Производные 2-дезокси-2,3-дидегидро-n-ацетилнеураминовой кислоты, способ их получения, фармацевтическая композиция, способ лечения

Реферат

 

Предложены производные 2-дезокси-2,3-дидегидро-N-ацетилнеураминовой кислоты формулы I где R3b - азид или группа -NR6bR7b, причем R6b - водород, С1-6 - алкил или аллил; R4b - NHCOR9b, где R9b - С1-6 - алкил, или их фармацевтически приемлемые соли, эфиры и соли эфиров. Способ получения соединений формулы I состоит во взаимодействии защищенного по карбокси- и гидроксигруппам производного формулы III где R4b имеет вышеуказанные значения, OL - удаляемая группа с нуклеофилом и последующем превращении в амин, гуанидин, соль, эфир и соль эфира. Предложена фармацевтическая композиция, обладающая антивирусной активностью в отношении орто-, парамиксовирусов, которая содержит в качестве активного вещества соединении формулы I в эффективном количестве. Предложен способ лечения млекопитающих, включая человека, от вирусных инфекций путем введения соединений формулы I в дозе 0,01 - 750 мг/кг веса тела в день, либо в респираторный тракт, либо внутриназально. 4 с. и 11 з.п. ф-лы, 3 табл.

Это изобретение относится к новому классу химических соединений и к их использованию в медицине. В частности, изобретение касается новых 4-замещенных-2-дезокси 2,3-дидегидропроизводных -D-неураминовой кислоты, способов их получения, фармацевтической композиции на их основе и их использованию в качестве антивирусных агентов.

Ферменты, способные отщеплять N-ацетилнеураминовую кислоты (NANA), известную также как сиаловая кислота, от других сахаров, имеются во многих микроорганизмах. К ним относятся бактерии, такие, как Vibrio cholerae, Clostridium perfringens, Streptococcus pneumoniae и Arthrobacter sialophilus и вирусы, такие, как вирус (эпидемического) гриппа, вирус парагриппозной инфекции, вирус эпидемического паротита, вирус болезни Newcastle, птичий чумной (fowe plague) вирус и вирус Sendai. Большая часть из этих вирусов относится к ортомиксовирусной или парамиксовирусной группам и несут неураминидазную активность на поверхности вирусных частиц.

Многие из организмов, содержащих неураминидазу, являются главными возбудителями заболеваний человека и животных, а некоторые, такие, как вирус (эпидемического) гриппа, вирус болезни Newcastle, птичий чумной вирус вызывают заболевания, имеющие огромное экономическое значение.

В течение долгого времени считалось, что ингибиторы неураминидазной активности могут предотвращать инфекцию, вызываемую вирусами, несущими неураминидазу. Большая часть известных неураминидазных ингибиторов являются аналогами неураминовой кислоты, такими как 2-дезокси-2,3-дидегидро-N-ацетилнеураминовая кислота (DANA) и ее производные. См., например, Meindl и др., Virology 1974, 58, 457-63. Наиболее активным из этих соединений является 2-дезокси-2,3-дегидро-N-трифторацетил-неураминовая кислота (FANA), которая подавляет мультициклическое размножение вирусов (эпидемического) гриппа и парагриппозной инфекции in vitro. См. Palese и др., Virology 1974, 59, 490-498.

Ряд производных 2-дезокси-2,3-дидегидро-N-ацетилнеураминовой кислоты является известными в данной области техники. См., например, P.Meindl и др. Virology, 58, 457-463 (1974); P.Meindl и H.Turry, Mh.Chem., 100(4), 1295-1306 (1969); M.Elashner и др., Carbohydrate Research 103, 281-285 (1982); E. Zbiral и др., Liebigs Ann. Chem. 159-165 (1989); T. Ogawa и Y.Ito, Tetrahedron Letters 28 (49), 6221-6224 (1987); T.Goto и др., Tetrahedron Let. 27 (43), 5229-5232 (1986); H.Ogura и др., Chem. Pham.Bull., 36 (12), 4807-4813 (1988); German Offen- legungschrift P. 1439249. Многие из этих соединений являются активными in vitro противонеураминидазы из вирусов заболеваний V. Cholerae или болезни Newcastle, а также и от вируса (эпидемического) гриппа. Отмечено также, что неураминидаза ингибируется in vitro в штаммах по крайней мере вирусов (эпидемического) гриппа или парагриппозной инфекции - лактоном 3-аза-2,3,4-тридез окси-4-оксо-D-арабиноктоновой кислоты и 0- -N-ацетил-D-неураминосил-(2 ---> 3)-2-ацетамидо-2-дезокси- D-глюкозой. См. Zakstel'skaya и др., Vop. Virol 1972, 17, 223-28.

Неураминидаза из Arthrobacter Sialophilus ингибируется in vitro гликолями 2,3-дегидро-4-эпи-N-ацетил-неураминовой кислоты, 2,3-дегидро-2-дезокси-N-ацетилнеураминовой кислоты и 5-ацетамидо-2,6-ангидро-2,3,5-тридезокси-D-манно-нон-2- ен-4-улозонатом и их метиловыми эфирами. См. Kumar и др. Carbohydrate Res. , 1981 94 123-130; Carbohydrate Res., 1982, 103, 281-285. Было отмечено, что тиоаналоги 2- -азидо-6-тионеураминовая кислота и 2-дезокси-2,3-дидегидро-6-тионеураминовая кислота. Mack & Brossmer, Tetrahedron Letters, 1987, 28, 191-194 и фторированный аналог N-ацетил-2,3-дифтор- -D-неураминовая кислота, Nakajima и др., Agric. Biol. Chem., 1988, 52, 1209-1215, ингибируют неураминидазу, хотя тип неураминидазы не был идентифицирован.

Schmid и др. , Tetrahedron Letters, 1958, 29, 3843-3846 описали синтез 2-дезокси-N-ацетил- -D-неураминовой кислоты, но не отметили ее активности или пассивности по отношению к неураминидазе.

Ни один из известных ингибиторов активности неураминидазы in vitro не обнаружил наличия антивирусной активности in vitro, и, действительно, было показано, в частности, что некоторые из них, такие как FANA являются неактивными in vitro. Таким образом, на основании обычных соображений соответственно можно полагать, что соединения, проявляющие in vitro ингибирование в отношении вирусной неураминидазы, не будут оказывать in vivo блокирующего действия на вирусную инфекцию.

Meindl и Tuppy, Hoppe-Seyler's Z.Physiol. Chem., 1969, 350, 1088, описали гидрогенизацию олефиновой двойной связи 2-дезокси-2,3-дегидро-N-ацетилнеураминовой кислоты с образованием -аномера. Этот -аномер не ингибирует неураминидазу Vibrio cholerae.

Наиболее вероятные ингибиторы in vitro вирусной неурминидазы, таким образом, могут быть идентифицированы как соединения, которые основываются на структуре неураминовой кислоты, и их можно рассматривать как аналоги переходного состояния. (Miller и др. , Biochem. Biophys. Res. Comm. 1978 83 1479). Но хотя многие из упомянутых выше аналогов неураминовой кислоты являются конкурирующими ингибиторами неураминидаз, на сегодняшний день ни об одном из них не сообщается как проявляющем антивирусную активность in vivo. Например, хотя для ингибирующей активности и считается важным полупланарная система ненасыщенного 6-членного, см. Dernick и др. в Antiviral Chemotherapy (K. K Gauried) Academic Press, 1981, на стр. 327-336, некоторые соединения, характеризующиеся наличием такой системы, особенно FANA, не были отмечены как соединения, обладающие in vivo антивирусной активностью. См. Palese и Schulman и Chemoprophylaxis infection of the Upper respiratory tract, т. 1 (J.S.Oxforded) CRC Press, 1977, на стр. 189-205.

В настоящее время мы нашли новые 4-замещенные 2-дезокси-2,3-дидегидро производные -D-неураминовой кислоты, которые являются активными in vivo.

Следовательно, объектом настоящего изобретения прежде всего являются производные 2-дезокси-2,3-дидегидро-N-ацетилнеураминовой кислоты общей формулы (1b): где R3b представляет азид или группу -NR6bR7b, причем R6b представляет водород, C1-6 алкил или амидин, R7b представляет водород, C1-6 алкил или аллил, R4b представляет NHCOR9b, где R9b представляет C1-4 алкил, или их фармацевтически приемлемые соли, эфиры и соли эфиров.

Предпочтительны соединения, где R3b представляет NR6bR7b.

Другими предпочтительными соединениями являются соединения, где R3b представляет NH2 или NHC(=NC)NH2.

Под фармацевтически приемлемым производным подразумевается любой фармацевтически приемлемый эфир или соль такого эфира соединений формулы (1b) или любое другое соединение, которое при его приеме пациентом способно давать (прямо или косвенно) соединение формулы (1b) или антивирусно активный промежуточный продукт обмена или его остаток.

Специалисту в данной отрасли понятно, что соединения формулы (1b) могут быть модифицированы с получением их фармацевтически приемлемых производных при любых функциональных группах в соединениях. Особый интерес в качестве таких производных представляют собой соединения, модифицированные при карбоксильной функции C-1, гидроксильных функциях C-7 или C-9 или при амино группах. Таким образом, соединения, представляющие интерес, включают сложные эфиры C1-4 алкилов (таких, как метил, этил или пропил, например, изопропил) или арилов (например, фенил, бензоил) соединений формулы (1b), C-7 или C-9, сложные эфиры соединений формулы 1b, таких как ацетиловые эфиры, C-7 или C-9 простые эфиры, такие, как фениловые эфиры, бензиловые эфиры, n-толиловые эфиры и ацилированные амино производные, такие, как формил, ацетамидо.

Специалисту в данной области понятно, что фармацевтически приемлемые производные соединений формулы (1b) могут быть производными более чем в одном положении.

Фармацевтически приемлемые соли соединений формулы (1b) включают такие соли, которые получаются из фармацевтически приемлемых неорганических и органических кислот и оснований. Примерами соответствующих кислот являются хлористоводородная, бромистоводородная, серная, азотная, перхлорная, фумаровая, малеиновая, фосфорная, гликолевая, молочная, салициловая, янтарная, толуол-п-сульфоновая, винная, уксусная, лимонная, метансульфоновая, муравьиная, бензойная, малоновая, нафталин-2-сульфоновая и бензолсульфоновая кислоты. Другие кислоты, такие, как щавелевая, хотя и не являются сами по себе фармацевтически приемлемыми, тем не менее, могут быть использованы при получении солей, полезных в качестве промежуточных соединений при получении соединений изобретения и их фармацевтически приемлемых кислотно-аддитивных солей.

Соли, полученные из соответствующих оснований, включают соли щелочных металлов (например, натрия), щелочноземельных металлов (например, магния), аммониевые и N+4 (где R представляет собой C1-4 алкил) соли.

Приводимые здесь далее ссылки на соединение изобретения включают соединения формулы (1b) и их фармацевтически приемлемые соли и производные.

Особенно предпочтительными соединениями изобретения являются: 5-ацетамидо-4-амино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто- нон-2-энопиранозоновая кислота (известная также как 5-(ацетиламино)- 4-амино-2,6-ангидро-3,4,5-тридезокси-D-глицеро-D-галакто-нон-2- еноиковая кислота), ее соли, включая ее натриевую соль, и 5-ацетамидо-4-гуанидино-2,3,4,5-тридезокси-D-глицеро-D-галакто- нон-2-енопиранозоновая кислота (известная также как 5-(ацетиламино)-2,6-ангидро-4-гуанидино-3,4,5-тридезокси-D-глицеро- D-галакто-нон-2-еноиковая кислота) и ее соли, включая аммониевую соль.

Соединения формулы (1b) обладают антивирусной активностью. В частности, эти соединения являются ингибиторами вирусной неураминидазы ортоксовирусов и парамиксовирусов, например, вирусной неураминидазы (эпидемического) гриппа A и B, парагриппозной инфекции, эпидемического паротита и болезни Newcastle, эпидемической чумы и вируса Sendai.

Другой аспект изобретения, таким образом, касается соединения формулы (1b) или его фармацевтически приемлемой соли, или его производного для их использования в качестве активного терапевтического агента, в частности, антивирусного агента, например, для лечения ортомиксовирусной или парамиксовирусной инфекций.

Дальнейшим аспектом изобретения является способ лечения вирусной инфекции, например, ортомиксовирусной и парамиксовирусной инфекции у животных, включая человека, включающего этапы приема названным животным эффективного количества соединения формулы (1b) или его фармацевтически приемлемой соли, или производного.

Далее в качестве еще одного аспекта изобретения предлагается использование соединения изобретения - производство лекарственного средства для лечения вирусной инфекции.

Специалисту в данной области понятно, что приведенная здесь ссылка для лечения распространяется также и на профилактику, как и на лечение установленных инфекций или симптомов.

Далее существенным является то, что количество соединения изобретения, требующееся для использования при лечении, будет меняться в зависимости не только от конкретного соединения, выбранного для лечения, но также и от пути приема, природы условий и возраста и условий пациента, и будет в конечном счете рассматриваться обслуживающим врачом или ветеринаром. Однако в основном подходящей дозой является интервал приблизительно от 0,01 до 750 мг/кг веса в день, предпочтительно интервал от 0,1 до 100 мг/кг/день, наиболее предпочтительным интервалом является от 0,5 до 25 мг/кг/день.

В частности, мы установили, что эффективные дозы испытанных соединений связаны с их активностью in vitro. Так, для DANA (которое имеет IC50 снижения чумы 5 мкг/мл) было установлено, что соединение является эффективным при дозах между 1 и 10 мг/кг при лечении. Соответствующий метиловый эфир DANA (IC50 5-100 мкг/мл) является эффективным в пропорционально более высокой дозе.

Лечение предпочтительно начинается до или через некоторое время после инфекции и продолжается до тех пор, пока вирус не будет более присутствовать в дыхательном тракте. Однако соединения являются также эффективными и для данной постинфекции, например, после появления установленных симптомов.

Соответственно лечение осуществляется 1-4 раза в день и продолжается в течение 3-7, например, 5 дней после инфекции - в зависимости от конкретного используемого соединения.

Требуемая доза может быть представлена в виде единичной дозы или в виде отдельных доз, принимаемых через соответствующие интервалы, например, в виде двух, трех, четырех или большего числа субдоз в день.

Соединения обычно принимаются в виде единичной дозированной формы, содержащей, например, от 10 до 1500 мг, обычно от 20 до 1000 мг, наиболее часто от 50 до 700 мг активного ингредиента на единичную дозированную форму.

Хотя и возможно использование соединения изобретения для лечения в виде непосредственного химического продукта, предпочтительным является присутствие активного ингредиента в виде фармацевтической рецептуры.

Таким образом, изобретение дает далее фармацевтическую композицию, включающую соединение формулы (1b) или его фармацевтически приемлемую соль, или его производное, вместе с фармацевтически приемлемым носителем.

Носитель может быть "приемлемым" в том смысле, что он является совместимым с другими ингредиентами композиции и не вредным для того, кто его принимает.

Фармацевтические композиции могут существовать в виде стандартных композиций, предназначенных для определенного способа приема.

Для внутриназального приема в соответствии со способом изобретения ингибиторы неураминидазы могут вводиться любым из способов и рецептур, употребляемых для такого вида приема в данной области.

Таким образом, обычно, соединения могут приниматься в виде раствора для суспензии или эмульсии, или в виде сухого порошка.

Растворы и суспензии в основном являются водными, например, готовятся из одной воды (например, стерильной или очищенной от пирогена) или их воды и физиологически приемлемого сорастворителя (например, этанола, пропиленгликоля и полиэтиленгликолей, такого как ПЭГ 400).

Такие растворы или суспензии могут содержать дополнительно другие наполнители, например, консерванты (такие, как бензалконий хлорид), солюбилизирующие агенты, поверхностно-активные вещества, такие, как полисорбаты (например, Tween 80, Span 80, бензалконий хлорид), буферные агенты, агенты, регулирующие изотоничность (например, хлорид натрия), усилители абсорбции и агенты, повышающие вязкость. Суспензии могут содержать дополнительно суспензирующие агенты (например, микрокристаллическая целлюлоза, натрий карбоксиметилцеллюлоза).

Растворы или суспензии вводятся непосредственно в носовую полость стандартным способом, например, капельницей, пипеткой или распылителем. Композиции могут применяться в виде единичной дозы или множественной дозы. В последнем случае желательно дать способ измерения дозы. В случае капельницы или пипетки это может быть достигнуто пациентом принятием соответствующего, предварительно определенного раствора или суспензии. В случае распыления это может быть достигнуто, например, посредством измерения пульверизации распыляющего насоса.

Интраназальный прием может быть осуществлен также посредством применения аэрозольной композиции, в которой соединение дается в упаковке повышенного давления с соответствующим движущим средством, таким, как хлорфторуглерод (CFC), например, дихлордифторметан, трихлорфторметан или дихлортетрафторэтан, двуокись углерода или другой подходящий газ. Аэрозоль может для удобства содержать также поверхностно-активное вещество, такое, как лицетин. Доза лекарственного средства может контролироваться установлением измерительного клапана.

Или же соединения могут быть даны в виде сухого порошка, например, порошковая смесь соединения в подходящей порошковой основе, такой, как лактоза, крахмал, производные крахмала, такие, как гидроксипропилметилцеллюлоза и поливинилпирролидин (ПЭП). Обычно порошковый носитель образует гель в назальной полости. Порошковая композиция может существовать в виде единичной дозы, например, капсул или гильз, например, в желатиновых или пузырчатых упаковках, из которых порошок может вводиться посредством пульверизатора.

В интраназальных композициях соединение обычно имеет небольшой размер частиц, например, порядка 5 микрон или менее.

Такой размер частиц может быть получен известными в данной области методами, например, микронизацией.

В случае необходимости композиции могут быть приспособлены к тому, чтобы давать поддерживаемое выделение активного ингредиента. Соединения изобретения могут использоваться также в комбинации с другими терапевтическими агентами, например, с другими антиинфекционными агентами. В частности, соединения изобретения могут применяться вместе с другими антивирусными агентами. Таким образом, дальнейшим аспектом изобретения является комбинация, включающая соединение формулы (1b) или его фармацевтически приемлемую соль, или его производное вместе с другим терапевтически активным агентом, в частности, антивирусным агентом.

Комбинации, упомянутые выше, могут быть обычно представлены для использования в виде фармацевтической композиции и, таким образом, эти композиции, включающие комбинацию, определенную выше, вместе с их фармацевтически приемлемым носителем составляют дальнейший аспект изобретения.

Соответствующие терапевтические агенты для использования в таких комбинациях включают другие антиинфекционные агенты, в частности, антибактериальные и антивирусные агенты, такие, как агенты, используемые для лечения респираторных инфекций. Например, в такие комбинации могут быть включены другие соединения, эффективные против вирусов (эпидемического) гриппа, такие, как амантадин, римантадин и рибаверин.

Индивидуальные компоненты таких комбинаций могут приниматься либо последовательно, либо одновременно в отдельных или в комбинированных фармацевтических композициях.

В том случае, когда соединение изобретения используется в сочетании со вторым терапевтическим агентом, активным по отношению к тому же вирусу, доза каждого соединения может либо не меняться, либо будет отличаться от дозы, применяемой в том случае, когда каждое соединение используется в отдельности. Соответствующие дозы могут быть легко установлены специалистом в данной области.

Соединение формулы (1b) и его фармацевтически приемлемые соли и производные могут быть получены любым известным в данной области методом, используемым для получения соединений аналогичного строения.

В соответствии с одним из способов защищенное по карбокси- и гидроксигруппам производное соединение формулы (IIIb): где R4b имеет значения, определенные выше, а OL означает удаляемую группу, представляющую собой остаток сульфоновой кислоты, подвергают взаимодействию с нуклеофилом, таким, как азид, полученное при этом соединение общей формулы (1b), где R3b означает азид, в случае необходимости подвергают превращению в другое соединение общей формулы (1b), где R3b означает группу -NR6bR7b, где R6b означает атом водорода, (C1-C6)алкил или амидин, R7b означает атом водорода, (C1-C6) алкил или аллил, и в полученных соединениях удаляют защитные группы и в случае необходимости переводят эти соединения в фармацевтически приемлемые соли, эфиры или соли эфиров.

Соединения формулы (IIIb) могут быть получены из соответствующих соединений формулы (IV): инверсией 4-OH группы известными в данной области способами, например, взаимодействием с кислотой Льюиса (такой, как этерифицированный BF3), за которым следует гидролиз.

Соединения формулы (IV) являются либо известными в данной области, либо могут быть получены способами, аналогичными тем, которые используются для получения известных соединений.

Как понятно специалисту в данной области, может быть необходимо или желательно на любой стадии описанных выше процессов защитить одну или несколько чувствительных групп в молекуле для того, чтобы предотвратить нежелательные побочные реакции; в последующих реакциях защитная группа может быть удалена любым стандартным способом.

Защитные группы, используемые при получении соединений формулы (1b), могут быть применены в соответствии с существующими способами. См., например, "Защитные группы в органической химии" Изд. J.F.W. McOmie (Plenum Press (1973) или "Защитные группы в органическом синтезе" Teodora W. Green (John Wiley and Sons, 1981).

Гидроксигруппы могут быть защищены, например, аралкильными группами, такими, как бензильные, дифенилметильные или трифенилметильные группы; ацильными группами, такими, как ацетил; силиконовыми защитными группами, такими, как триметилсилильные группы; или такими, как тетрагидрофурановые производные.

Удаление любых присутствующих защитных групп может быть осуществлено стандартными способами. Так, аралкильная группа, такая, как бензильная, может быть расщеплена гидрогенолизом в присутствии катализатора (например, палладия на древесном угле); ацильная группа, такая, как N-бензилоксикарбонильная, может быть удалена гидролизом, например, с бромистым водородом в уксусной кислоте или восстановолением, например, каталитической гидрогенизацией; силиконовые защитные группы могут быть удалены, например, действием иона фтора; тетрагидропирановые группы могут быть расщеплены гидролизом, проводимым в кислотных условиях.

В тех случаях, когда желательно выделить соединение изобретения в виде соли, например, в виде кислотно-аддитивной соли, это может быть достигнуто действием свободного основания общей формулы (1b) с соответствующей кислотой, предпочтительно с эквивалентным количеством, или с соответствующим сульфатом в подходящем растворителе (например, в водном этаноле).

Данное изобретение далее описывается последующими примерами, которые имеют своей целью только проиллюстрировать изобретение и не могут быть истолкованы как ограничивающие изобретение.

Общая методология. Для синтеза соединений изобретения применяются следующие общие методы.

Деацетилирование. Взаимодействие ацетилированного вещества с Amberlite IRA-400 (OH-) при перемешивании в течение периода времени обычно 2 - 3 ч при комнатной температуре приводит в результате к полному де-O-ацетилированию. Образующаяся смола отфильтровывается и фильтрат концентрируется до сухого состояния с образованием нужного де-O-ацетилированного вещества.

Специалисту в данной области понятно, что для полного де-O-ацетилирования того же самого вещества приемлемы и другие стандартные методы, такой, как взаимодействие с метилатом натрия и метаноле.

Деэтерификация. Полностью де-O-ацетилированный материал растворяется в водном растворе гидроокиси натрия и перемешивается при комнатной температуре в течение периода времени в основном 2 - 3 ч. Затем pH смеси доводится до pH 7,0 - 7,5 с помощью смолы Dowex 50X8 (H+). Фильтрование с последующим охлаждением-сушкой фильтрата дает нужный деэтерифицированный материал.

Специалист в данной области может легко идентифицировать несколько альтернативных способов для деэтерификации того же самого вещества, такого, как кислотный гидролиз, альтернативный щелочной гидролиз, например, гидроокисью аммония, гидроокисью калия.

Промежуточные соединения, упомянутые в примерах 1 - 15, идентифицируются следующим образом: Соединение 2. Метил 5-ацетамидо-7,8,9-три-O-ацетил-2,3,5- тридезокси-D-глицеро-D-тало-нон-2-энопиразонат (4-эпи- Neu 5, 7, 8, 9 Ac4 и 2en 1Me).

Соединение 3. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-азидо- 2,3,5-тридезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-азидо Neu 5,7,8,9 Ac4 2en 1Me).

Соединение 5. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-амино-2, 3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат(4-амино- Neu 5, 7, 8, 9 Ac4 2en 1Me).

Соединение 8. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N,N- диаллиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-N, N-диаллиламино- Neu 5, 7, 8, 9Ac4 2 en 1Me).

Соединение 10. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N- аллиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-N-аллиламино- Neu 5, 7, 8, 9 Ac4 2 en 1Me).

Соединение 12. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-амино- 2,3,4,5-тетрадезоки-D-глицеро-D-тало-нон-2-энопиранозонат(4-эпи-4-амино Neu 5, 7, 8, 9 Ac4 2en 1Me).

Соединение 13. Метил 7,8,9-три-O-ацетил-2,3,5-тридезокси-4',5'-дигидро-2'- метилоксазол[5,4-d]D-глицеро-D-тало-нон-2-энопиразонат (4-эпи- 4,5-оксазало Neu 7,8,9 Ac3 2en 1Me).

Соединение 15. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-азидо- 2,3,4,5-тетрадезокси-D-глицеро-D-тало-нон-2-энопиранозонат (4-эпи-азидо Neu 5,7,8,9Ac4 2en 1Me).

Соединение 16. Метил 5-ацетамидо-4-азидо-2,3,4,5-тетрадезокси-D- глицеро-D-тало-нон-2-энопиранозонат (4-эпи-азидо Neu 5Ac 2en 1Me).

Соединение 18. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N- метиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-N-метиламино Neu 5,7,8,9Ac4 2en 1Me).

Соединение 19. Метил 5-ацетамидо-4-N-метиламино-2,3,4,5- тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-N-метиламино- Neu 5Ac 2en 1Me).

Соединение 21. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N,N- диметиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2- энопиранозонат (4-N,N-диметиламино- Neu 5, 7, 8, 9Ac4 2en 1Me).

Соединение 22. Метил 5-ацетамидо-4-N, N-диметиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон- 2-энопиранозонат (4-N,N-диметиламино Neu 5Ac 2en 1Me).

Соединение 24. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N-метоксикарбонил-метиламино-2,3,4,5- тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (4-N-метоксикарбонилметиламино Neu 5,7,8,9 Ac4 2en 1Me).

Соединение 25. Метил 5-ацетамидо-4-N-метоксикарбонилметиламино-2,3,4,5-тетрадезокси-D-глицеро-D- галaкто-нон-2-энопиранозонат (4-N-метоксикарбонилметиламин Neu 5Ac 2en 1Me).

Соединение 27. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N-2'-гидроксиэтиламино-2,3,4,5-тетрадезокси-D- глицеро-D-галакто-нон-2-энопиранозонат (4-N-2'-гидрокиэтиламино Neu 5,7,8,9 - Ac4, 2en 1Me).

Соединение 28. Метил 5-ацетамидо-4-N-2'-гидроксиэтиламино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто- нон-2-энопиранозонат (4-N-2'-гидроксиэтиламино Neu 5,7,8,9 Ac4, 2en 1Me).

Соединение 29. Метил 5-ацетамидо-7,8,9-три-O-ацетил-4-N-2'-гидроксиэтиламино-2,3,4,5-тетрадезокси-D- глицеро-D-галакто-нон-2-энопиранозонат (4-N-2'-гидроксиэтиламино Neu 5Ac 2en 1Me).

Соединение 30. 3-дезокси-D-глицеро-D-галакто-2-нонулопиранозоновая кислота (KDN).

Соединение 31. Метил 3-дезокси-D-глицеро-D-галакто-2-нонулопиразонат (KDN 1Me).

Соединение 32. Метил (4,5,7,8,9-пента-O-ацетил-2,3-дидезокси-D-глицеро- - D-галакто-2-нонулопиранозил хлорид)онат (KDN 4,5,7,8,9 Ac5 2 Cl 1Me).

Соединение 33. Метил 4,5,7,8,9-пента-O-ацетил-2,3-дидезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (KDN 4,5,7,8,9 Ac5 2en 1Me).

Соединение 34. Метил 2,3-дидезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (KDN 2en 1Me).

Соединение 36. Гидразиний 4,5-диамино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2-энопиранозонат (гидразиний 4,5-диамино Neu 2en), Соединение 37. 4,5-диамино-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2- энопиранозоновая кислота (4,5-диамино Neu 2en).

Пример 1. Получение натрий 5-ацетамидо-4-азидо-2,3,4,5-тетрадезокси-D-глицеро-D-галакто-нон-2- энопиранозоната (4-азидо Neu 5Ac 2en) (4) Общая схема реакции приведена в конце описания.

Получение соединения (2). К перемешиваемому раствору метил 5-ацетамидо-4,7,8,9-тетра-O-ацетил-2,3,5-тридезокси-D-глицеро-D-галакто- нон-2-энопиранозоната (1) (1500 мг, 3,17 ммоль) в смеси бензола (50 мл) и метанола (300 мг) в течение 30 мин в атмосфере азота при комнатной температуре по каплям добавлялся BF3Et2O (12 мл). Затем перемешиваемую смесь оставляли на 16 ч при комнатной температуре. Раствор разбавлялся этилацетатом (250 мл), интенсивно промывался насыщенным раствором NaHCO3 (30 мл х 3) и водой (20 мл х 3), затем упаривался до небольшого объема (около 10 мл), к которому были добавлены вода (0,5 мл) и уксусная кислота (0,5 мл). Затем общая смесь в течение двух дней перемешивалась при комнатной температуре перед тем, как она подвергалась разбавлению этилацетатом (200 мл). Этилацетатный раствор промывался раствором 5% NaHCO3 (30 мл х 2) и водой (20 мл х 3), затем выпаривался до сухого состояния. Остаток хроматографировался (силикагель, этилацетат в качестве элюирующего растворителя), давая чистое соединение (2) (550 мг, 40%).

1Н-ЯМР (CDCl3) (м. д.) 1,95, 2,06, 2,08, 2,10, 2,35 (с, 15н. Ацетил CH35), 3,80 (с, 3H, COOCH3), 4,1-4,4 (м, 4H, H4, H5, H6, H9), 4,82 (дд, 1H, J9,8 1,8 Гц, J9,9, 12,3 Гц, H9), 5,27 (м, 1H, H8), 5,45 (дд, 1H, J7,8 3,5 Гц, H7), 6,15 (д, 1H, J3,4 5,4 Гц, H3), 6,47 (д, 1H, JNH,5 8,8 Гц, -CONH).

Получение соединения (3). К перемешиваемому раствору соединения (2) (800 мг, 1,67 ммоль) в безводном дихлорметане (10 мл) и сухом пиридине (316 мг, 4 ммоль) при температуре от -30 до -40oC по каплям добавлялся раствор трифторметансерного ангидрида (Tf2O) (556 мг, 2 ммоль) в дихлорметане (2 мл) в течение 15 мин. Затем реакционная смесь в течение 5 ч при -30oС концентрировалась в вакууме до сухого состояния. После этого остаток промывался в сухом ДМФ (5 мл), содержащем смесь азида натрия (650 мг, 10 ммоль) и тетрабутиламмоний гидросульфат (170 мг, 0,5 ммоль). Реакционная смесь в течение 16 ч перемешивалась при комнатной температуре, после чего выпаривалась до сухого состояния в высоком вакууме. Остаток был разделен между этилацетатом (200 мл) и водой (50 мл). Органический слой отделялся и промывался водой (50 мл x 2), сушился над Na2SO4 и упаривался с образованием остатка (780 мг), который дважды подвергался хроматографированию (силикагель, первый раз система растворителей представляла собой смесь этилацетат/ацетон: 8/1; второй раз - дихлорметан/вода : 10/1), с образованием бесцветного масла (3) (185 мг, 24%).

MC (FAB) 457 (M++1), 414 + 19.1o (Cl, MEOH), ИК (CHCl3) см-1 2100 (N-N3), 1747 (карбонил).

1H-ЯМР (CDCl3) (м.д.) 2,04, 2,05, 2,06, 2,12, (c, 12H, Ацетил CH34), 3,79 (c, 3H, COOCH3), 3,91 (ддд, 1H, J5,NH 8,4 Гц, J5,4 8,8 Гц, J5,6 9,9 Гц, H5), 4,17 (дд, 1H, J9,8 6,8 Гц, J9,9 12,5 Гц, H8, 4,42 (дд, 1H, J4,3 2,9 Гц, J4,5 8,8 Гц, H4), 4,48 (дд, 1H, J6,7 2,3 Гц, J6,5 9,9 Гц, H6), 4,46 (дд, 1H, J9,8 2,7 Гц, J9,9 12,5 Гц, H9), 5,31 (м, 1H, J8,7 5,2 Гц, J8,9 2,7 Гц, J8,9 6,8 Гц, H8), 5,45 (дд, 1H, J7,6 2,3 Гц, J7,8 5,2 Гц, H7) 5,96 (д, 1H, J3,4 2,9 H, H3), 6,13 (д, 1H, JNH,5 8,4 Гц, -CONH).

13C ЯМР (CDCl3) (м.д.) 20,7 (CH3-CO-O-), 23,2 (CH3CO-NH), 48,3 (C5), 52,6 (COOCH3) 57,8 (C4), 62,1 (C9), 67,7, 70,9 (C7, C8), 75,9 (C6), 107,6 (C3), 145,1 (C2), 161,5 (C1), 170,2 170,3, 170,7 (ацетил -C=O 4).

Получение соединения (4). Соединение (3) (50 мг, 0,11 ммоль) растворялось в безводном метаноле (5 мл), содержащем метилат натрия (8 мг, 0,15 ммоль). Смесь перемешивалась при комнатной температуре в течение 2 ч и концентрировалась в вакууме до сухого состояния. Остаток растворялся в воде (3 мл), перемешивался при комнатной температуре в течение 1,5 ч, величина pH раствора регулировалась до 6-7 с использованием смолы Dowex 50 8 (H+), после чего он подвергался лиофилизации, образуя названное в заглавии соединение (4) (35 мг, 94%).

И.К. (KBr) см-1 3400 (уш -OH), 2100 (-N3), 1714 (карбонил).

1H-ЯМР (D2O) (м.д.) 2,06 (C, 3H, ацетил CH3), 3,64 (дд, 1H, J9,8 6,3 Гц J9,9 11,8 Гц, H9 3,65 (дд, 1H, J7,6 3,9 Гц, J7,8 6,8 Гц, H7), 3,88 (дд, 1H, J9,8 2,6 Гц, J9,9 11,8 Гц, H9), 3,94 (м, 1H, J8,7 6,8 Гц, J8,9 2,6 Гц, J8,9 6,3 Гц, H8), 4,21 (дд, 1H, J5,4 10,4 Гц, J5,6 8,9 Гц, H5, 4,31 (дд, 1H, J4,3 2,2 Гц, J4,5 2,2 Гц, J4,5 10,4 Гц, H4, 4,34 (дд, 1H, J 6,5 8,9 Гц, J6,7 3,9 Гц, H6) 5,82 (д, 1H, J3,4 2,2 Гц, H3).

Пример 2. Получение натрий 5-ацетамидо-4-амино-2,3,4,5-тетрадезокси- D-глицеро-D-галакто-нон-2-энопиранозоната (4-амино-Neu 5Ac 2ен) (6).

Общая схема реакции приведена в конце описания.

Получение соединения (5). Раствор метил 5-ацетамидо-7,8,9-три-О-ацетил-4-азидо. 2,3,4,5-тетрадезокси-D-глицеро-D-галкто-нон-2-энопиранозонана (3), приготовленный в соответствии с примером 1 (95 мг, 0,208 ммоль) в пиридине (6 мл), продувался в течение 16 ч H2S при комнатной температуре. Затем раствор в течение 15 мин сильно продувался азотом и выпаривался в высоком вакууме для удаления пиридина. Остаток подвергался хроматографированию (силикагель, этилацетат/ изопропанол/вода = 5/2/1), образуя бесцветное соединение (5) (50 мг, 56%).

MC (FAB - ионизация 431 (M+ + 1); 414 (M+ - NH2), []2D0 +34,5oC (Cl, MeOH). ИК (CHCl3) см-1 : 3400 (уш, NH2), 1740 (карбонил).

1H-ЯМР (CDCl3 + CD3OD) (м.д.) 1,96 2,06, 2,07, 2,10 (с, (12H ацетил CH34), 3,81 (C, 3H, - COOCH3), 3,92 (уш, 1H, J5,4 & J5,6 10 Гц, H5), 4,17 (дд, 1H, J9,8/ 7,2 Гц, J9,9 12,3 Гц, H9) ), 4,22 (уш, дд, 2H, J4,5 & J6,5 10 Гц, J4,3 & J6,7 2,1 Гц, H4 & H6), 4,71 (дд, 1H, J9,8 2,6 Гц, J9,9 12,3 Гц, H9), 5,31 (м, 1H, J8,7 4,9 Гц, J8,9 2,6 Гц, J8,9 7,2 Гц, H8), 5,45 (д, 1H, J7,6 2,1 Гц, J7,8 4,9 Гц, H7), 5,97 (д, 1H, J3,4 2,1 Гц, H3).

13C-ЯМР (CDCl3 + CD3OD) (м.д.) 20,2, 20,3 (CH3-CO-O-), 22,3 (CH2CO-NH), 48,2 (C2), 50,4 (C4), 52,0 (COOCH3), 52,1 (C9), 67,8 71,2 (C7, C8, 76,5 (C6), 112,5 (C3), 143,5 (C2), 162,0 (C1), 170,2, 170,4 170,8, 172,2 (ацетил - C = 0 4).

Получение соединения (6). Соединение (5) (50 мг, 0,116 ммоль) растворялось в безводном метаноле (5 мл), содержащем метилат натрия (12,4 мг, 0,23 ммоль). Смесь перемешивалась при комнатной температуре в течение 1,5 ч и выпаривалась в вакууме до сухого состояния при 30oC. остаток перемешивался в воде (3 мл) при комнатной температуре до тех пор, пока ТЖХ (силикагель, этилацетат/метанол/ 0,1 N HCl = 5/4/1) не показала, что гидролиз прошел полностью. Затем pH раствора (pH около 10,5) постепенно регулировалась до значения около 7,5 с использованием смолы Dowex 8 (H+). Как только pH раствора достигалa значения 7,5, суспензия быстро фильтровалась с использованием пресс-фильтра. Фильтрат подвергался лиофилизации, давая озаглавленное соединение (6) (30 мг, 83%).

1H-ЯМР (D2O) (м.д.) 2,07 (C, 3H, ацетил CH3), 3,59 - 3,70 м, 2H, H7 & H9) , 3,89 (дд, 1H, J9,8 2,6 Гц, J9,9 11,8 Гц, H9), 3,95 (м, 1H, H8 ), 3,99 (ушд, 1H, J4,5 10,6 Гц, H4), 4,21 (уш, т. 1H, J5,4 & J5,6 10,6 Гц, H5), 4,29 (ушд, 1H, J6,5 10,6 Гц, H6), 5,66 (д, 1H, J3,4 1,9 Гц, H3).

Пример 3. Получение аммоний 5-ацетамидо-4-гуанидино-2,3,4,5-тетрадезокси-D-глицеро-D-