Гуминовый концентрат, способ его получения, устройство для электрохимического получения гуминового концентрата (варианты). способ очистки воды от примесей, способ обезвоживания вязкотекучих сред, способ детоксикации органических соединений, способ утилизации осадков сточных вод, способ создания почв из естественных и искусственных грунтов и восстановления плодородия деградированных почв, способ компостирования органических отходов, способ утилизации осадков водопроводных вод

Реферат

 

Гуминовый концентрат из природных гумитов и каустобиолитов угольного ряда содержит гидратированные гуминовые кислоты, соли гуминовых кислот и минеральные компоненты исходных гумитов и каустобиолитов угольного ряда, химически связанные с содержащимися гуминовыми кислотами. Способ получения названного гуминового концентрата включает осуществление электролиза водных растворов солей гуминовых кислот, экстрагированных щелочным реагентом из природных гумитов и каустобиолитов угольного ряда, проводимого в единой зоне между анодом и катодом при установлении на аноде электрического потенциала, достаточного для разряда анионов гуминовых кислот, но более низкого, чем потенциал разряда гидроксильных ионов, с образованием на поверхности анода целевого гуминового концентрата и непрерывное удаление названного концентрата из зоны электролиза и с поверхности анода. Устройство для осуществления указанного способа получения названного выше гуминового концентрата включает электролизную ванну-катод в виде горизонтально установленного цилиндрического желоба с торцевыми стенками, имеющего подводящие и отводящие патрубки, и анод, выполненный либо в виде барабана, установленного коаксиально с зазором в указанном желобе, либо выполненный в виде диска, установленного в указанном желобе с возможностью вращения относительно его продольной оси, либо выполненный в виде барабана, установленного в названном желобе и натянутого на названный барабан бесконечного горизонтального транспортера. Устройство имеет также приспособление для удаления целевого продукта с поверхности анода. Способ очистки воды от примесей, способ обезвоживания вязкотекучих сред, способ детоксикации органических соединений, способ утилизации осадков сточных вод, способ создания почв из естественных и искусственных грунтов и восстановления свойств и плодородия деградированных почв, способ компостирования органических отходов, способ утилизации осадков водопроводных вод осуществляют при использовании указанного гуминового концентрата. Достигается повышение эффективности выделения гуминового концентрата, а также охраны и восстановления объектов окружающей среды. 12 с. и 20 з.п. ф-лы, 25 табл. 6 ил.

Изобретение относится к области охраны и восстановления окружающей среды, более точно к технологиям, обеспечивающим восстановление загрязненных техногенными продуктами объектов окружающей среды, а точнее заявляемое изобретение касается гуминового концентрата, способа его получения, устройства для электрохимического получения гуминового концентрата, способа очистки вод от неорганических, органических и микробиологических примесей, способа обезвоживания вязкотекучих сред, способа детоксикации органических соединений, способа утилизации осадков сточных вод, способа создания почв из естественных и искусственных грунтов и восстановления свойств и плодородия деградированных почв, способ компостирования органических отходов, способ утилизации осадков водопроводных вод.

Заявляемое изобретение найдет применение в сельском хозяйстве, в коммунальном хозяйстве больших городов, на предприятиях, деятельности которых сопутствует образование загрязняющих окружающую среду органических, минеральных и/или микробиологических отходов.

Гуминовые вещества чрезвычайно широко распространены в природе и составляют основную, а иногда преобладающую часть каустобиолитов угольного ряда (горючие сланцы, ископаемые угли, торф) и природных гумитов (почв, торфа, бурого и окисленного каменного угля, а также речных, озерных и морских донных отложений).

Важнейшую часть гуминовых веществ составляют гуминовые кислоты.

Гуминовые кислоты - высокомолекулярные органические соединения с молекулярным весом от 5 до 100 КД. Поскольку каждая их молекула содержит по нескольку десятков кислых групп, они относятся к многоосновным кислотам. Для выделения их из природных субстанций гумитов и/или каустобиолитов угольного ряда, где они находятся в водонерастворимом состоянии, в виде свободных кислот или их водонерастворимых солей, используется щелочная водная экстракция, как правило, при избытке щелочного реагента. Для этого на практике используются гидроокись калия, натрия, аммония или органические основания, с которыми гуминовые кислоты образуют водорастворимые соли. В результате получается экстракт с высоким значением pH, содержащий соли гуминовых кислот и избыток щелочи. При этом именно за счет значительного отрицательного заряда анионов гуминовых кислот, приводящего к взаимному отталкиванию макромолекул и их гидратации, обеспечивается хорошая растворимость и высокая дисперсность таких систем. Однако сфера применения щелочных экстрактов гуминовых кислот весьма ограничена, так как высокие значения pH делают их, при использовании в значительных количествах, токсичными для микроорганизмов и растений, а высокий отрицательный заряд ухудшает их сорбционные, флокулирующие и структурообразующие свойства.

В то же время свободные гуминовые кислоты, образующиеся в водных системах при pH ниже 3, вследствие того, что их макромолекулы не несут заметного отрицательного заряда, агрегируются, подвергаются дегидратации и выпадают из водных систем в виде хлопьевидных нерастворимых осадков. При этом удельная поверхность их контакта с жидкой фазой и, как следствие, сорбционная, агрегирующая, реакционная способность резко снижаются. Поэтому наибольший практический интерес представляют переходные состояния молекул гуминовых кислот, когда они частично диссоциированны. pH таких систем колеблется в интервале от 3,5 до 8.

Комплекс ценных свойств гуминовых кислот и их производных предопределяет их использование в сельском хозяйстве, животноводстве, медицине и для решения многих экологических задач.

Известен способ получения гуматов, включающий дробление и измельчение исходных природных гумитов (торфа или угля), обработку экстрагентом (раствором щелочи или органического основания) при механическом перемешивании, разделение твердой фазы (осадка) от жидкой фазы (гумата) и сушку гумата.

(Гуминовые удобрения, теория и практика их применения. Государственное издательство сельскохозяйственной литературы, Киев, 1962, ч. 2, с. 528).

Недостатки способа заключаются в низкой интенсивности и большой длительности процесса, в результате чего из сырья преимущественно извлекаются фульвокислоты и низкомолекулярные фракции гуминовых кислот. При этом происходит набухание измельченного сырья с образованием гомогенной массы, чрезвычайно плохо разделяющейся на твердую (отход) и жидкую (полезный продукт) фазы.

Недостатки данного способа устранены в другом способе, включающем интенсивную обработку исходного сырья низкочастотными акустическими колебаниями и кавитирующими вибрационными струями, что резко увеличивает извлечение и выход гуминовых кислот из исходного сырья за счет его доокисления и повышает биологическую активность получаемого гумата (RU, A, 2042422 B 01 J 8/16, 1991 г).

Однако эти способы пригодны только для получения водорастворимых солей гуминовых кислот.

В процессе экстракционного извлечения в раствор гуматов переходит большое количество высокодисперсных частиц исходного сырья, глинистых минералов и других растворимых и легко диспергируемых примесей. Так, зольность гуматов составляет 26-70%. Предварительной обработкой исходного сырья, например угля, минеральными кислотами, например серной кислотой, добиваются некоторой деминерализации, что позволяет снизить зольность гуматов до 12-20%. Однако этот прием значительно удорожает и усложняет производство гуматов. (Кроме того, в получаемых экстрактах обычно присутствуют остатки непрореагировавшей щелочи).

Щелочная реакция растворов гуматов и наличие в них остатков непрореагировавшей щелочи ограничивает применение гуматов областью регуляторов роста и развития растений и антидотов, где гуматы применяются в низких концентрациях (0,005-0,1%). В качестве веществ для детоксикации почв, земель, грунтов, вод, промышленных и бытовых отходов гуматы не применимы. Кроме того, из-за большого расхода щелочи стоимость гуматов сравнительно высока.

Известны способы выделения гуминовых кислот из растворов гуматов путем их подкисления до pH ниже 3. Так, например, известен способ выделения гуминовых кислот из растворов гуматов, включающий их осаждение кислотой, фильтрацию и сушку. (SU, A, 169112, C 07 C 63/33, 1966).

При подкислении раствора гуматов происходит замена катионов щелочных металлов или аммония на ионы водорода, и водонерастворимые свободные гуминовые кислоты выпадают в осадок. При этом происходит необратимое коагулирование коллоидов и полимеризация молекул гуминовых кислот, в результате чего резко сокращается площадь поверхности, блокируются реакционноспособные центры и падает их физико-химическая и биологическая активность. Вместе с гуминовыми кислотами в осадок выпадает большое количество минеральных примесей.

С целью снижения зольности выделенные гуминовые кислоты подвергают многократной обработке щелочью, фильтрованию, переосаждению и промывке.

Известный способ обладает низкой эффективностью, малой производительностью, высоким расходом реагентов (щелочи и кислоты). К недостаткам относятся также технологические сложности разделения осадка (гуминовых кислот) и жидкой фазы (щелочного раствора), большой расход воды на промывку осажденных гуминовых кислот и высокие энергетические затраты на их последующую сушку.

Кроме того, в процессе многократной обработки гуминовые кислоты частично теряют свою нативную (природную) структуру и утрачивают многие ценные свойства.

Известен также способ получения гуминовых кислот, включающий обработку раствора солей гуминовых кислот постоянным электрическим током в диафрагменном электролизере с ионообменной катионитовой мембраной (SU, A, 181131, C 07 C 63/33).

Данный способ осуществляется в устройстве, содержащем электролизную ванну, покрытые платиной анод и катод, катионитовую мембрану, разделяющую электролизную ванну на анодную и катодную зоны, источник постоянного тока, патрубки для подвода и отвода электролита.

Согласно указанному способу щелочной экстракт, содержащий раствор гумата натрия и сульфата натрия помещают в анодное, отделенное ионообменной катионитовой мембраной пространство двухкамерного электролизера. В катодное пространство помещают раствор сульфата натрия. При наложении достаточной разности потенциалов на электродах протекает процесс электролиза воды. При этом анодное пространство подкисляется, катодное - подщелачивается. Как только pH анодного пространства становится ниже трех, из раствора начинает выпадать свободная водонерастворимая гуминовая кислота, которая отделяется затем от аналита в других аппаратах. Одновременно в катодном пространстве образуется раствор натриевой щелочи, возвращаемый на стадию щелочной экстракции исходного продукта, так как катионитовая мембрана пропускает в катодное пространство только катионы натрия и задерживает анионы гуминовой кислоты. Процесс можно осуществлять только в двух или более камерном электролизере, поскольку необходимо поддерживать кислую среду в анодном пространстве, а в катодном пространстве в процессе электролиза накапливается щелочной раствор гидроокиси натрия. В едином межэлектродном пространстве при указанных режимах в электролите непрерывно протекает процесс взаимодействия щелочи с гуминовой кислотой с образованием исходного гумата натрия, то есть суммарно происходит лишь электролиз воды без образования конечного продукта.

К недостаткам способа следует отнести высокое омическое сопротивление мембраны, приводящее к большим энергопотерям и разогреву электролита. При этом имеет место значительная удельная энергоемкость процесса за счет непрерывного, интенсивного протекания реакции электролиза. Необходимость относительно частой замены мембраны усложняет конструкцию устройства, снижает надежность работы электролизера. Для осуществления способа необходимы специальные аппараты для отделения образовавшейся гуминовой кислоты от аналита. Способ позволяет получать непосредственно только один продукт - водонерастворимые гуминовые кислоты. При этом получаемый продукт - выпавшие в осадок гуминовые кислоты - составляет только часть объема аналита, что делает необходимым их последующее выделение из него. Это является самостоятельной сложной проблемой. Более того, получаемые таким образом водонерастворимые гуминовые кислоты при очень высокой стоимости имеют низкую физико-химическую активность из-за малой доступности их реакционноспособных центров, что не позволяет их использовать для решения многих сельскохозяйственных, экологических и промышленных задач.

Именно из-за отсутствия эффективных технологий получения гуминовых кислот с высокой физико-химической и биологической активностью многие экологические и сельскохозяйственные задачи решаются путем применения не собственно гуминовых кислот, а содержащих их различных природных материалов - гумусированных почв, торфа, донных отложений (например, сапропеля), бурого угля (например, измельченного лигнита и леонардита). Эти материалы применяются именно из-за наличия в их составе гуминовых веществ, оказывающих комплекс положительных действий на почвы, грунты, рекультивируемые земли, свалки, отходы. Поскольку гуминовых кислот в таких материалах сравнительно немного и они находятся в сравнительно малоактивном состоянии, такие материалы необходимо применять в больших количествах. При этом происходит загрязнение обрабатываемых объектов балластными веществами и вредными компонентами, что значительно снижает конечный положительный эффект.

Известны различные способы очистки поверхностных, подземных и сточных вод, а также технологических растворов от минеральных, органических и микробиологических загрязнений.

Так, известен способ биологической очистки вод от органических примесей, включающий минерализацию органических примесей аэробными микроорганизмами при интенсивном насыщении воды кислородом (например, Мочалов И.П., Родзиллер И. Д., Жук Е.Г. Очистка и обеззараживание сточных вод малых населенных мест. Л., Стройиздат, 1993, с. 71-73).

Данный способ, широко применяемый в практике очистки сточных вод, имеет много недостатков, важнейшими из которых являются сравнительно низкая удельная производительность и эффективность из-за малой скорости биохимического окисления органических веществ сточной жидкости, сравнительно высокая энергоемкость из-за больших затрат энергии на аэрацию воды, сложность организации и ведения процесса очистки воды из-за чувствительности активного ила к составу загрязнений; а также образование большого количества осадков в виде активного ила, чрезвычайно трудно поддающегося обезвоживанию и дальнейшей утилизации. Кроме того, данный способ не применим для очистки воды поверхностных водоемов в случае их залпового или систематического загрязнения, так как практически невозможно произвести наращивание активного ила, особенно в зимнее время, и осуществить взвешивание активного ила по всему объему воды путем аэрации.

Известен также способ очистки вод от неорганических, органических и микробиологических примесей, включающий введение в воду, бактерицидных и иных реагентов, отстаивание и удаление образовавшегося осадка (например, там же. с. 113, 121, 124).

В качестве реагентов используют минеральные коагулянты (сернокислый алюминий, сернокислое или хлорное железо и т.д.), органические флокулянты (полиакриламид и производные на его основе), различные комбинации коагулянтов и флокулянтов, бактерицидные вещества (хлор, озон и др.).

К недостаткам этого способа относятся сравнительно большая стоимость коагулянтов и флокулянтов, бактерицидных веществ, зависимость эффективности процесса очистки воды от состава и концентрации загрязняющих примесей и температуры, образование большого количества осадков трудно поддающихся обезвоживанию и дальнейшей утилизации. Серьезным недостатком известного способа является также невозможность использования его для очистки вод поверхностных водоемов из-за токсичности реагентов и возможности загрязнения ими воды водоемов.

Результатом деятельности предприятий, производств являются вязкотекучие суспензии, например осадки городских сточных вод, буровые растворы, которые подлежат транспортировке от места их образования и скоплению на специальных площадях, где их стараются максимально возможно обезвредить и захоронить с тем, чтобы они не являлись причиной загрязнения окружающей среды.

Однако перевозка текучих суспензий является технологически сложной задачей, при том, что исходные суспензии, подвергнутые обезвоживанию до приобретения ими сыпучих свойств, были бы более легко транспортабельны и подлежали бы более надежному захоронению.

Известен способ обезвоживания таких суспензий, заключающийся в фильтровании исходного продукта через специально созданные сложные в конструктивном отношении устройства, с последующим отводом фильтрата и таким образом частичным обезвоживанием исходного продукта (SU, A, 1212494).

Однако указанный способ не обеспечивает получения исходного продукта в сыпучем состоянии, и, кроме того, процесс фильтрования постоянно прерывается из-за того, что фильтрующая поверхность забивается частицами дисперсной фазы суспензии и отложениями солей. Кроме того, в процессе фильтрования происходит обрастание фильтрующей поверхности колониями микроорганизмов, которые закрепляются на ней и быстро растут.

Известен также способ обработки суспензий, включающий введение в суспензию реагентов-коагулянтов или флокулянтов (Гвоздев Б.С., Ксенофонтов. Очистка производственных сточных вод и утилизация осадков. Москва. Химия. 1988). В качестве коагулянтов применяют сернокислый алюминий, хлорное железо. В качестве флокулянтов применяют синтетические, преимущественно органические соединения на основе полиакриламида. Введение и перемешивание в суспензии реагентов приводит к укрупнению частиц дисперсной фазы суспензии, в результате чего их можно отделить от жидкой фазы, например, отстаиванием, фильтрованием, центрифугированием. Недостатки известного способа заключаются в сравнительной дороговизне коагулянтов и особенно флокулянтов, в необходимости применения специальных технических средств для разделения твердой и жидкой сред, а именно: отстойников, фильтров и центрифуг. Но главный недостаток заключается в получении продукта, влажность которого превышает предел текучести, в результате чего его транспортировка и дальнейшая переработка сильно затруднены.

Окружающая природная среда значительно разрушается из-за токсикации почв, грунтов, природных и сточных вод, из-за образования различного рода отходов, полигонов по захоронению бытовых и промышленных отходов, содержащих токсичные, канцерогенные и мутагенные органические соединения, а именно: углеводороды нефти и нефтепродуктов, полициклические ароматические углеводороды (антрацен, бензапирен, дибенз (a, h) антрацен и т.д.), полихлорированные ароматические углеводороды (полихлорбензофураны, полихлорбифенилы, диоксины и т.д.), пестициды, а также и другие химикаты органического происхождения.

Известно несколько групп способов детоксикации таких органических соединений. Так, известен способ детоксикации диоксинов путем их разложения в процессе фотолиза, протекающего как на солнечном свете, так и при облучении ультрафиолетовым светом. (Worthy W. Chem. Eng. News, 1983, 6 June, p. 51-56). Известен способ уничтожения отходов, содержащих диоксины, путем их сжигания при температуре выше 2220o. Chem. Eng. News, 1985, v. 63, N 102, p. 7).

Известен также способ детоксикации хлорорганических соединений путем их микробиологического разложения. (J. A. Bumpus, M. Tien, D.Wright et al., Science, 1985, v. 228, N 4706, p.1434 -1436; J.Dusheek, Science News, 1985, v.127, N 25, p. 391). Однако все эти способы характеризуются низкой эффективностью, высокой стоимостью и наличием отходов (в случае сжигания).

Известен способ устранения углеводородного загрязнения почв, включающий применение модифицированного алкилхлорсиланом высокодисперсного порошка двуокиси кремния с закрепленными на его поверхности органическими радикалами (SU, A, N 1289875).

Данный способ не обеспечивает эффективной детоксикации органических соединений, а его применение для устранения углеводородного загрязнения почв экономически не целесообразно из-за высокой стоимости модифицированного алкилхлорсилана. Кроме того, это вещество по отношению к почве является ксенобиотиком и ухудшает ее агрохимические свойства.

Известен способ детоксикации ядохимикатов, содержащихся в почве и растениях, включающий нанесение на объекты, содержащие ядохимикаты, веществ гумусовой природы, при этом в качестве веществ гумусовой природы применяют соли гуминовых кислот (SU, A, N 460037). Применяемый в данном способе гумат натрия при концентрации свыше 0,01% является фитотоксичным веществом и угнетает не только растения, но и почвенную микрофлору. Гумат натрия при концентрации в растворе 0,005-0,01% оказывает стимулирующее действие на рост и развитие растений. При этом эффект снижения содержания ядохимикатов в растениях обусловлен не столько их разложением, сколько снижением концентрации за счет большой массы растений.

Известный способ практически не применим для детоксикации почв и других объектов с высоким уровнем загрязнения персистентными органическими поллютантами, так как степень детоксикации чрезвычайно мала и экспериментально не подтверждается, находясь на уровне погрешности опыта. При этом весьма велика опасность засоления природных объектов.

Окружающая природная среда значительно разрушается также осадками городских сточных вод, образующимися на станциях аэрации, содержащими большое количество токсичных компонентов, в частности, соли тяжелых металлов, а также мутагенные, канцерогенные и иные вредные вещества. По этой причине разрабатываются методы по детоксикации и складированию осадков сточных вод с тем, чтобы максимально возможно исключить загрязнение окружающей среды.

Известен способ обработки осадков сточных вод с целью их обезвоживания, заключающийся в смешивании осадков сточных вод с известью, взятой в количестве 50-350% от массы сухого осадка, последующем уплотнении полученной массы до влажности 93-96%, а затем механическом обезвоживании до влажности 60-80%. Обезвоженный продукт используют в сельском хозяйстве для удобрения и подщелачивания кислых почв, а в случае его сжигания происходит регенерация извести, которую можно повторно использовать (SU, A, 468894).

Указанный способ не обеспечивает детоксикацию осадков сточных вод и приводит к загрязнению окружающей среды их токсичными компонентами.

Известен способ депонирования осадков сточных вод в золоотвалах и хвостохранилищах с последующей вспашкой мест депонирования (SU, A, 515482). Однако объемы образующихся осадков сточных вод значительно превышают объемы золоотвалов и хвостохранилищ, которые к тому же расположены в отдаленных горнодобывающих и перерабатывающих районах. Кроме того, указанная технология не обеспечивает детоксикации осадков сточных вод и приводит к загрязнению окружающей среды токсичными компонентами осадков сточных вод.

Известен способ утилизации осадков сточных вод, включающий их смешивание с торфом и минеральными компонентами и внесение в почву в качестве органоминерального удобрения (SU, A, 836005).

Известен также способ утилизации осадков сточных вод, заключающийся в их смешивании с каменноугольной золой в соотношении (20 : 1) - (1 : 9) и внесении в почву в качестве органоминерального удобрения (SU, A, 387920).

Смешивание осадков с торфом, другими органическими и неорганическими веществами не приводит к удалению или связыванию токсичных компонентов, в результате чего содержащиеся в осадках сточных вод ионы тяжелых металлов мигрируют в растения и грунтовые воды, отравляя тем самым продукцию растениеводства и загрязняя подземные воды. Кроме солей тяжелых металлов, в осадках сточных вод содержатся хлорорганические соединения, полициклические ароматические углеводороды, другие вредные мутагенные и канцерогенные вещества, и применение указанных способов не приводит к снижению их отрицательного действия на окружающую среду и человека.

При этом использование осадков сточных вод в качестве удобрений возможно в ограниченном количестве и периодически, то есть согласно нормам внесения, и в определенный период времени, в то время как их образование на станциях аэрации городов происходит непрерывно. Затраты на складирование и хранение удобрений из осадков, особенно в черте города или в пригородах с последующим выводом на достаточно удаленные поля, делают их применение в сельском хозяйстве экономически не выгодным.

Кроме того, при высыхании осадки сточных вод легко подвергаются ветровой эрозии, в результате происходит загрязнение воздушного бассейна пылью, обладающей сильным канцерогенным действием. По этим причинам применение осадков сточных вод в качестве удобрений запрещено.

Известно создание плодородной почвы (техногенной почвы) из естественных (песок, глина, супесь, суглинок, гравийно-песчаная смесь) и искусственных (отходы горнодобывающей и горноперерабатывающей промышленности, золошлаковые отходы, строительные грунты и т.п.) грунтов с целью восстановления почвенного покрова, рекультивации и озеленения строительных площадок, отвалов и свалок, участков пустынных земель и солончаков, а также восстановление агрофизических и агрохимических свойств и плодородия деградированных почв, в том числе почв влажного тропического и субтропического климатических поясов, почв теплиц и оранжерей.

Известны две основные группы способов создания почв на естественных и искусственных грунтах. Первая группа включает способы, основанные на внесении в грунты или на их поверхность не характерных для почв веществ, обладающих структурообразующими и влагозадерживающими свойствами. Вторая группа включает способы, основанные на внесении в грунты или на их поверхность естественных компонентов почвы или собственно плодородных почв.

Так, известен способ увеличения полевой влагоемкости песчаных почв и грунтов, включающий внесение гидрофобных частиц талька и кремнийорганических порошков (SU, A, 286375, A 01 B 79/00, 1969).

Недостаток известного способа заключается в том, что применение чужеродных для почв веществ не решает главной задачи, то есть создания плодородной почвы как сложной природной системы с набором определенных физико-химических, агрохимических, микробиологических и других свойств. Кроме того, такой способ увеличения влагоемкости грунтов экономически не приемлем из-за большого расхода достаточно дорогих веществ.

Известен способ образования плодородного слоя почвы, включающий нанесение на слой грунта сапропелевого ила с гумусовыми частицами (SU, A, 934943, A 01 B 79/00, 1980).

Известен способ рекультивации земель, включающий нанесение на грунт гумусированного слоя почвы (SU, A, 1391521, A 01 B 79/00, 1986).

Как известно, именно гумус определяет основные свойства и плодородие почв. Поэтому внесение в грунты или на их поверхность гумусосодержащих материалов - сапропелевого ила, торфа или гумусированной почвы является естественным способом создания плодородного слоя почвы. Однако стоимость добычи и транспортировки сапропеля или торфа обходится очень дорого, а гумусированные почвы дефицитны, особенно в районах, где необходимо создание плодородной почвы, то есть в местах строительства, размещения горных предприятий, отвалов, свалок. Кроме того, выемка сапропеля, торфа и особенно плодородной почвы из мест их естественного залегания и распространения приводит к необратимому разрушению сложившихся экосистем. То есть для восстановления, рекультивации и озеленения нарушенных и загрязненных в результате хозяйственной деятельности земель в одном месте, необходимо нарушить сложившиеся природные экосистемы в другом месте. Следует также отметить, что вместе с гумусосодержащими почвами в новые места переносятся семена сорняков, вредные насекомые и возбудители болезней растений, животных и человека.

Но самый главный недостаток известного способа заключается в том, что содержание гумуса в гумусированной почве не превышает несколько процентов, а остальное приходится на долю минеральной части почвы и воду. То есть основная часть расходов приходится на выемку, транспортировку и укладку балласта, не оказывающего главного влияния на свойства грунтов.

Известно, что в процессе интенсивной эксплуатации почв происходит их деградация с частичной или полной потерей основных агрофизических и агрохимических свойств и плодородия. Главными причинами деградации почв и потери ими плодородия являются: быстрое разложение и минерализация органического вещества почв, физико-химическое выветривание (разрушение) минерального вещества почв, вымывание из почв питательных элементов, отсутствие адсорбционных центров в почве.

Известен способ восстановления свойств и плодородия деградированных почв, включающий внесение в почвы больших доз минеральных удобрений и природного гумуса (см., например, Крупнов А.А., Базин Е.Т., Полов М.В. Использование торфа и торфяных месторождений в народном хозяйстве. М., Недра, 1992, с. 140).

Недостатки данного способа заключаются в сравнительно быстрой минерализации природного гумуса, который вносится в почву в составе торфа, быстром вымывании минеральных удобрений. Кроме того, в почвы вместе с торфом вносятся семена сорняков и возбудители болезней растений.

Известен также способ восстановления свойств и плодородия деградированных почв, включающий внесение в почвы природного гумусосодержащего вещества, минеральных веществ и удобрений (см., например, там же, с. 112).

Недостатки данного способа включают сравнительно быструю минерализацию природного гумусосодержащего вещества, в качестве которого используется торф, в результате чего из почвы вымываются питательные вещества, и она быстро теряет свои свойства и плодородие.

Известен способ получения удобрений из органических отходов (например, твердых бытовых отходов, осадков сточных вод, отходов обработки древесины, навоза), включающий их компостирование в аэробных и анаэробных условиях при внесении минеральных удобрений (см. , например, Воспроизводство гумуса и хозяйственно-биологический круговорот органического вещества в земледелии. Рекомендации. Москва, ВО "Агропромиздат", 1989, с. 15-16, 42-43, 11).

Однако процесс компостирования очень продолжительный, при этом 70-80% органического вещества минерализуется и только 20-30% повергается гумификации.

Известен также способ утилизации органических отходов промышленности и коммунального хозяйства, включающий смешивание отходов с торфом и известковой мукой, и совместное компостирование и использование компоста в качестве органоминерального удобрения (см., например, Крупнов А.А., Базин Е.Т., Попов М.В., Использование торфа и торфяных месторождений в народном хозяйстве. М., Недра, 1992, с. 69-70).

При этом процесс компостирования очень длительный при высоком расходе природного органического вещества торфа (от 1,5 до 3 тонн на одну тонну отходов). Кроме того, до 70% органического вещества минерализуется и только до 15-30% органического вещества гумифицируется.

Таким образом, при компостировании органических отходов происходит два противоположно направленных процесса трансформации органического вещества, минерализации с образованием простых химических соединений и гумификации с образованием устойчивых к разложению сложных органических веществ, определяющих плодородие почв. Одной из проблем современного сельского хозяйства является проблема снижения содержания гумуса в почвах, вызванная применением интенсивных технологий возделывания земли, длительным и активным применением минеральных удобрений, увеличивающейся долей пропашных культур и недостаточным поступлением в почву органических удобрений. По этой причине очень важным является восстановление и повышение содержания гумуса в почвах за счет внесения удобрений, содержащих преимущественно гумифицированные, органические вещества.

Очистка водопроводной воды с использованием коагулянтов, флокулянтов, дезодорирующих и обеззараживающих средств сопровождается образованием сравнительно больших объемов осадков.

В осадках содержатся минеральные вещества, преимущественно илистые и глинистые минералы природного происхождения; сернокислый алюминий, используемый в качестве коагулянта при очистке воды, различные органические вещества как природного происхождения, так и искусственно вносимые в воду для интенсификации процессов ее очистки.

Известны способы обработки осадков водопроводных станций, приводящие к обезвоживанию осадков в естественных или искусственных условиях. Полученные осадки складируют на специально приготовленных площадях (см., например, Николадзе Г. И. Технология очистки природных вод. М., Высшая школа, 1987, с. 347-349).

Складирование осадков является единственным практически используемым способом, так как многочисленные попытки утилизации осадков в качестве добавок при производстве кирпича, керамических изделий, цемента и т.д., не дают положительного результата из-за высоких затрат на методы специальной подготовки и обработки осадков.

Складирование осадков приводит к отчуждению и нерациональному использованию больших участков земли, дефицит и высокая стоимость которых характерна для больших городов.

Таким образом, сегодня многие насущные проблемы защиты и восстановления объектов окружающей среды не находят своего удачного решения из-за отсутствия дешевых, доступных и экологически безопасных препаратов и основанных на их применении технологий природоохранных мероприятий.

В основу заявляемого изобретения положена задача создать новый продукт такой структуры и такого состава и способ его получения в таких режимах и на таких установках, которые позволили бы производить в промышленных масштабах гуминовый концентрат, имеющий высокую физико-химическую и биологическую активность, что позволило бы эффективно и надежно осуществлять охрану и восстановление объектов природной среды путем очистки воды от примесей, обезвоживания вязкотекучих сред, детоксикации органических соединений, утилизации осадков сточных вод, создания почв из естественных и искусственных грунтов и восстановление свойств и плодородия деградированных почв, а также компостирования загрязняющих природную среду органических отходов и утилизации осадков водопроводных вод.

Эта задача решается тем, что создан новый гуминовый концентрат из природных гумитов и каустобиолитов угольного ряда, который согласно изобретению содержит гидратированные гуминовые кислоты, соли гуминовых кислот и минеральные компоненты исходных гумитов и каустобиолитов, химически связанные с содержащимися гуминовыми кислотами.

Благодаря заявляемому изобретению новый гуминовый концентрат обладает высокой сорбционной, ионной, флокулирующей и агрегирующей и биологической активностью.

Возможно, что гуминовый концентрат согласно заявляемому изобретению представляет собой продукт, полученный электрохимическим путем из солей гуминовых кислот, образованных при экстрагировании щелочным реагентом названного природного сырья, и содержит гидратированные гуминовые кислоты, соли гуминовых кислот и минеральные компоненты исходных гумитов и каустобиолитов угольного ряда, химически связанные с содержащимися гуминовыми кислотами.

Вариантом заявляемого изобретения является гуминовый концентрат, представляющий собой продукт, получение которого осуществлено путем электролиза водных растворов солей гуминовых кислот, предварительно экстрагированных щелочным реагентом из природного сырья, проводимого при установлении на аноде электрического потенциала, достаточного для разряда анионов гуминовых кислот, но более низкого, чем потенциал разряда гидроксильных ионов, обеспечивающего