по существу из цеолита, и хотя бы одного компонента, выбранного из группы, включающей металл, принадлежащий к группе VIII, Iб, IIб или IIIб Периодической таблицы и его производные.

15. Способ по п. 14 или 15 выше, отличающийся тем, что обработку паром по существу свежего цеолитового катализатора производят путем протекания потока пара через реактор для обработки паром, содержащий по существу свежий цеолитовый катализатор при последовательности следующих стадий (а) и (б): (а) поток пара, имеющий парциальное давление пара не менее 0,1 кг/см2 и температуру от 500 до 650oC, проходит через реактор для обработки паром, тем самым осуществляется -+ контакт свежего по существу цеолитового катализатора с паром в течение от 0,1 до 3 ч; (б) временная приостановка потока через реактор для обработки паром и удаление пара, который остается в реакторе, при этом пар, имеющий парциальное давление пара от 0,1 до 10 кг/см2 и температуру от 515 до 700oC, протекает через реактор для обработки паром при условии, что температура протекающего пара в стадии (б) выше, чем температура пара, протекающего в стадии (а), где стадия (б) осуществляется по крайней мере однажды, так что пар, индивидуально протекающий в каждой стадии (б), подвергают контактированию с цеолитовым катализатором, который обрабатывается паром на стадии, предшествующей каждой стадии (б).

16. Способ по любому из пп. 1-15 выше, отличающийся тем, что легкоуглеводородное сырье содержит хотя бы один компонент, выбранный из группы, включающей фракцию C4 продукта системы высокотемпературного термического крекинга углеводородного материала нефти, или фракцию, полученную путем удаления бутадиена или удаления бутадиена и изо-бутена из фракции C4; фракцию C5 продукта системы высокотемпературного термического крекинга углеводородного материала нефти или фракцию, полученную путем удаления диенов из фракции C5; термически крекированный бензин; рафинат, полученный путем экстрагирования ароматических углеводородов из термически крекированного бензина; ЖКК-НК; ЖКК-крекированный бензин; рафинат, полученный путем экстрагирования ароматических углеводородов из реформата; коксованный НК и цельную нефть.

17. Способ по любому из пп. 1-16 выше, отличающийся тем, что легкоуглеводородное сырье содержит фракцию насыщенных углеводородов и фракцию ненасыщенных углеводородов, и где массовое соотношение фракции насыщенных углеводородов и фракции ненасыщенных углеводородов составляет от 0,43 до 2,33.

18. Способ по любому из пп. 1-17 выше, отличающийся тем, что внутреннее давление адиабатического реактора во время реакции циклизации находится в пределах от атмосферного давления до 30 кг/см2G, и легкоуглеводородное сырье вводится в адиабатический реактор при удельной часовой скорости (УЧС) от 0,1 до 50 ч-1.

19. Способ по любому из пп. 1-18 выше, который далее включает разделение полученной в результате реакции циклизации смеси, содержащей продукт ароматических углеводородов, на продукт A, состоящий по существу из продукта ароматических углеводородов, и продукт B, состоящий по существу из водорода и продукта неароматических углеводородов, имеющих 1-5 атомов углерода, и отличающийся тем, что разделение производят посредством газожидкостного сепаратора и, необязательно, дистилляционной колонны.

20. Способ по любому из пп. 1-18 выше, который далее включает разделение полученной в результате реакции циклизации смеси, содержащей продукт ароматических углеводородов, на продукт A, состоящий по существу из продукта ароматических углеводородов, продукт C, состоящий по существу из продукта неароматических углеводородов, имеющих 4-5 атомов углерода, и продукт D, состоящий по существу из водорода и продукта неароматических углеводородов, имеющих 1-3 атома углерода, отличающийся тем, что разделение производят посредством газожидкостного сепаратора и, необязательно, дистилляционной колонны.

21. Способ по п. 19 или 20 выше, отличающийся тем, что газожидкостное разделение производят, используя охладитель, состоящий из пропилена или этилена, и отличающийся тем, что пропилен или этилен получают и используют в качестве охладителя в процессе получения этилена путем высокотемпературного термического крекинга углеводородов нефти.

22. Способ по п. 19 выше, отличающийся тем, что хотя бы часть продукта B, состоящего по существу из водорода и продукта неароматических углеводородов, имеющих 1-5 атомов углерода, рециклируют в адиабатический реактор и используют как часть легкоуглеводородного сырья.

23. Способ по п. 19 выше, отличающийся тем, что хотя бы часть продукта B, состоящего по существу из водорода и продукта неароматических углеводородов, имеющих 1-5 атомов углерода, подают в систему высокотемпературного термического крекинга углеводородного материала нефти.

24. Способ по п. 20 выше, отличающийся тем, что хотя бы часть хотя бы одного компонента, выбранного из группы, включающей продукт C, состоящий по существу из продукта неароматических углеводородов, имеющих 4-5 атомов углерода, и продукт D, состоящий по существу из водорода и продукта неароматических углеводородов, имеющих 1-3 атома углерода, рециклируют в адиабатический реактор и используют в качестве легкоуглеводородного сырья.

25. Способ по п. 20 выше, отличающийся тем, что хотя бы часть хотя бы одного компонента, выбранного из группы, включающей продукт C, состоящий по существу из продукта неароматических углеводородов, имеющих 4-5 атомов углерода, и продукт D, состоящий по существу из водорода и продукта неароматических углеводородов, имеющих 1-3 атома углерода, вводится в систему высокотемпературного термического крекинга углеводородов нефти.

26. Способ по любому из пп. 19-25 выше, который далее включает обработку продукта A, состоящего по существу из продукта ароматических углеводородов, путем хотя бы одного из способов, выбранных из группы, состоящей из следующих способов: способ, по которому продукт A обрабатывают, используя оборудование для деалкилирования, тем самым получая бензол; способ, по которому продукт A обрабатывают, используя оборудование для перегонки, оборудование для экстракции или оборудование для экстракционной дистилляции, получая тем самым бензол, толуол и ксилол; способ, по которому продукт A обрабатывают, используя оборудование для диспропорционирования или оборудование для изомеризации; способ, по которому продукт A смешивают с бензином.

27. Способ по любому из пп. 1-26 выше, который далее включает временную приостановку подачи легкоуглеводородного сырья в адиабатический реактор с фиксированным слоем, и выжигание кокса, образовавшегося на цеолитовом катализаторе во время реакции каталитической циклизации, кислородсодержащим инертным газом в качестве горючего газа для регенерации цеолитового катализатора в зоне регенерации катализатора.

28. Способ по п. 27 выше, отличающийся тем, что избыточный горючий газ, выходящий из зоны регенерации катализатора, рециклируют в зону регенерации катализатора через нагреватель посредством рециклирующего компрессора, тем самым формируя систему циркуляции горючего газа, включающую зону регенерации катализатора, рециклирующий компрессор и нагреватель, которые соединены в этом порядке путем трубопровода, и отличающуюся тем, что свежий кислородсодержащий инертный газ подают в систему циркуляции горючего газа на первом входе, расположенном между выходом из зоны регенерации катализатора и входом нагревателя в количестве от 0,05 до 50% объемных по отношению к объему циркуляции горючего газа, при выгрузке из системы циркуляции горючего газа избыточный горючий газ выходит из зоны регенерации катализатора перед попаданием в нагреватель в количестве, которое по существу равно количеству свежего кислородсодержащего инертного газа, подаваемого на первый вход, где количество и содержание кислорода подающегося свежего кислородсодержащего инертного газа регулируют так, что горючий газ, втекающий в зону регенерации катализатора, имеет содержание кислорода от 0,01 до 10% объемных.

29. Способ по п. 28 выше, который далее включает подачу свежего инертного газа, не содержащего кислорода, в систему циркуляции горючего газа на второй вход, который идентичен первому входу или предусмотрен отдельно от первого входа между выходом зоны регенерации катализатора и входом нагревателя, в количестве 10% объемных или менее по отношению к циркулирующему объему горючего газа, при последующей выгрузке из системы циркуляции горючего газа избыточный горючий газ выходит из зоны регенерации катализатора перед попаданием в нагреватель в количестве, которое по существу равно количеству свежего инертного газа, не содержащего кислорода, подающегося на второй вход, тем самым подавляя увеличение парциального давления пара в горючем газе, протекающем в зону регенерации катализатора.

30. Способ по п. 29 выше, который далее включает охлаждение горючего газа, который подлежит сжатию посредством рециклирующего компрессора, и нагревание сжатого горючего газа перед попаданием в нагреватель, отличающийся тем, что охлаждение и нагрев получают посредством хотя бы одного теплообменника.

31. Способ по любому из пп. 13-15, отличающийся тем, что обработку паром по существу свежего цеолитового катализатора производят, используя систему циркуляции пара, включающую реактор для обработки паром, рециклирующий компрессор, нагреватель и хотя бы один теплообменник, которые соединены трубопроводом.

32. Способ по п. 31 выше, отличающийся тем, что реактор для обработки паром используют в качестве адиабатического реактора.

33. Способ по п. 31 или 32 выше, отличающийся тем, что систему циркуляции пара используют как систему циркуляции горючего газа для регенерации цеолитового катализатора по способу пункта 30 выше, где реактор для обработки паром используют как реактор для регенерации или заменяется реактором для регенерации, включающим зону регенерации катализатора в системе циркуляции горючего газа, и где горючий газ для системы циркуляции горючего газа используют вместо пара для системы циркуляции пара.

Цеолит для цеолитового катализатора, который должен использоваться в способе настоящего изобретения имеет атомное соотношение Si/Al от 2 до 60 в его цеолитной структуре. Примеры цеолитов, пригодных к использованию в способе настоящего изобретения включают -цеолит, -цеолит, Y-цеолит, L-цеолит, эрионит, оффретит, морденит, ферьерит, ZSM-5, ZSM-8, ZSM-11, ZSM-12, ZSM-35 и ZSM-38. Среди них кристаллические алюмосиликаты и кристаллические металлосиликаты из семейства ZSM-5, то есть ZSM-5, ZSM-8, ZSM-11 и тому подобное, являются предпочтительными. В отношении деталей цеолитов семейства ZSM-5 можно указать, например, патент США N 5268162.

В качестве цеолитового катализатора, который должен быть использован в настоящем изобретении, может быть использован цеолитовый катализатор, состоящий по существу из цеолита. Однако цеолитовый катализатор, который должен быть использован в настоящем изобретении, может далее содержать хотя бы один металл, выбранный из металлов, принадлежащих группе VIII, Iб, IIб или IIIб Периодической таблицы. Является предпочтительным, чтобы цеолитовый катализатор содержал смесь цеолита и хотя бы одного компонента, выбранного из группы, включающей металл, принадлежащий группе VIII, Iб, IIб или IIIб Периодической таблицы и его производные (например, оксид металла, такой как оксид цинка, каковой оксид металла способен облегчать дегидрогенизацию цеолита). Среди металлов, принадлежащих группе VIII, Iб, IIб или IIIб Периодической таблицы, металлы, выбранные из Zn, Cu, Ag, Ni, Pt, Pd и Ga, являются предпочтительными. Среди этих металлов Zn, Ag, Ni и Ga являются особенно предпочтительными. Например, является предпочтительным, чтобы цеолитовый катализатор содержал смесь цеолита и хотя бы одного компонента, выбранного из группы, включающей цинк и его производные. Более предпочтительно, цеолитовый катализатор далее содержит окись алюминия и окись кремния как связующие.

По способу настоящего изобретения примеры материалов, пригодных к использованию в качестве хотя бы одного компонента, выбранного из группы, включающей цинк и его производные (далее часто упоминаемого как "цинковый компонент"), включают цинк, оксид цинка, гидроксид цинка, а также соли, такие как нитрат цинка, карбонат цинка, сульфат цинка, хлорид цинка, ацетат цинка и оксалат цинка и органические соединения цинка, такие как алкилцинк.

По способу настоящего изобретения является предпочтительным, чтобы цеолитовый катализатор содержал смесь цеолита, цинкового компонента и окиси алюминия. Является также предпочтительным, чтобы цеолитовый катализатор содержал смесь цеолита и продукта, полученного путем тепловой обработки в паре смеси окиси алюминия и цинкового компонента. В том случае, когда цеолитовый катализатор обрабатывают паром, как описано подробно ниже, цинковый компонент и окись алюминия реагируют друг с другом, образуя алюминат цинка, в котором цинк стабилизирован, так что потери цинка при испарении в условиях реакции циклизации сильно сокращаются. Кроме того, когда цеолитовый катализатор содержит смесь цеолита и алюмината цинка, могут быть достигнуты те же самые эффекты, как рассмотренные выше. Алюминат цинка, упоминаемый здесь, как алюминат цинка, который проявляет такую же структуру дифракции рентгеновских лучей, как представлено в JCPDS 5-0669 NBS Circ., 539, Vol. 11, 38 (1953), при измерениях на рентгеновском дифрактометре, таком как XD-610, производимом и продаваемом Shimadzu Corporation, Japan.

По способу настоящего изобретения окись алюминия может быть безводной окисью алюминия или гидратированной окисью алюминия. Кроме того, могут быть использованы материалы, которые способны получать безводную или гидратированную окись алюминия путем гидролиза, термического разложения, окисления или им подобных.

Когда цеолитовый катализатор содержит хотя бы один компонент, выбранный из группы, включающей цинк и его производные, является предпочтительным, чтобы содержание хотя бы одного компонента, выбранного из группы, включающей цинк и его производные, в цеолитовом катализаторе составляло от 5 до 25% по массе по отношению к количеству цинка.

Когда цеолитовый катализатор содержит окись алюминия, содержание окиси алюминия в катализаторе, в терминах Al2O3, составляет 5-50% по массе, предпочтительно 20-40% по массе, по отношению к весу цеолитового катализатора. Когда цинк содержится в дополнение к окиси алюминия, молярное отношение окиси алюминия к цинку (молярное отношение Al2O3/Zn) составляет 1 или более.

Цеолит, который должен быть использован в настоящем изобретении, может быть в H форме или в металлзамещенной форме. В случае металлзамещенного цеолита металл, принадлежащий к группе VIII, Iб, IIб или IIIб Периодической таблицы, является предпочтительным в качестве заместителя. Среди металлов, принадлежащих к группе VIII, Iб, IIб или IIIб Периодической таблицы, металл выбранный из Zn, Cu, Ag, Ni, Pt, Pd и Ga, является предпочтительным. Среди этих металлов Zn, Ag, Ni и Ga являются особенно предпочтительными. Далее, как рассмотрено выше, цеолит может быть использован в комбинации со связующим, таким как окись алюминия и/или оксид металла, такой как оксид цинка, каковой оксид металла является способным к облегчению дегидрогенизации цеолита. Как известно, активность цеолита изменяется в зависимости от содержания натрия в цеолите. Является предпочтительным, чтобы содержание натрия в цеолитовом катализаторе было относительно низким, конкретно 500 по массе миллионных частей или менее. Такое низкое содержание натрия является особенно важным, когда цеолит имеет атомное соотношение Si/Al 12 или более в его цеолитовой структуре.

В настоящем изобретении атомное соотношение Si/Al обозначает атомное соотношение Si/Al, измеренное путем 29Si ЯМР. В отношении метода измерения атомного отношения Si/Al путем 29Si ЯМР можно упомянуть "Jikken Kagaku Koza (Lecture On Experimental Chemistry) 5, NMR", 4th edition, p. 232-233, 1992, published by Maruzen Cj., Ltd., Japan.

Является предпочтительным, чтобы цеолитовый катализатор, который должен использоваться в способе настоящего изобретения, был бы обработанным паром цеолитовым катализатором, который получают путем обработки паром по существу свежего цеолитового катализатора. Когда используют обработанный паром цеолитовый катализатор, количество вещества кокса, аккумулированного на поверхности цеолитового катализатора во время последующей реакции каталитической циклизации, уменьшается, тем самым подавляя уменьшение каталитической активности со временем при реакции каталитической циклизации.

Например, рассмотренн