Производные салициловой кислоты, их алкиловые эфиры, содержащие от 1 до 6 атомов углерода в эфирной группе, соли и сольваты

Реферат

 

Изобретение относится к новым производным салициловой кислоты ф-лы Гет-NR-SO2-Ph1-A-Ph2(COOH)(OH), (I), где ГеТ представляет собой (R1, R2, R3-Гет1, Гет1 представляет циклическую систему в которой свободная валентность связана с группой NR; X - группа: а) -O-CH=CH-, -CH=CH-O-, -CH= CH-S- или б) -CH=CH-CH=CH-, -CH=CH-CH=N-, -CH=N-CH=CH-, -CH=CH-N=CH-, -N= CH-CH= CH-; R1, R2 и R3 являются заместителями при атоме углерода в ГеТ и представляют собой водород, C1-C6 - алкил, галоген, гидрокси- или бензилоксигруппу; R - водород или C1-C6 - алкил; Ph1 - фенилен, Ph2 - фенил, который может быть замещен галогеном, низшим алкилом или бензилоксигруппой, при условии, что карбокси- и гидроксигруппы находятся в орто-положении друг к другу; А представляет собой - CC-, -CH=CH-, -CH2-CH2-, -CO-CH=CH-, -CH=CH-CO-. Соединения ф-лы (I) получают взаимодействием соединений (R1, R2, R3) -ГеТ1-NRH и ClSO2Ph1-A-Ph2(COOH)(OH). Вещества (I) обладают высокой иммуномодулирующей активностью и могут быть использованы для лечения язвенного колита, ревматоидного артрита, псориаза. 14 з.п.ф-лы, 5 табл.

Давно известно, что вещества, которые включают структуру салициловой кислоты, которая сочетается мостиком -N=N-(A-), расщепляемым при восстановлении, с кольцом бензолсульфокислоты, которая в свою очередь амидирована по аминной группе аминозамещенного гетероциклического кольца, которое содержит сопряженные двойные связи, может проявлять терапевтическое действие против язвенного колита, ревматоидного артрита и других заболеваний, которые считаются автоиммунными (см., например, патенты США Аскелефа и др. 2396 145 и Агбэка и Линдблома 3915 951; статья Т. Пуллара в Брит. ж. клинич. фармакологии, том 30, стр. 501-510 (1990), Л.Г. Туманова, Я.А. Сегедин, Тер. Арх., том 59, стр. 80-83 (1987), С. Пачеко, К. Хиллиер, К.Л. Смит, Бразил. журнал мед. биол. исследований, том 23, стр. 1323-34 (1990) и К. Астбюри, и др., Брит. ж. ревматологии, том 29, стр. 465-467 (1990). Кроме того, автоиммунные заболевания описаны и охарактеризованы примерами в книге И. Ройтта, Дж. Бростоффа, Д. Мэйла, Иммунология, 2-е изд., 1989).

Наиболее известным веществом, обладающим указанным выше терапевтическим действием, является сульфасалазин. Хотя аналоги сульфасалазина описаны, до сих пор ни один из них не признан приемлемым медикаментом.

Сульфасалазин является клинически эффективным при лечении автоиммунных заболеваний, таких как например, язвенный колит, ревматоидный артрит, анкилосный спондилит, реактивный артрит, псориаз и псориазный артрит (cм., например, статьи Д. Портера и Х. Капелла: Bailliers Clin. Rheumat., т. 4, с. 535-551 (1990); М. Феррас и др. J. Rheumat., т. 17, с. 1482-1486 (1990); А. Гупта и др. Arch. Dermatol., т. 126, с. 487-493 (1990); Г. Ваткинсон, Drugs, т. 32 (I), с. 1-11 (1986)).

Медикаменты, которые главным образом назначаются при лечении ревматоидного артрита, являются противоспалительными агентами, так называемыми нестероидными противовоспалительными медикаментами. Считается, что эти нестероидные противовоспалительные медикаменты действуют против симптомов этого заболевания. С другой стороны, сульфасалазин классифицируется как медикамент, модифицирующий заболевание. Кроме того, к той же самой группе медикаментов принадлежат соли золота, пенициламин, хлорхинин и медикаменты, подавляющие иммунную систему, метотрексан, азатиоприн и циклофосфамид, которые все имеют принципиально различающиеся структуры.

Имеется ряд фармакологических модельных систем для оценки медикаментов, которые потенциально могут быть использованы для лечения автоиммунных заболеваний. Одним из наиболее важных свойств нестероидных противовоспалительных медикаментов в таких модельных системах является их способность ингибировать синтез простогландина и связанные с этим биологические эффекты.

Сульфасалазин радикально отличается по свойствам от активных нестероидных противовоспалительных медикаментов в таких модельных системах как клинически, так и экспериментально. Сульфасалазин был охарактеризован в ряде моделей, и было подтверждено, что он может рассматриваться для описания эффективного компонента, модифицирующего заболевание. Например, было показано, что на активацию иммунокомпетентных и воспалительных клеток воздействует сульфасалазин, поскольку он ингибирует активацию и быстрое размножение Т-лимфоцитов, а также активацию гранулоцитов и освобождение медиаторов.

При лечении язвенного колита клинический эффект сульфасалазина был приписан 5-аминосалициловой кислоте, которая образуется в результате восстановительного расщепления материнской молекулы в толстой кишке. Одновременно образуется сульфапиридин. При лечении других автоиммунных заболеваний, таких как например ревматоидный артрит, считается, что эффективным компонентом является интактная молекула сульфасалазина, или выделяющийся сульфапиридин, или, наиболее вероятно, оба компонента. Считается, что по существу вторичные эффекты сульфасалазина связаны с выделяющимся сульфапиридином.

Теперь мы обнаружили новый тип аналогов сульфасалазина, которые обладают хорошей биологической доступностью и эффективностью в моделях, используемых при изучении автоиммунных заболеваний, таких как, например, ревматоидный артрит и язвенный колит. Эти аналоги имеют описанную выше структуру, но в них азо-группа (A) замещена мостиком, который является стабильным против гидролиза и/или восстановления в организме, например в толстой кишке. Такие вещества, являются новыми. Таким образом, в наиболее широком смысле изобретение включает вещества структуры 1 Гет-NR-SO2Ph1-A-Ph2(COOH)(OH) и таумерные формы, соли и сольваты, не обязательно сложные алкиловые эфиры с 1-6 атомами углерода в карбоксильной группе.

В приведенной выше структуре 1 Гет является гетероциклическим кольцом, Ph1 является бензольным кольцом, Ph2 (COOH)(OH) представляет собой бензольное кольцо с карбокси- и гидроксигруппами в орто-положении, R является водородом или низшим алкилом C1-C6. Группы Гет, Ph1, Ph2 (COOH)(OH) и мостик A могут быть замещены.

Эти вещества отличаются тем, что A является мостиком, который является стабильным против гидролиза и /или восстановления в биологических системах. Предпочтительно A представляет собой углеродную цепочку нормального строения, имеющую самое большее 3 атома углерода (-C-C-C-), которая включает простую, двойную или тройную углерод-углеродную связи, не обязательно с оксо-заместителем (= O) при одном из атомов углерода в цепочке. Термин стабильная против гидролиза и/или восстановления означает, что в A отсутствует азот-азотная связь, такая как азо-, а также не обязательно лабильные при гидролизе сложноэфирные и амидные связи, в качестве связывающей структуры между Ph1 и Ph2.

В конкретных вариантах воплощения Ph1-1,4- или 1,3-замещенный бензол и Ph2(COOH)(OH) является орто-карбокси-гидрокси замещенным фенилом, который не обязательно может быть дополнительно замещен галогеном или низшим алкилом (C1-C6), предпочтительно метилом, в его положениях 3, 4 или 6. Группа -A- это - -CC- , -CH=CH-, -CH2CH2-, -CO-CH=CH-, -CH=CHCO-, -CH2CO-.

В конкретных вариантах воплощения соединений изобретения гетероциклическое кольцо в Гет является пятичленным или шестичленным, имеющим 2 и 3 сопряженные двойные связи соответственно. Гетероциклическое кольцо в Гет может быть включено в моноциклическую или бициклическую структуру. Предпочтительно Гет - представляет собой (R1, R2, R3)-Гет'-, где Гет' представляет собой группу в которой свободная валентность связана с NR; и X представляет собой а) -N= CH-NH-, -N=CH-S, N=CH-O, -NH-N=CH, -O-CH=CH-, -CH=CH-O-, -NH-CH= CH, -CH=CH-NH, -CH=CH-S-, -CH=N-NH, или б) -CH= CH-CH= CH-, -CH=CH-CH=H-, -CH=N-CH=CH-, -CH=CH-N-CH-, -N=CH-CH= CH-, где взаимно соседние, напечатанные жирным шрифтом атомы водорода (н) могут быть парно замещены группой -CH=CH-CH=CH- с тем, чтобы образовать бициклическую структуру.

R является атомом водорода или низшим алкилом C1-C6, предпочтительно водородом или метилом.

R1, R2 и R3 являются заместителями при атоме углерода в -Гет'. Эти группы могут представлять собой атом водорода, низший алкил (C1-C6), галоген, гидрокси-, циано-, карбокси-, низший алкокси- (C1-C6), бензилокси-, низший ацил (C1-C7), включая ацетил, бензоил, фенил, бензил и др., в которых любое из встречающихся бензольных колец может быть замещено.

Во всей описанной части и формуле изобретения этой заявки термины низший алкил и низший ацил означают группы, которые содержат соответственно 1-6 и 1-7 атомов углерода, не обязательно с заместителями указанного выше вида.

A представляет собой -С= С-, не обязательно замещенные низшим алкилом транс- или цис-CH= CH-, CH2-CH2-, -CO-CH=CH-, -CH=CH- CO-, -CO-, -CH2-CO-, -CH2-, предпочтительно -CC- или транс-CH= CH-; Ph2 представляет собой C6H2R4, где R4 является атомом водорода, галогена или низшим алкилом, предпочтительно атомом водорода или метилом; и их таутомерные формы и соли с щелочными металлами, предпочтительно с натрием, кальцием или магнием или с фармацевтическим приемлемыми аминами, такими как кристаллические сольваты, которые включают фармацевтически приемлемые растворители, такие как например, вода, ацетон и этиловый спирт, а также их фармацевтические композиции.

Это изобретение также относится к использованию вещества в качестве медикаментов, главным образом для лечения автоиммунных заболеваний по аналогии с использованием сульфасалазина и потенциально также для лечения других воспалительных состояний. Прочие аспекты изобретения включают получение этих веществ и приготовление фармацевтических композиций, содержащих упомянутые вещества и предназначенных для указанных ниже медицинских показаний.

Вещества по изобретению обладают в биологических системах иммуномодулирующим действием, например посредством ингибирования активации иммунокомпетентных и воспалительных клеток и по своему фармацевтическому профилю подобны сульфасалазину, но часто превосходят его по активности. Следовательно, вещества изобретения являются потенциальными медикаментами для лечения автоиммунных заболеваний, таких как язвенный колит, ревматоидный артрит, анкилозный спондилит, реактивный артрит, псориаз, псориазный артрит, множественный склероз Морбус Крона, диабет типа 1, склеродерма, тяжелая слабость мышц, синдром Съергенса, системный волчаночный эритематоз и хроническая астма. Вещества изобретения предположительно также могут использоваться для лечения других заболеваний, в частности таких заболеваний, которые имеют иммунологическую составляющую, независимо от того, известны ли эти вещества в научной медицине или не известны.

Поскольку вследствие особенностей строения этих новых веществ они не способны образовывать сульфапиридин или любые другие его токсичные аналоги, весьма вероятно, что для упомянутых веществ отсутствуют побочные эффекты, присущие свободному сульфапиридину. Наши эксперименты продемонстрировали, что вещества изобретения часто имеют существенно более высокую биологическая пригодность для лабораторных животных, чем сульфасалазин и его аналоги.

В общем, эти новые вещества должны оказаться весьма выгодными в качестве медикаментов для лечения автоиммунных заболеваний. Новые вещества изобретения могут быть получены различными путями.

Один способ включает взаимодействие вещества II с веществом III (R1, R2, R3)-Гет'-NH-SO2-Ph1-X Y-C6H2-R4, (COOR5)(OH) где R, R1, R2, R3, R4, Ph1 и Гет' имеют те же значения, что указаны выше, R5 является атомом водорода или предпочтительно низшим алкилом, имеющим самое большее 6 атомов углерода, и -X и Y - в паре представляют собой -CCH и Z1-; -Z1 и HCC- ; -CH=CH2 и Z1-; -Z1 и CH2=CH-; -CO-CH3 и HCO; -CHO и CH3CO-; -CH2COZ2 и H-; и Z3CH2-; -CH2Z3 и HCO-, в которых Z1 является атомом брома или иода, Z2 представляет собой атом галогена, предпочтительно хлора, и Z3 является остатком фосфорорганического соединения типа реактива Виттига, например трифенилфосфониевая группа или диалкилфосфонатная группа.

Вещества II и III сочетаются вместе известным образом, после чего, когда R5 является низшим алкилом, продукт сочетания подвергают гидролизу, предпочтительно в присутствии гидроксида щелочного металла, после этого продукт подкисляют и затем выделяют.

Когда -X и Y - представляют собой -CCH и Z1 или -Z1 и HCC- , упомянутый выше процесс сочетания предпочтительно осуществляют по так называемой реакции Хека, предполагающей катализ соединением палладия и соединением меди в присутствии основания и растворителя. Подходящими соединениями палладия являются дихлорбис(трифенилфосфин)палладий, дихлорбис-(трис(2-метилфенилфосфин)палладий или тетракис(трифенилфосфин)палладий. По желанию, походящее соединение палладия может быть приготовлено в реакционной смеси путем использования, например, хлористого палладия или ацетата палладия, наряду с трифенилфосфином, трис(2-метилфенилфосфином и 1,3-(бис)дифенилфосфино)пропаном и др. Подходящими соединениями меди являются иодистая медь (I) или бромистая медь (I). Подходящими основаниями являются амины, предпочтительно третичные амины, такие как, например, тиэриламин или трибутиламин или другие неорганические или органические основания, такие как например, гидрокарбонат натрия или ацетат натрия. Подходящими растворителями являются, например, N,N-диметилацетамин, N,N-диметилформамин, этанол, ацетон, тетрагидрофуран, диоксан, толуол и др., предпочтительно N,N-диметилацетамид.

Когда X и Y представляет собой -CH=CH2 и Z1 или -Z1 и CH2-CH-, упомянутый выше процесс сочетания предпочтительно осуществляют по так называемой реакции Хека, предполагающей катализ соединением палладия в присутствии основания и растворителя. Подходящими соединениями палладия являются неорганические и органические соли палладия, например хлористый палладий (II) или ацетат палладия (II). По желанию, эти соли могут быть стабилизированы доступными лигандами, такими как, например трифенилфосфин, например в виде дихлорбис(трифенилфосфин)палладия. Альтернативно могут использоваться соединения нуль-валентного палладия, такие как например, бис(дибензилиденацетон)палладий или тетракис(трифенилфосфин)палладий. Подходящими основаниями являются третичные амины, такие как, например, триэтиламин или неорганические основания, такие как например, гидрокарбонат натрия или ацетат натрия. Подходящими растворителями являются например, N,N-диметилацетамид, N,N-диметилформамид, толуол, тетрагидрофуран, диоксан, ацетон и др.

Хотя вещество формулы (R1, R2, R3)-Гет'-NR-SO2-Ph1-X, где X является этинилом, может быть получено различными путями, каждый из которых известен, предпочтительно это вещество получают путем взаимодействия вещества формулы (R1, R2, R3)-Гет'-NR-SO2-Ph1-X, где X является атомом брома или иода, с этиленом в присутствии каталитического количества соединения палладия, основания и растворителя, причем используются катализаторы и растворители такого же типа, что и в реакции между веществами II и III. Другой способ включает частичное восстановление этинильного соединения газообразным водородом в присутствии катализатора, подходящего для этой цели.

Вещество формулы II, где X является атомом брома или иода, получают известным способом, например взаимодействием соответствующего галогенобензолсульфонилхлорида с соответствующим гетероциклическим амином в присутствии основания, например в избытке пиридина или гетероциклического амина.

Когда X и Y в формулах II и III представляет собой соответственно -CO-CH3 и HCO или -CHO и CH3CO-, упомянутое выше сочетание осуществляется известным способом в присутствии растворителя и основного или кислотного конденсирующего агента. Походящими основаниями являются например гидроксид натрия или гидроксид калия. Подходящими кислотами являются сильные минеральные кислоты, такие как хлористоводородная кислота или серная кислота. Подходящими растворителями являются вода, низшие спирты или их смеси. Соединение формулы II, где -X представляет собой -CO-CH3 или -CHO, получают известным способом, например взаимодействием соответствующего формилбензолсульфонилхлрида или ацетилбензолсульфонилхлорида с соответствующим гетероциклическим амином в присутствии основания, например в избытке пиридина или гетероциклического амина.

Когда X и Y в формулах II и III представляют собой соответственно -CH2COz2 и H-, взаимодействие осуществляется известным способом в условиях реакции Фриделя-Крафтса, в присутствии кислоты Льюиса, предпочтительно хлористого алюминия в инертном растворителе, таком как например хлорированный углеводород. Соединение II, где X представляет собой -CH2COz2, получают известным способом, например взаимодействием соответствующего алкоксикарбонилбензолсульфонилхлорида с соответствующим гетероциклическим амином в присутствии основания, например в избытке пиридина или гетероциклического амина, после чего промежуточный амин гидролизуется в соответствующую карбоновую кислоту, а кислота галогенируется известным способом, например взаимодействием с тионилхлоридом или галогенидом фосфора.

Другой способ включает взаимодействие вещества формулы IV с веществом формулы V (R1, R2, R3)-Гет'-NRH ClSO2-Ph1-A-C6H2-R4 (COOR5)(OR6), в которых Гет', R1, R2, R3, R4 и R5 имеют те же значения, что указаны выше, и R6 является низшим ацилом, предпочтительно ацетилом или остатком алифатической или ароматической сульфоновой кислоты, предпочтительно метилсульфонилом или паратолуолсульфонилом; в присутствии растворителя и основного конденсирующего агента, причем основным конденсирующим агентом может быть вещество IV в избытке или предпочтительно органическое основание, например пиридин, после чего образовавшееся промежуточное соединение подвергают гидролизу, катализируемому основанием, предпочтительно, взаимодействием с гидроксидом металла в воде. Упомянутое выше вещество формулы V получается известным способом, взаимодействием соответствующей сульфоновой кислоты или сульфоната щелочного металла с соответствующим хлорирующим агентом, предпочтительно хлористым тионилом в присутствии N,N-диметилформамида. Сульфоновая кислота получается известным способом, в соответствии с одним из указанных выше общих катодов предпочтительно взаимодействием соответствующего этинил- или этиниларильного соединения с арилиодидом или арилбромидом. Третий способ получения вещества в соответствии с изобретением состоит в превращении мостика A в веществе изобретения или его промежуточном веществе, имеющем формулу IV (ниже) в другой мостик известным способом, не обязательно с последующим превращением промежуточного соединения в конечный продукт.

Один пример такого способа включает добавление воды к соединению формулы VI (R1, R2, R3)-Гет'-NR-SO2-Ph1- A-C6H2-R4(COOR7)(OR8) где R, R1, R2, R3, Гет', Ph1, R4 имеют те же самые значения, что указаны выше, R7 представляет собой атом водорода или R5, где R5, такой, как указано выше, R8 представляет собой атом водорода или R6, где R6, такой, как указано выше, и -A- является группой -CC-. Образовавшееся вещество имеет формулу VI, где A= -CH2CO-. Присоединение воды по тройной связи происходит в присутствии минеральной кислоты или сильной органической кислоты, предпочтительно муравьиной кислоты, не обязательно в присутствии солей металлов, например ртути или палладия, с последующим щелочным гидролизом, когда R7 и/или R8 не являются атомами водорода. Другой способ состоит в соответствии вещества формулы VI, где R, R1, R2, R3, Гет', Ph1, R4, R7 и R8 - такие, как указано выше, и -A- является группой -CH2CO-, в соответствующее вещество, в котором -A- представляет собой группу -CH2CHOH-, с последующим превращением этого вещества в присутствии минеральной кислоты, для того, чтобы удалить воду и получить вещество, где -A- является группой -CH=CH-, с последующим щелочным гидролизом, когда R7 и/или R8 не являются атомами водорода.

Третий способ состоит в восстановлении вещества формулы VI, где R, R1, R2, R3, Гет', Ph1, R4, R7 и R8 - такие, как указано выше, и -A- является группой -CC- или -CH=CH- в соответствующее вещество, в котором -A- представляет собой группу -CH2-CH2-, каталитическим гидрированием известным образом, с последующим щелочным гидролизом, когда R7 и/или R8 не являются атомами водорода. Когда вещество по изобретению является солью, то его получают, например, сначала производя соответствующую кислоту, и затем кислота взаимодействует с соответствующим солеобразующим агентом, например, в виде гидроксида металла или органического амина, в присутствии растворителя, предпочтительно воды или смеси воды и одного или нескольких органических растворителей, или по выбору, только в присутствии органического растворителя. Когда соль трудно растворяется в используемом растворителе, то предпочтительно ей дают кристаллизоваться из этого растворителя, и ее выделяют путем фильтрации или другого подобного процесса. Когда эта труднорастворимая соль является солью щелочного металла, предпочтительно натрия или калия, то окончательный гидролиз, применяемый для удаления любых защищающих групп, может быть проведен таким образом, что реакционная смесь будет нейтрализована и желаемая соль закристаллизуется непосредственно из смеси. Если соль легко растворяется в используемом растворителе, то предпочтительно ее получают взаимодействием эквимолекулярных количеств реагентов, после чего растворитель удаляют выпариванием.

В некоторых случаях возможно образование четкого сольвата соединения с растворителем. Такие сольваты, которые содержат определенное количество растворителя, также охватываются этим изобретением, когда используемые растворители являются фармацевтически приемлемыми, такими как например, вода, ацетон и этиловый спирт. Такие сольваты получаются в результате кристаллизации из указанного растворителя, не обязательно в смеси с другими растворителями. Кристаллизация не обязательно может быть осуществлена подкислением растворимой соли вещества в присутствии растворителя, образующего сольват.

Это изобретение также включает фармацевтические композиции, которые включают вещество формулы I, предназначенное особенно для перорального использования, не обязательно в сочетании с органическим или неорганическим инертным носителем, пригодным для орального проглатывания, и/или с другими традиционными добавками. Фармацевтическая композиция может находиться, например, в виде таблеток, драже, капсул и др., не обязательно с энтерическим покрытием, или растворов и суспензий, содержащих вещества изобретения. Фармацевтическая композиция может быть получена известным образом специалистом, компетентным в этой области, посредством смешивания вещества формулы I с желаемым материалом носителя и/или дополнительными добавками и превращения этой смеси в желаемую медикаментозную форму в соответствии с указанным ниже. Растворы и суспензии готовятся известным образом с помощью фармацевтически пригодных добавок. Дозировка приспосабливается к требованиям и пожеланиям в конкретных ситуациях, хотя в качестве общего предписания могут быть упомянуты дозировки 50 - 2000 мг/сутки в случае взрослых пациентов.

Идентификация всех конечных продуктов была подтверждена спектрами ЯМР, а их чистота - методами тонкослойной хроматографии (ТСХ) или жидкостной хроматографии. ЯМР-спектры протонов (ПМР) были записаны при частоте 500 МГц на ЯМР-спектрометре с использованием диметилсульфоксида в качестве растворителя, если не указан другой. Химические сдвиги в спектре ЯМР даны в миллионных долях (м.д.).

Пример 1. 2-Гидрокси-5-((4-((пиридиниламино)сульфонил)фенил) этинил)бензойная кислота.

Пример 1a. Метиловый эфир 5-(триметилсилил)этинил)-2-гидроксибензойной кислоты.

К раствору 275 г метилового эфира 2-гидрокси-5-иодобензойной кислоты (0,92 моль) в осушенном триэтиламине (2000 мл) добавляют 3 г дихлорбис(трифенилфосфин)палладия (0,04 моль) и 1,6 г (0,008 моль) иодида меди (I). Смесь продувают азотом от воздуха. Из шприца добавляют 100 г триметилсилиацетилена, и реакционную смесь нагревают до 50oC. Спустя 30 мин образуется объемистый осадок гидроиодида аммония и через 2 ч по данным ТСХ реакция завершается. Смесь фильтруют, и фильтрат выпаривают в вакууме. Остаток очищают методом сухой флэш-хроматографии на силикагеле, используя толуол в качестве элюента. Выход 211 г, 92%.

Пример 1b. Метиловый эфир 5-этинил-2-гидроксибензойной кислоты.

Смесь 100 г метилового эфира 5-((триметилсилил)этинил))- 2-гидроксибензойной кислоты (0,57 моль) и 150 г дигидрата фтористого калия (0,57 моль) и 600 мл диметилформамида перемешивают 4 ч при комнатной температуре. Раствор экстрагируют эфиром (3 раза по 400 мл) и объединенные эфирные экстракты промывают 1-молярной соляной кислотой (2 раза по 200 мл) и водой (2 раза по 100 мл). Эфирный слой сушат сульфатом натрия и выпаривают досуха. Выход 66,5 г (93%).

Пример 1c. 4-иодо-N-(2-пиридинил)бензолсульфонамид.

4-иодо-бензолсульфонилхлорид (52,3 г; 0,17 моль) растворяют в 300 мл дихлорметана и добавляют 65 г (0,69 моль) 2-аминоопиридина. Раствор перемешивают при комнатной температуре 3 суток, промывают 2-молярный серной кислотой (2 раза по 200 мл) и водой (100 мл), сушат сульфатом натрия и выпаривают досуха. Выход 46,9 г (76%).

Пример 1d. Метиловый эфир 2-гидрокси-5-((4-((пиридиниламино) сульфонил)фенил)этинил)бензойной кислоты.

4-иодо-N-(2-пиридинил)бензолсульфонамид (35 г, 97 ммоль) растворяют в смеси триэтиламина и тетрагидрофурана (750 + 750 мл). Смесь продувают азотом от воздуха и добавляют 1,2 г дихлорбис(трифенилфосфин)палладия (1,7 ммоль) и 0,6 г (3,4 ммоль) иодида меди (I). Окончательно добавляют 23 г метилового эфира 4-этинил-2-гидроксибензойной кислоты (130 ммоль). Смесь нагревают до 60oC в течение 4 ч и выпаривают досуха. Остаток растворяют в 1000 мл хлороформа и промывают водой (3 раза по 200 мл) и сушат сульфатом магния. Растворитель выпаривают в вакууме. Выход 31 г (77%). Этот продукт может быть очищен методом флэш-хроматография на силикагеле, используя хлороформ в качестве элюента.

Пример 1e. 2-Гидрокси-5-((4-((пиридиниламино)сульфонил)фенил) этинил)бензойная кислота.

Сложный эфир из примера 1d (23,7 г, 58 ммоль) растворяют в 1-молярном гидроксиде натрия (190 мл) и кипятят с обратным холодильником 6 ч. Охлажденный раствор подкисляют избытком 6-молярной соляной кислоты. Образовавшийся осадок выдерживают в течение 2 ч, фильтруют и промывают (3 раза по 200 мл) водой. Белый продукт сушат при 60oC в вакууме. Выход 21,7 г (95%).

Спектр ПМР: Спин система A: 7,00 (дублет), 7,66 (дублеты), 7,95 (дублет) (=салицилатное кольцо) Спин система B: 7,66 (дублет, 2H), 7,87 (дублет, 2H) (=центральное бензольное кольцо) Спин система C: 7,18 (дублет), 7,73 (ддд), 6,84 (дублеты), 7,96 (дублеты) (=пиридиновое кольцо) Пример 2. 2-Гидрокси-5-((4-(3-метил-2-пиридиниламино)сульфонил)фенил) этинил)бензойная кислота.

Пример 2a. 4-Иодо-N-(3-метил-2-пиридинил)бензолсульфонамид.

Это соединение было приготовлено существенно так, как соответствующее соединение в примере 1c. Выход 76% Пример 2b. Метиловый эфир 2-гидрокси-5((4-((3-метил-2-пиридиниламино) сульфонил)фенил)этинил)бензойной кислоты.

Это соединение было приготовлено существенно так, как соответствующее соединение в Примере 1d. Выход 76%.

Пример 2c. 2-Гидрокси-5-((4-((3-метил-2-пиридиниламино)сульфонил)фенил) этинил)бензойная кислота.

Это соединение было приготовлено существенно так, как соответствующее соединение в примере 1e. Выход 24,7 г (85%).

Спектр ПМР: Спин система A: 7,04 (дублет), 7,70 (дублеты), 8,00 (дублет) (=салицилатное кольцо) Спин система B: 7,70 (дублет, 2H), 7,96 (дублет, 2H) (=центральное бензольное кольцо) Спин система C: 7,66 (широкий дублет), 6,83 (шир. синглет), 7,84 (шир. синглет) (=пиридиновое кольцо) Спин система D: 2,15 (синглет) (=метильная группа) Уширение сигналов в пиридиновом кольце типично для 3-метилзамещенных производных.

Пример 3. 2-Гидрокси-5-(2-(4-((2-пиридиниламино)сульфонил)фенил) этинил)бензойная кислота.

Пример 3a. Метиловый эфир 5-этинил-2-гидроксибензойной кислоты.

Полученный в соответствии с примером 1b метиловый эфир 5-этинил-2-гидроксибензойной кислоты (8 г, 45,4 ммоль) растворяют в смеси 200 мл диэтилового эфира и 200 мл петролейного эфира в колбе для гидрирования. Добавляют 1,7 мл хинолина и 200 мг катализатора Диндлара - палладий на карбонате кальция, отравленный свинцом, - и колбу соединяют с устройством для гидрирования при атмосферном давлении. Смесь перемешивают 2 ч при комнатной температуре, при этом поглощается рассчитанное количество водорода. Катализатор отфильтровывают и раствор выпаривают досуха. Продукт очищают методом флэш-хроматографии на силикагеле, используя толуол в качестве элюента. Получают почти количественный выход продукта.

Пример 3b. Метиловый эфир 2-гидрокси-5-(2-(4-((2-пиридиниламино) сульфонил)фенил)этинил)бензойной кислоты.

4-Иодо-N-(2-пиридинил)бензолсульфонамид (25 г, 69 ммоль), полученный по примеру 1c, и метиловый эфир 5-этинил-2-гидроксибензойной кислоты (13,5 г, 76 ммоль) растворяют в смеси триэтиламина и тетрагидрофурана (150 + 800 мл). Смесь нагревают до 80oC в течение 18 ч. Добавляют малыми порциями (суммарно 0,5 г) ацетат палладия (П) в течение всего времени реакции. Образовавшийся осадок гидроиодида отфильтровывают, и фильтрат выпаривают досуха. Остаток растворяют в 500 мл хлороформа и очищают методом флэш-хроматографии на силикагеле, используя хлороформ в качестве элюента. Растворитель выпаривают в вакууме, и остаток растворяют в минимально возможном количестве тетрагидрофурана. Продукт осаждают добавлением диэтилового эфира. Выход 13,5 г (47%).

Пример 3c. 2-Гидрокси-5-(2-(4-((2-пиридиниламино)сульфонил) фенил)этинил)бензойная кислота.

Метиловый эфир 2-гидрокси-5-(2-(4-((2-пиридиниламино)сульфонил) фенил)этинил)бензойной кислоты (12 г, 29 ммоль) растворяют в 1-молярном гидроксиде калия (120 мл), и раствор кипятят с обратным холодильником 7 ч. Охлажденный раствор подкисляют избытком 1-молярной соляной кислоты. Образовавшийся осадок отфильтровывают и промывают (3 раза по 200 мл) водой. Продукт повторно растворяют в небольшом количестве 1-молярного гидроксида натрия. Добавляют воду и диоксан (по 500 мл) и раствор нагревают до 100oC. Этот раствор подкисляют избытком 1-молярной соляной кислоты, и продукт осаждается при охлаждении. Выход 9 г (75%).

Спектр ПМР: Спин система A: 7,02 (дублет), 7,84 (дублеты), 8,04 (дублет) (=салицилатное кольцо) Спин система B: 7,73 (дублет, 2H), 7,88 (=центральное бензольное кольцо) Спин система C: 7,22 (дублет), 7,74 (м), 6,89 (дублеты), 8,04 (м) (== пиридиновое кольцо) Спин система D: 7,19 (дублет), 7,38 (д), (=этенодиильный мостик) Пример 4. 2-Гидрокси-5-(2-(4-((3-метил-2-пиридиниламино) сульфонил)фенил)этинил)бензойная кислота.

Пример 4a. Метиловый эфир 2-гидрокси-5-(2-(4-((3-пиридиндамино) сульфонил)фенил)этинил)бензойной кислоты.

Это вещество было приготовлено по методике примера 3 из 4-иодо-N-(3-метил-2-пиридинил)бензолсульфонамида, полученного по методике примера 2a, и метилового эфира 5-этинил-2-гидроксибензойной кислоты, приготовленного, как в примере 3a.

Выход 52%.

Пример 4b. 2-Гидрокси-5-(2-(4-((3-метил-2-пиридиниламино) сульфонил)фенил)этинил)бензойная кислота.

Это соединение было приготовлено, как в примере 3. Выход 82%.

Спектр ПМР: Спин система A: 7,02 (д), 7,85 (дублеты), 8,04 (д), (= салицилатное кольцо) Спин система B: 7,74 (д, 2H), 7,92 (д, 2H) (=центральное бензольное кольцо) Спин система C: 7,63 (широкий дублет), 6,81 (шир.), 7,85 (шир.), (= пиридиновое кольцо) Спин система D: 7,21 (д), 7,39 (д), (=этенодиильный мостик) Спин система E: 2,15 (синглет) (=метильная группа) Уширение сигналов в пиридиновом кольце типично для 3-метил-замещенных производных.

Пример 5. Изобутиловый эфир 2-гидрокси-5-(2-(4-((2- пиридиниламино)сульфонил)фенил)этинил)бензойной кислоты.

Пример 5a. Изобутиловый эфир 2-гидрокси-5-иодбензойной кислоты.

2-Гидрокси-5-иодбензойную кислоту (477 г, 1,8 моль), 225 г изобутанола, 20 мл концентрированной серной кислоты в 2 л толуола кипятят с обратным холодильником в течение 6 ч, используя водный сепаратор. Раствор охлаждают и промывают водой. Этот раствор обрабатывают обесцвечивающим активным углем и выпаривают толуол. Остаток перекристаллизовывают из метанола. Выход 376 г.

Пример 5b. Изобутиловый эфир 5-этинил-2-гидроксибензойной кислоты.

Изобутиловый эфир 2-гидрокси-5-иодбензойной кислоты (16 г, 0,05 моль), 13,9 г трибутиламина (75 ммоль) и 0,11 г ацетата палладия (II) (0,5 ммоль) растворяют в 100 мл диметилацетамида, и раствор загружают в реактор под давлением, емкостью 250 мл.

Воздух вытесняется посредством напуска аргона под давлением 10 бар с последующим сбросом до атмосферного давления. Эту процедуру повторяют дважды. Температуру повышают до 90oC. Напускают этилен под давлением 13 бар. После перемешивания в течение 5 мин газ сбрасывается в атмосферу и давление этилена снова повышают до 13 бар. Температуру увеличивают до 110oC в течение 30 мин при интенсивном перемешивании и непрерывном введении этилена, для того чтобы поддерживать давление постоянным при 13 бар. Спустя 1,5 ч температуру снижают до 20oC, и этилен удаляют с помощью напуска аргона.

Растворитель выпаривают при 70oC. Добавляют 150 мл воды. Доводят pH смеси до примерно 5 с помощью соляной кислоты, и раствор экстрагируют 2 раза толуолом (по 50 мл). После повторной экстракции разбавленным раствором бикарбоната натрия (50 мл) объединенные толуольные экстракты выпаривают, получая в остатке продукт в виде масла. Перегонка при 105oC и давлении 0,5 мм рт. ст. дает 15,4 г (70%) хроматографически чистого материала. При перегонке материал стабилизируют от полимеризации добавлением 10 мг гидрохинона.

Пример 5c. Изобутиловый эфир-2-гидрокси-5-(2-(4-((2- пиридиноламино)сульфонил)фенил)этинил)бензойной кислоты.

0,15 г Ацетата палладия (II) (0,67 ммоль) добавляют к перемешиваемому раствору изобутилового эфира 5-этинил-2- гидроксибензойной кислоты (6,6 г, 30 ммоль) и 10,8 г 4-иодо-N-2- пиридинилбензолсульфонамида (30 ммоль) в 40 мл диметилацетамида и 10 мл трибутиламина (42 ммоль) при 95oC. Спустя 100 мин раствор фильтруют и выпаривают при 50-60oC (температура бани) до появления твердого материала. Смесь разбавляют 0,5 л изопропанола и замораживают в холодильнике. Продукт отфильтровывают, получая 71 г вещества (52%).

Спектр ПМР: Спин система A: 7,0 (д), 7,84 (дублеты), 7,93 (д) (=салицилатное кольцо) Спин системы B: 7,70 (д, 2H), 8,84 (д, 2H) (=центральное бензольное кольцо) Спин система C: 7,18 (д), 7,69 (дублеты), 6,85 (дублеты), 8,00 (дублеты) (=пиридиновое кольцо) Спин система D: 7,12 (д), 7,36 (д), (=этенодиильный мостик) Спин системы E: 1,0 (д, 6H), 2,1 (м, 1H), 4,1 (д, 2H) (=изобутильная группа) Пример 6. 2-Гидрокси-5-(2-(4-((2-пиридиниламино)сульфонил)- фенил)этинил)бензойная кислота.

Пример 6a. Изопропиловый эфир 2-гидрокси-5-иодбензойной кислоты.

2-Гидрокси-5-иодбензойную кислоты (184 г. 0,7 моль), 50 мл изопропанола, 5 мл кон