Способ синтеза монокристаллов алмаза и реактор для его реализации

Реферат

 

Изобретение относится к способам синтеза монокристаллов алмаза (МКА) из низкомолекулярных углеродсодержащих соединений в ходе протекания физико-химических цепных реакций в гетерогенных силикатных средах при высоких температурах. Техническим результатом, достигаемым в изобретении для способа синтеза МКА и реактора для его реализации, является обеспечение синтеза монокристаллов алмаза большой каратности. Реактор содержит корпус 1, выполненный в виде обечайки 2 с крышкой 3 и днищем 4, узел загрузки 13 шихты, узел слива продуктов реакции 16, узел 20 нагрева шихты, узел 27 подачи углеродсодержащих (углеводородных), азотсодержащих и легирующих веществ и узел 50 (форсунки) ввода водяного пара, теплообменник 6 охлаждения, узлы 41 фиксации МКА, а также патрубок 14 отвода газообразных продуктов реакции, оснащенный клапаном 15 регулирования давления. В корпус 1 через узел 13 загрузки загружается шихта определенного состава на 2/3 объема полости корпуса. После этого включается узел 20 нагрева шихты, работающий на кислород-углеводородных или воздух-углеводородных компонентах, шихту локально (последовательно) нагревают до температуры более 1500oС при коэффициенте избытка окислителя, равном 0,85 - 1,05, затем в образовавшийся восходящий поток гетерогенной среды (ГС) через узел 27 вводят углеводородные, а при необходимости и легирующие вещества, с доведением коэффициента избытка окислителя до 0,25 - 0,85 и последующим зональным охлаждением ГС в пристеночном слое теплообменником 6 до температуры 750 - 1050oС с формированием конвективных циркуляционных потоков ГС, в которых в охлаждаемой зоне на гребенках 43, расположенных горизонтально, фиксируются синтезируемые МКА 42 при давлении от 0,12 до 16 МПа. В образовавшуюся гетерогенную среду через узлы 20 (или 27) можно вводить азот или воздух, или азотсодержащие низкомолекулярные соединения, а также элементы III или V групп ПСЭ. Процессы осуществляются аналогично, что позволяет синтезировать азотсодержащие МКА, а также МКА с полупроводниковыми свойствами. В ГС в центральной зоне реактора может вводиться водяной пар в количестве 0,15 - 150% от суммарного текущего расхода углеводородов в шихту, что улучшает качество МКА. При завершении процесса синтеза МКА гребенки 43 поворачиваются на 90o, МКА опускаются в зону слива, снижается давление в реакторе до нормального и через узел слива 16 МКА выводятся из реактора. 2 с. и 5 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам синтеза кристаллов алмаза (КА), а более точно к способам синтеза монокристаллов алмаза (МКА) из низкомолекулярных углеродсодержащих соединений при высоких температурах в условиях протекания существенно-нестационарных процессов в гетерогенных силикатных системах.

Известен способ получения искусственного алмаза, заключающийся в том, что на образец из графита и металла воздействуют давлением и нагревом путем пропускания импульса электрического тока по образцу (патент СССР N 1820890, C 01 B 31/06, 1993 г.).

Недостатком данного способа является отсутствие потенциальной возможности получения монокристаллов алмаза большой каратности.

Известно устройство для получения искусственного алмаза, содержащее корпус с узлами нагрева и подачи углеродсодержащего газа (авт.св. СССР N 327776, C 01 B 31/06, 1983 г.).

Недостатком известного устройства является отсутствие возможности получения в нем монокристаллов алмаза большой каратности.

Известен способ синтеза монокристаллов алмаза, заключающийся в том, что алмазы синтезируют в шихте при высокой температуре и при подаче углеродсодержащего газа. Поликонденсационный процесс осуществляется в макроскопической открытой каталитической системе с постоянным подводом исходных углеродсодержащих соединений CH4, CO и др. или их смесей с окислительными продуктами CO2, H2O и др. в щелочных расплавах (KOH, KOH + MgO) в условиях стационарного неравновесия в системе в том числе за счет постоянного удаления окисляющих продуктов CO2, H2O и др. (А.П. Руденко, И.И. Кулакова и В.Л. Скворцова "Химический синтез алмаза. Аспекты общей теории", Успехи химии, 62(2), 1993 г., с. 104-105 прототип).

Недостатком известного способа является невозможность синтеза монокристаллов алмаза большой каратности с заданными, в том числе полупроводниковыми свойствами.

Известен реактор для синтеза монокристаллов алмаза, содержащий корпус с размещенными на нем узлами нагрева и подачи углеродсодержащего газа (А.П. Руденко, И. И. Кулакова и В.Л. Скворцова "Химический синтез алмаза. Аспекты общей теории". Успехи химии, 62(2), 1993 г., с. 104-105, прототип).

Недостатком известного реактора является невозможность синтеза монокристаллов алмаза большой каратности с заданными, в том числе полупроводниковыми свойствами.

В основу изобретения поставлена задача создания способа синтеза монокристаллов алмаза, в котором обеспечивается возможность синтеза монокристаллов алмаза большой каратности, в том числе с полупроводниковыми свойствами.

Задача создания способа синтеза монокристаллов алмаза решается тем, что в способе синтеза монокристаллов алмаза, заключающемся в том, что алмазы синтезируют в шихте при высокой температуре и при подаче углеродсодержащего вещества, согласно изобретению, используют шихту, составленную из компонентов, общий состав которой, выраженный через окислы входящих в нее элементов, соответствует: SiO2 - 25-44%; MgO - 15-30%; Al2O3 - 1,5-9%; Fe2O3 - 4-10%; FeO - 1,5-10%; K2O - 1,5-7%; Cr2O3 - 0,2-3%; Na2O - 0,05-2%; CaO - 0,5-11%; MnO - 0,01-0,5%; TiO2 - 0,6-4%; CO2 - 0,05-11%; H2O - 0,5-20%, а также 0,5-5% хлористых соединений или галогенидов металлов I, II групп периодической системы элементов, в шихту вводят расходные компоненты: окислительное вещество - кислород или смесь кислорода с азотом, или воздух, или их смесь с азотсодержащими низкомолекулярными соединениями с расходом по азоту от 1 до 80% от расхода несвязанного кислорода и в качестве углеродсодержащего вещества - углеводородное горючее вещество с коэффициентом избытка окислителя, равным 0,85-1,05, и при достижении температуры образовавшейся гетерогенной среды более 1500oC в нее вводят дополнительные углеродсодержащие вещества - углеводородные низкомолекулярные вещества с доведением коэффициента избытка окислителя до 0,25 - 0,85 и осуществляют ее зональное охлаждение до температуры 750-1050oC с образованием естественных конвективных циркуляционных потоков гетерогенной среды, при этом синтезируемые монокристаллы алмаза фиксируются в охлаждаемых зонах циркуляционных потоков гетерогенной среды, температура в которых составляет от 1400oC до 750oC при давлении от 0,12 до 16 МПа.

Использование шихты, составленной из компонентов, общий состав которой, выраженный через окислы входящих в нее элементов, представляет: SiO2 - 25-44%; MgO - 15-30%; Al2O3 - 1,5-6%; Fe2O3 - 4-10%; FeO - 1,5-10%; K2O - 1,5-6%; Na2O - 0,05-2%; Cr2O3 - 0,1-3%; CaO - 0,5-10%; Mn - 0,01-1,1%; TiO2 - 0,1-6%; CO2 - 0,05-11%; H2O - 0,5-20%, а также 0,5-5% хлористых соединений или галогенидов металлов I, II групп периодической системы элементов, введение в шихту расходных компонентов: окислительного вещества - кислорода или смеси кислорода с азотом, или воздуха, или их смеси с азотсодержащими низкомолекулярными соединениями с расходом по азоту от 1 до 80% от расхода несвязанного кислорода и углеводородных горючих веществ с последующим их сжиганием с коэффициентом избытка окислителя, равным 0,85-1,05, нагрев шихты до температуры более 1500oC с последующим введением в образовавшуюся гетерогенную среду в качестве углеродсодержащего вещества низкомолекулярных углеводородных веществ и легирующих элементов с доведением коэффициента избытка окислителя до 0,25-0,85 при одновременном ее зональном охлаждении до температуры 750-1050oC с образованием естественных конвективных циркуляционных потоков гетерогенной среды, с фиксированием синтезируемых монокристаллов алмаза в охлаждаемых зонах циркуляционных потоков гетерогенной среды, температура в которых составляет от 1400 до 750oC с ведением процесса при давлении от 0,2 до 16 МПа, после достижения температуры шихты более 750oC, позволяет в ходе сформировавшихся, многократно повторяющихся термодинамических циклов (полных конвективных циркуляций потоков гетерогенной среды) последовательно осуществлять: - интенсивную генерацию расщепляющего компонента - SiR - карбида кремния SiC (в высокотемпературной гетерогенной среде при Trc > 1500oC в ходе введения в нее углеводородных низкомолекулярных соединений с доведением коэффициента избытка окислителя в ней до 0,25-0,85 (реакции пиролиза углеводородов и поликонденсаций); - генерацию расщепляемых компонентов (вида AkBcSimOn, где A - одно- или двухвалентные металлы K, Ma, Ca, Mg, Fe, Mn; B - трехвалентные металлы Al, Fe, Cr или O2 (кислород); k, c, m, n - коэффициентные соотношения атомов в элементарной кристаллической ячейке, которые могут принимать значения: k = 1,2,3; c = 1,2,3; m = 1,2 или 3; n = 6,7,8,9,10,12 или 16), образующихся в ходе интенсивного охлаждения гетерогенной среды до температуры 750-1050oC (с отводом теплоты к полезным потребителям или преобразователям энергии); - автоматическое протекание цепных реакций расщепления высокомодульных силикатов (ЦР РВС) в охлаждаемой гетерогенной среде (при Trc - 750-1050oC) при взаимодействии микрокристаллов ВМС вида AkBcSimOn с внедрившимися в них микрочастицами SiC с выделением энергии и периодически повторяющимися микроимпульсами давления и температуры в гетерогенной среде расплава шихты в результате протекания цепных реакций расщепления высокомодульных силикатных систем, приводящих к формированию необходимых энергетических и каталитических свойств активной гетерогенной среды (АГС) и интенсивному и устойчивому процессу синтеза монокристаллов алмаза; - доокисление продуктов распада ВМС до полных окислов в зоне ввода окислительного вещества - кислорода в гетерогенную среду (с выделением тепла и замыканием термодинамического цикла).

Фиксирование синтезируемых монокристаллов алмаза в образовавшейся гетерогенной среде позволяет получить монокристаллы алмаза с однородными характеристиками, в том числе заданного габитуса за счет создания стабильных энергетических и химических параметров АГС, окружающей каждый монокристалл алмаза, начиная с момента достижения массы монокристаллов более 1-2 карат, а ведение синтеза монокристаллов алмаза при повышенных давлениях в диапазоне 0,1-16,0 МПа после достижения температуры шихты более 750oC приводит а увеличению скорости образования расщепляющих компонентов и регенерации высокомодульных силикатов и в конечном итоге - более интенсивному процессу ЦР РВС и соответственно к ускоренному синтезу МКА, а при введении в шихту в качестве кислородсодержащего окислительного вещества смеси кислорода с азотом или воздуха, или их смеси с азотсодержащими низкомолекулярными соединениями, например, NH3, HNO3, KNO3, CaCN2 и др. с расходом от 1 до 80% от массового расхода свободного кислорода, позволяет реализовать в гетерогенной среде при температуре более 1200oC интенсивный процесс генерации азотсодержащих расщепляющих (SiR) компонентов (нитридов), например, Si3N4 (экзотермическая реакция), взаимодействие которых (наряду c SiC) с высокомодульными силикатами, в интервале температур от 750 до 1450oC (в охлаждаемой зоне) инициируют ЦР РВС с импульсным выделением энергии, образованием закиси азота, тут же распадающейся по спонтанной цепной реакции с образованием азотсодержащих радикалов и цианидов (например, KCN, CaCN2 и др.), цианид-ионы которых по своим каталитическим свойствам аналогичны галогенид-ионам, что в совокупности приводит в оптимальных энергетических и каталитических условиях состояния АГС к формированию азотсодержащих периферических функциональных групп в пограничном слое алмаз - АГС с последующим их "вшиванием" в макромолекулы алмаза в процессе динамического уплотнения пограничного слоя под воздействием детонационных микроволн, возникающих при протекании ЦР РВС, повторной генерацией Si3N4, продолжением инициирования ЦР РВС с постепенным их затуханием по мере выработки ВС и РК в конце каждого конвективного цикла (в ходе конвективной циркуляции гетерогенной среды), что в совокупности позволяет синтезировать азотсодержащие монокристаллы алмаза с высокими физико-механическими свойствами (на 5-10% выше, чем у безазотных алмазов) за счет образования в микрокристаллах алмаза широкого спектра азотных дефектов.

Попутно, в ходе процесса синтеза МКА, выделяется большое количество тепла, которое необходимо отводить из охлаждаемых зон АГС и которое целесообразно направлять к полезным потребителям и преобразователям энергии.

Целесообразно в шихту или вводимые углеводородные вещества вводить легирующие элементы третьей или пятой группы периодической системы элементов в количестве 0,05-7 мас.%.

Введение в шихту или вводимые углеводородные вещества легирующих элементов третьей или пятой группы периодической системы элементов в количестве 1-7 мас.% позволяет получать монокристаллы алмаза с полупроводниковыми свойствами за счет обеспечения равномерного внедрения легирующих элементов вначале в периферийные функциональные группы, а затем их "вшивание" в кристаллическую структуру алмаза и последующим их "затягиванием" при стремительном росте алмазной кристаллической решетки с образованием в ней искажений и структурных нарушений в окрестностях образовавшихся дефектов, что в свою очередь может инициировать: а) очередное внедрение межузельного легирующего атома; б) образование вакансии; в) энергетически неоптимальное или только частичное задействование валентных связей атомов, что при охлаждении кристалла алмаза приведет к образованию вакансии и инстертициала и в совокупности позволяет программно синтезировать полупроводниковые монокристаллы алмаза n- и p-типа.

Целесообразно в охлаждаемую гетерогенную среду вводить водяной пар в количестве от 25 до 150 мас.% от суммарного текущего расхода углеводородов в шихту.

Введение в охлаждаемую гетерогенную среду водяного пара в количестве от 25 до 150 мас.% от суммарного текущего расхода углеводородов, вводимых в шихту, позволяет перевести оставшуюся часть "непрореагировавшего" с SiO2 углерода в окись углерода, с формированием оптимальной окислительно-восстановительной среды, активизировать процесс образования АГС и, как следствие, синтезировать МКА с улучшением их качества и уменьшением расхода углеводородов на 6-14%.

Другой задачей изобретения является создание реактора для синтеза монокристаллов алмаза, в том числе с полупроводниковыми свойствами и попутным получением тепловой энергии.

Задача создания реактора для синтеза монокристаллов алмаза решается тем, что в реакторе для синтеза монокристаллов алмаза, содержащем корпус с размещенными на нем узлами нагрева, подачи углеродсодержащего вещества и узел управления реактором, согласно изобретению, корпус реактора выполнен в виде обечайки с крышкой и днищем и снабжен внешним теплоизоляционным покрытием, обечайка корпуса выполнена в виде тела вращения "грушевидной" формы с горловиной в районе крышки, реактор оснащен теплообменником охлаждения с подводящим и отводящим патрубками и расположенным на обечайке корпуса, в крышке, горловине и днище выполнены отверстия, герметично соединенные по внешнему периметру, соответственно, с узлом загрузки шихты, патрубком для отвода газообразных продуктов реакции и узлом слива продуктов реакции, расположенными снаружи корпуса, в полости корпуса, со стороны днища, последовательно один над другим вдоль его оси симметрии и концентрично ей установлен узел нагрева, включающий по крайней мере один блок, состоящий из форсунок ввода окислителя и горючего, снабженных свечой воспламенения, и размещенный в придонной зоне, узел ввода углеродсодержащего и легирующего веществ, содержащий по крайней мере одну форсунку ввода углеводородного и легирующего вещества и размещенный на участке между узлом нагрева и 1/3 высоты полости корпуса, при этом в днище и обечайке выполнены отверстия, а форсунки сообщены посредством патрубков, проходящих сквозь отверстия и герметично закрепленных по внешнему периметру отверстий на днище и обечайке корпуса, соответственно, с коллекторами подачи окислительного, углеводородного горючего, углеродсодержащего и легирующего веществ, причем узлы управления реактором выполнены в виде клапанов-регуляторов, установленных на входе на всех коллекторах и на входящем патрубке теплообменника, при этом в обечайке корпуса по его окружности со стороны днища и в средней его части выполнены радиальные отверстия, в которых и через которые в полости корпуса установлены узлы фиксации монокристаллов алмаза, выполненные в виде стержней с переменным "гребенкообразным" профилем, с возможностью их перемещения, соответственно, вдоль и относительно оси отверстия.

Выполнение корпуса реактора в виде обечайки с крышкой и днищем, снабжение его внешним теплоизоляционным покрытием, выполнение обечайки в виде тела вращения "грушевидной" формы с горловиной в районе крышки, оснащение корпуса реактора теплообменником охлаждения с подводящим и отводящим патрубками, выполнение в крышке, горловине и днище отверстий, герметично соединенных по внешнему периметру с, соответственно, узлом загрузки шихты шлюзового типа, патрубком для отвода газообразных продуктов реакции и узлом слива продуктов реакции, установка в полости корпуса со стороны днища вдоль оси симметрии корпуса один над другим узла нагрева, включающего по крайней мере один блок, состоящий из форсунок ввода окислителя и горючего, снабженных свечой воспламенения, и размещение его в придонной зоне, узла ввода углеродсодержащего и легирующего веществ, содержащего по крайней мере одну форсунку ввода углеводородного и легирующего веществ и размещенного на участке между узлом нагрева и 1/3 высоты полсти корпуса, выполнение в днище и обечайке корпуса отверстий, через которые форсунки посредством патрубков, герметично закрепленных по внешнему периметру отверстий, сообщены, соответственно, с коллекторами подачи окислительного, углеводородного горючего, углеродсодержащего и легирующих веществ, расположенных снаружи корпуса, установка на коллекторах и входном патрубке теплообменника охлаждения клапанов-регуляторов, выполняющих функции узлов управления реактором, выполнение в обечайке корпуса, в его средней и придонной частях, радиальных отверстий, в которых и через которые в полости корпуса установлены узлы фиксации монокристаллов алмаза, выполненных в виде стержней с переменным гребенкообразным профилем, с возможностью их перемещения, соответственно, вдоль и относительно оси отверстия, обеспечивает: загрузку шихты, ее нагрев, осуществление химических реакций и ЦР РВС в образовавшейся активной гетерогенной среде, синтез МКА большой каратности в пристеночной охлаждаемой зоне реактора в процессе конвективной циркуляции потоков АГС, возможность управления параметрами МКА, их вывод из полости реактора путем извлечения фиксаторов МКА с последующим сливом АГС с МКА через узел слива (с рекомендуемым последующим вспениванием гетерогенной среды и извлечением МКА по известным технологиям).

Целесообразно внутри корпуса непосредственно в придонной зоне реактора и его средней части концентрично относительно его оси разместить форсунки ввода водяного пара.

Размещение форсунок ввода водяного пара в придонной зоне реактора и его средней части концентрично относительно его оси позволяет равномерно вводить водяной пар в АГС на участках перед входом АГС в зону разогрева и после процесса образования SiR с программным охлаждением АГС, переводом оставшейся части графита, образовавшегося в процесс поликонденсации углеводородов в окись углерода, с одновременным формированием условий для создания оптимальной восстановительно-окислительной среды, что позволяет интенсифицировать процесс алмазообразования с улучшением качества синтезируемых монокристаллов алмаза, при уменьшении расхода углеводородов на 6-14%.

Целесообразно форсунки узлов ввода водяного пара, углеродсодержащего и легирующих веществ располагать тангенциально относительно плоскости сечения корпуса, перпендикулярной его оси.

Расположение форсунок узлов ввода водяного пара, тангенциально относительно плоскости сечения корпуса, перпендикулярной его оси, позволяет осуществлять равномерный ввод расходных веществ в АГС, способствовать формированию вихревых конвективных (циркуляционных) потоков АГС, их перемешиванию и выравниванию температурных полей АГС в пристеночной зоне (зоне роста МКА), что в совокупности обеспечивает синтез МКА с однородными характеристиками (по уровням расположения МКА в реакторе).

Целесообразно реактор снабдить дополнительным трубчатым теплообменником охлаждения, выполненным в виде спирали и закрепленным на внутренней поверхности обечайки корпуса.

Установка дополнительного трубчатого теплообменинка охлаждения, выполненного в виде спирали, закрепленного на внутренней поверхности корпуса, позволяет осуществлять более эффективное охлаждение АГС в пристеночной зоне, упростить конструкцию реактора, использовать недефицитные конструкционные материалы, уменьшить тепловые потери, повысить рабочее давление в реакторе, увеличить ресурс его работы.

На фиг. 1 изображена конструктивная схема реактора для синтеза монокристаллов алмаза; на фиг. 2 - расположение форсунок ввода водяного пара в реактор; на фиг. 3 - конструктивная схема реактора с тангенциальным расположением форсунок ввода расходных веществ; на фиг. 4 - расположение дополнительного трубчатого спиралевидного теплообменинка в реакторе.

Реактор содержит корпус 1 (см. фиг. 1), состоящий из обечайки 2, крышки 3 и днища 4. Верхняя часть обечайки в районе крышки выполнена в виде горловины 5. В корпусе 1 встроен теплообменник охлаждения 6, например, щелевого типа с подводящим патрубком 7 и отводящим патрубком 8. С внешней стороны корпуса реактора установлено теплоизоляционное покрытие 9. В крышке, горловине и днище выполнены отверстия 10, 11, 12, в которых герметично установлены, соответственно, узел загрузки шихты 13, патрубок 14 для отвода газообразных продуктов реакции с установленным на нем клапаном 15 регулирования давления, узел слива 16 продуктов реакции (летка), включающий механизм управления 17 положением клапана 18.

В полости 19 корпуса 1 со стороны днища 4 последовательно один над другим вдоль его оси симметрии и концентрично ей установлены узел нагрева 20, включающий по крайней мере один блок 21 (или несколько блоков, см. фиг. 2), состоящий из форсунок 22 ввода окислителя и горючего 23, снабженных свечой воспламенения 24, и патрубков 25, 26, узел 27 ввода углеродсодержащего и легирующего веществ, состоящий из по крайней мере одной форсунки 28 (или нескольких форсунок, см. фиг. 3), патрубка 29, размещенного на участке между узлом нагрева 20 и 1/3 высоты полости корпуса 1. В днище 4 и обечайке 2 выполнены отверстия 30, через которые проходят патрубки 25, 26 и 29, сообщающие форсунки 22, 23 и 28 с коллекторами 31, 32, 33 и 34 подачи расходных веществ, соответственно, окислительного, углеводородного, углеродсодержащего и легирующих веществ, при этом патрубки 25, 26 и 29 герметично соединены со стенками корпуса 1 по внешнему периметру отверстий 30. На входе в коллекторы расходных веществ 31-34 установлены узлы управления реактором, выполненные в виде клапанов-регуляторов 35, 36, 37, 38, а также клапанов-регуляторов 39 и 15, установленных на входном патрубке теплообменника охлаждения и патрубке отвода газообразных продуктов реакций. В средней и придонной части обечайки 2 выполнены радиальные отверстия 40, в которых и через которые в полости корпуса установлены в пристеночной зоне с переменной скважностью узлы 41 фиксации монокристаллов алмаза 42, выполненных в виде стержней с гребенкообразными выступами 43 (с возможностью осевого и возвратно-поступательного перемещения вдоль оси отверстия), смесь кислорода с азотом или (подогретый) воздух, или их смесь с азотсодержащими низкомолекулярными соединениями подают через форсунки 22 окислителя или частично (низкомолекулярные соединения) через форсунки 28 ввода улгеродсодержащих веществ.

Узел 13 загрузки шихты может быть выполнен в виде малого конуса 44, запирающего питательную воронку 45, и большого конуса 46, запирающего выходную воронку 47, накопительного бункера 48. Малый и большой конусы 44 и 46 установлены с возможностью раздельного осевого перемещения, при этом полость накопительного бункера 48 сообщена с полостью корпуса 1 посредством уравнительного клапана 49 (фиг. 1, 2, 4).

Реактор может быть снабжен форсунками 50, 51 ввода водяного пара, размещенными концентрично относительно его оси непосредственно в придонной части реактора и в его центральной зоне над узлом 27 ввода углеродсодержащих и легирующих веществ, сообщенных патрубками 52 с клапаном 53 регулирования расхода (фиг. 2).

Форсунки 28 узла 27 ввода углеродсодержащих, легирующих веществ и водяного пара могут быть установлены тангенциально относительно плоскости сечения корпуса, перпендикулярной его оси (фиг. 3).

Реактор может быть снабжен дополнительным трубчатым теплообменником 54, выполненным в виде спирали и установленным на внутренней поверхности обечайки 2 корпуса 1 (фиг. 4).

Способ синтеза монокристаллов алмаза осуществляется следующим образом.

В корпусе 1 через узел 13 загрузки шихты загружается шихта, общей состав которой, выраженный через окислы входящих в нее элементов, представляет: SiO2 - 25-44%; MgO - 15-30%; Al2O3 - 1,5-6%; Fe2O3 - 4-12%; FeO - 1,5-10%; K2O - 1,5-6%; Na2O - 0,05-2%; Cr2O3 - 0,1-3%; CaO - 0,5-10%; Mn - 0,01-1,1%; TiO2 - 0,1-6%; CO2 - 0,05-11%; H2O - 0,5-20%, а также 0,1-5% хлористых соединений или галогенидов металлов I-III групп периодической системы элементов (при допустимом содержании фоновых примесей других элементов в сумме не более 1,5 мас.%).

Загрузка реактора осуществляется путем порционной подачи шихты в питательную воронку 45, после чего опускается малый конус 44, шихта высыпается в накопительный бункер 48, конус 44 закрывается. Открывается уравнительный клапан 49, опускается большой конус 46, шихта высыпается в полость 19 реактора, конус 46 поднимается. Процесс загрузки повторяется до заполнения полости 19 реактора на 2/3 объема. Гребенка 43 узла 41 фиксации МКА устанавливается в горизонтальное положение с одновременным осевым перемещением ее в заданную зону реактора. После этого включается свеча воспламенения 24, открываются клапаны 35 и 36, начинается процесс разогрева шихты при коэффициенте избытка окислителя, равном 0,85-1,05. Одновременно открывается клапан 39 подачи теплоносителя (водяного пара, воды) в теплообменник охлаждения 6.

При температуре шихты более 350oC начинается процесс хлорирования свободного кремнезема при его взаимодействии с хлорирующими агентами, содержащимися в шихте, что необходимо для подготовки поверхности частиц SiO2 к науглераживанию с целью повышения эффективности процесса образования SiC.

Одновременно включается клапан 37 узла 27 подачи углеводородного вещества, например, CH4, CH2O... с расходом, соответствующим обеспечению коэффициента избытка окислителя 0,25-0,85, за счет пиролиза которого частицы SiO2 обволакиваются сажистым углеродом.

При достижении температуры шихты примерно > 750oC включается клапан регулирования давления 15 и устанавливается заданное рабочее давление в реакторе (от 0,12 до 16 МПа).

Шихта, разогретая до температуры более 1500oC в центральной зоне реактора, участок А-В (см. фиг. 1, 2), переходит в расплав - гетерогенную среду (ГС), в которой при взаимодействии с углеродсодержащими веществами начинается процесс образования SiC (SiR - расщепляющего компонента, участок В-С) с одновременным формированием восстановительной среды (за счет пиролиза углеводородов) в ГС.

В ходе образующихся конвективных потоков ГС поднимается в среднюю часть полости реактора, взаимодействует с относительно холодной шихтой и вводимыми углеводородными газами и несколько охлаждается (до температуры ниже 1450oC), что приводит к началу кристаллизации высокомодульных силикатов (ВС) вида AkBcSimOn (с уже внедренными в них частицами SiC (см. участок C-D [фиг. 1, 2] ) и формированием активной гетерогенной среды (АГС). При дальнейшем охлаждении АГС в процессе ее конвективного движения вдоль интенсивно охлаждаемых стенок реактора (участок D-E) продолжается кристаллизация BC и одновременно, в результате взаимодействия силикатов вида AkBcSimOn, например, KAlSi3O8 (ортоклаз), NaAlSi3O8 (альбит), Ca3Cr2(SiO4)3 (уваровит), Mg3Al2(SiO4)3 (пироп), Ca3Fe2 (SiO4)3 (андратит), Ca3Al2(SiO4)3 (гроссуляр), K2OSiO3O6, Na2OSiO6 и др. с кремнийбескислородным соединением SiR (где в данном случае R - углерод), развивается известная цепная реакция расщепления вышеприведенных высокомодульных силикатов (ЦР РВС) [Куликов А.И. "Энергоагрегат теплоэлектростанции на новом источнике энергии с возобновляющимися энергоресурсами". Изв. АН. Энергетика, N 4, 1992, стр. 104-110; Куликов А.И. "Тепловой агрегат на новом источнике энергии в промышленной энергетике". Пром. энергетика, N 4, 1992, стр. 10-14] с выделением энергии и последующим саморазогревом шихты, что приводит к увеличению доли жидкой фазы высокомодульных силикатов вида AkBcSimOn и инициированию локальных цепных реакций детонационного типа с большим выделением энергии, но низким газовыделением (низкой метательной способностью).

Теоретически, чтобы начался процесс распада, например Na2OSi3O6 под воздействием кремнийбескислородных соединений, необходим извне подвод первоначальной энергии Qo.

В результате произойдет образование силиката Na2OSi3O6 в жидкой фазе, входящего в состав критической массы (mo).

В результате этого превращения согласно энергетической цепи начнет развиваться цепная реакция: где MS1 - расщепляемый в 1 звене цепи силикат; Q1 - теплота в 1 звене цепи; K1 - константа химического взаимодействия в 1 звене цепи; K11 - константа фазового превращения в 1 звене цепи; - коэффициент реакции; SiR - кремнийбескислородное соединение; (тв), (ж) - индексы, характеризующие агрегатное состояние вещества.

В результате первоначальная масса силиката, находящаяся в твердой фазе, изменяется до критической массы M1, а в дальнейшем, соответственно, до критических масс M2, M3... Mn.

Этот распад критических масс силиката будет обусловлен подводом тепла Q1, Q2. ..Qn, которое выделяется при протекании вышеописанной реакции образования силиката Na2OSi3O6 в жидкой фазе с кремнийбескислородным соединением.

Постоянный подвод теплоты Qn и уменьшение критической массы силикатов приведет к увеличению образования силиката Na2OSi3O6 в жидкой фазе, а следствием этого процесса является возникновение новых цепей распада этого силиката под воздействием SiR по цепному механизму с выделением энергии в геометрической прогрессии. В этом случае "химия" цепного процесса в силикатах играет роль своеобразного "кочегара" при расщеплении критической массы (при подводе порций теплоты). Одновременно происходит выделение новых порций силиката в жидкой фазе, а это в свою очередь вызывает лавинообразное протекание цепных реакций с выделением энергии по следующей цепной реакции: При полном переходе критической массы силиката Mn в жидкое состояние Mk происходит скачкообразное выделение побочных продуктов реакции и энергии (взрыв), как видим с низким выделением газообразных продуктов реакции и соответственно с низкой метательной способностью, но высоким давлением за фронтом детонационной волны (в локальных зонах с подготовленными условиями для протекания ЦР РВС), что приводит к образованию алмазного вещества, а затем и формированию условий для роста МКА.

Особенностью физико-химических реакций РВС является их авторегулируемость в диапазоне температур 750-1500oC с одновременной регенераций энергетических компонентов (при условии термодинамического баланса и подвода необходимых газообразных компонентов - O2, N2, CO2, H2 и др. и наличия зон охлаждения АГС), что обеспечивает длительные времена "живучести" активной гетерогенной среды.

В общем случае направленность (тип) ЦР РВС - (управляемая реакция, детонационный процесс или комбинированный тип реакций) является функцией вида и концентрации высокомодульных силикатов и SiR, температурного режима в зоне реакции и каталитических свойств системы.

Наиболее оптимальным типом ЦР РВС для предлагаемого процесса алмазообразования является комбинированный тип ЦР РВС, протекающих в разбавленных активных гетерогенных средах (содержание SiO2 < 44%), при котором протекание ЦР РВС сопровождается генерацией локальных волновых процессов с зонами высокого давления и температуры за фронтом детонационных волн, сопровождаемых распадом молекул, процессами диссоциации углеродсодержащих молекул, с одновременным уплотнением пограничного слоя (АГС - алмаз) в ходе процесса поликонденсации алмаза (графита).

В общем случае в процессе роста кристалл алмаза представляет из себя объемную макромолекулу, состоящую из углеродного ядра и периферических функциональных групп (ПФГ), локализующих свободные валентности атомов углерода на поверхности кристалла алмаза.

В предлагаемом способе синтеза алмаза вхождение каждого нового атома углерода (или блока атомов) в решетку алмаза (или графита) и образование соответствующих химических связей обусловлено кинетикой актов поликонденсации исходных углеродсодержащих молекул с реакционными группами в пограничном слое - генеалогических предшественников алмаза или графита (предпочтительно имеющих кристаллоструктурное соответствие с расположением атомов углерода на гранях алмаза). Процесс перехода атомов (углерода и др.) из пограничного слоя в кристалл должен сопровождаться процессом их уплотнения при соблюдении следующих условий: - скорость образования алмаза (Vал выше скорости образования графита (Vгр), а главное, скорость окисления графита V(гр) значительно больше скорости окисления алмаза Vo(алм) Vал > Vгр; Vо(ал) << Vо(гр), т. е. в пограничном слое (независимо от фазы процесса) должны быть сформированы и автоматически поддерживаться оптимальные окислительно-восстановительные условия при обеспечении соответствующих (необходимых) каталитических свойств (прямого и обратного действия) активной гетерогенной среды (АГС) в ходе динамического синтеза алмаза при широкой вариации кинетических и макрокинетических условий протекания реакций - от близких к равновесию до предельно неравномерных с фазами протекания локальных микродетонационных процессов с генерацией ударных микроволн, обеспечивающих уплотнение атомов углерода и легирующих элементов при их вхождении в углеродное ядро (кристалл) и образование новых ПФГ, в то время как гетерогенная среда должна выполнять функции поставщика необходимых соединений и элементов (в том числе энергетических и легирующих) в пограничную зону АГС - АЛМАЗ и обеспечивать отвод излишков CO2 и H2O, что и реализуется в предлагаемом процессе синтеза МКА.

Так, в зоне расплавления шихты (участок А-В, фиг. 1, 2) при температуре более 1500-2200oC образуется гетерогенная среда (расплав. силикатов + крист. фаза + газ).

После введения в ГС углеводородов (участок B-C) в результате их пиролиза ГС насыщается свободным углеродом и начинается интенсивный процесс образования SiC.

В ходе охлаждения ГС (участок C-D) ниже температуры 1450oC начинается процесс кристаллизации BC с формированием АГС, характеризующейся началом протекания ЦР РВС при одновременном формир