Схема генерации отклоняющих токов для прямоугольно- планарной телевизионной трубки с коррекцией искажений типа "крыло чайки"

Реферат

 

Изобретение относится к схемам развертки телевизионного изображения с коррекцией искажения типа "крыло чайки". Технический результат - коррекция искажений типа "крыло чайки". Схемы строчной и кадровой развертки генерируют токи строчной и кадровой развертки соответственно в строчной и кадровой обмотках отклоняющей системы для развертки изображения на люминесцентном экране прямоугольно-планарной телевизионной трубки с асферической передней поверхностью. Несферичность передней поверхности вызывает искажения типа "крыло чайки". Схема коррекции искажения типа "крыло чайки" управляется сигналами с частотой строк и кадров соответственно для модуляции кадрового отклоняющего тока в период строчного отклонения в пределах интервала кадровой развертки так, чтобы скорректировать искажения типа "крыло чайки" соответствующей строки развертки. 6 з.п. ф-лы, 9 ил.

Это изобретение относится к схемам развертки телевизионного изображения с коррекцией искажения типа "крыло чайки".

Одна форма более плоской передней поверхности кинескопа по типу цветной телевизионной трубки фирмы Ар Си Эй 110o COTY-SP прямоугольно-планарная, на 27 В тип A68ACC10X имеет формулу сагиттальной высоты Z в миллиметрах относительно центра экрана Z = A1X2 + A2X4 + A3Y2 + A4X2Y2 + A5X4Y2 + A6Y4 + A7X2Y4 + A8X4Y4, где X и Y - расстояние в миллиметрах от центра экрана вдоль большой и малой осей соответственно и где A1 = -0,23642422910-4 A2 = -0,36353857510-8 A3 = -0,42244106310-3 A4 = - 0,21353735510-8 A5 = +0,88391222010-13 A6 = -0,10002039810-9 A7 = +0,11791535310-14 A8 = +0,52772229510-21 Экран телевизионной трубки, определяемый этой формулой, имеет сравнительно малую кривизну вблизи центра, которая увеличивается вблизи краев как по большой оси, так и малой оси трубки. Общий результат тот, что экран имеет сравнительно плоский вид с планарными краями, а именно с точками вдоль верхнего, нижнего, правого и левого краев, находящимися в основном в одной плоскости.

Такие телевизионные трубки могут требовать модуляции кадрового отклоняющего тока для коррекции геометрического искажения, определяемого как искажение типа "крыло чайки", показанное линиями растра фиг.1. Причиной этого искажения является разность между радиусом кривизны сканирующего луча и радиусом кривизны экрана при развертке растра электронным лучом.

На фиг. 1 область растра R схематически показана прямоугольником, окружающим светящуюся поверхность экрана 30 прямоугольно-планарной телевизионной трубки SP на фиг. 2. Схемы строчной и кадровой развертки 20 и 40 фиг. 2 генерируют строчный и кадровый токи развертки в строчной и кадровой обмотках LH и Lv соответственно. Строчный и кадровый токи развертки создают растр из сканируемых строк на экране 30.

Принимая, что генераторы строчной и кадровой развертки 20 и 40 имеют коррекцию искажений типа восток-запад, север-юг и S-образных, форма строчных линий развертки на экране 30 показана на фиг. 1.

Строки развертки фиг. 1 имеют остаточные искажения, называемые искажениями типа "крыло чайки".

При искажении этого типа вертикальное отклонение лучей электронов, сканирующих данную строку, например строку L1+, претерпевает приблизительно два периода колебания относительно ее прямого показанного пунктиром положения на фиг. 1. В течение первой половины периода кадра, между временем Тv1 и временем Тv0, вертикальное отклонение каждой строки растра дает направленное вверх отклонение в промежуточных точках данной развертываемой строки, в районе моментов tH2 и tH3 интервала развертки строки ТHt. Максимальное отклонение вниз каждой строки развертки в верхней половине кадра происходит в начале, середине и конце строки соответственно моментам tH1, tH0 и tH4.

Дополнительно, при искажении типа "крыло чайки" фаза отклонений данной строки развертки переключается на 180o при переходе из верхней половины кадра к нижней половине кадра. Таким образом, фаза отклонений строки развертки L1-, развертываемой в момент кадра Тv3, инвертируется относительно отклонений соответствующей строки развертки L1+, развертываемой в момент кадра Тv2.

Когда для развертки изображения используются генераторы строчной и кадровой развертки 20 и 40 на экране 30 прямоугольно-планарной телевизионной трубки SP на фиг. 2, эффект искажения типа "крыло чайки" на растре R фиг .1 изменяется в ходе кадрового интервала Тvt. Искажение типа "крыло чайки" имеет максимум для строк, сканируемых в моменты, лежащие между моментами начала, середины и конца кадрового интервала. Таким образом, максимальное искажение типа "крыло чайки", или максимальное отклонение строки развертки происходит при развертке строк L1+ и L1- в моменты Тv2 и Тv3 кадрового интервала.

Минимальное или отсутствующее искажение типа "крыло чайки" строк развертки имеет место для строк вверху, в середине и внизу кадра, когда развертываются строки L2+, L0 и L2- в моменты Tv1, Tv0 и Тv4 соответственно.

В соответствии с аспектом изобретения искажение типа "крыло чайки", которое имеет тенденцию появляться при развертке изображения в телевизионных трубках с несферическим экраном, компенсируется блоком коррекции, которая модулирует ток кадровой развертки. Блок коррекции искажения типа "крыло чайки" находится под воздействием первого сигнала, идущего с частотой строк, и второго сигнала, идущего с частотой кадров, для модуляции тока кадровой развертки во время периода развертки строки в пределах кадрового интервала. Модуляция должным образом сфазирована чтобы корректировать искажение типа "крыло чайки".

Фиг. 1 показывает растр развертки с искажением типа "крыло чайки", появляющимся на несферическом экране прямоугольно-планарной телевизионной трубки.

Фиг. 2 показывает в виде генераторов строчной и кадровой развертки используемые для развертки изображения на несферическом экране прямоугольно-планарной телевизионной трубки.

Фиг. 3 показывает принципиальную схему строчной и кадровой развертки фиг. 2, включая схемы, воплощающие изобретение, которые корректируют искажения типа "крыло чайки".

Фиг. 4 и 5 показывают формы напряжения при работе схемы фиг. 3.

Фиг. 6 показывает общее применение модулятора с подавлением несущей по изобретению на фиг. 3.

Фиг. 7 показывает формы напряжения, связанные с работой схемы фиг. 6.

Фиг. 8 показывает альтернативную схему кадровой развертки, включающую изобретение, которая имеет различные устройства для коррекции искажения север-юг типа подушки и блок коррекции искажения типа "крыло чайки".

Фиг. 9 показывает формы напряжения, связанные с работой схемы фиг. 8.

В схеме развертки, показанной на фиг. 3, схема кадровой развертки 40 содержит усилитель кадровой развертки 41, который генерирует ток кадровой развертки iv в кадровой обмотке Lv. Блок коррекции искажения типа "крыло чайки" 70, воплощающий изобретение, модулирует ток кадровой развертки посредством наложения модулирующего напряжения "крыла чайки" V1 на кадровую обмотку Lv. Чтобы обеспечить коррекцию искажения типа север-юг в виде подушки блок коррекции 60 модулирует кадровый ток iv посредством наложения напряжения коррекции север-юг V2 на кадровую обмотку Lv. Кадровый ток iv течет на землю через конденсатор связи Cv и резистор измерения тока RS.

Чтобы скорректировать искажение типа "крыло чайки", блок коррекции 70 модулирует ток кадровой развертки iv в течение времени каждой строки в интервале кадровой развертки по закону тока ivc, показанного на фиг. 1 двумя кривыми тока ivc. Ток ivc представляет повторяющуюся с частотой строк модуляционную компоненту кадрового тока, в которой содержатся приблизительно два периода колебания модуляционного тока ivc за время развертки строки ТHt.

Чтобы скорректировать искажение типа "крыло чайки" в растре, модуляционная компонента тока ivc сдвинута по фазе на 180o относительно колебательных вертикальных отклонений соответствующих строк растра. Таким образом, для строк, развертываемых в верхней половине кадра, как, например, строки L1+, компонента модуляционного тока +ivc достигает отрицательного минимума как для переменного тока в районе моментов развертки строки tH2 и tH3 положительного максимума в районе моментов tH1, tH0 и tH4. Для строк, развертываемых в нижней половине кадра R, модуляционная компонента является инвертированным по фазе током - ivc, достигающим максимумов в районе моментов tH2 и tH3 и минимумов в районе моментов tH1, tH0 и tH4.

Добавочно, чтобы обеспечить идеальную коррекцию искажения типа "крыло чайки" растра на асферическом экране прямоугольно-планарной телевизионной трубки, огибающая амплитуды mv компонент тока ivc изменяется по высоте огибающей he в интервале кадровой развертки Tvt так, как показано на фиг. 1. Высота огибающей модуляции претерпевает примерно два периода колебания, достигая максимальной высоты в районе моментов Tv2 и Tv3, соответствующих развертке строк L1+ и L1-. Огибающая модуляции обращается в нуль или близкое к нулю значение высоты вблизи центра развертки кадра, в момент Tv0, при развертке строки L0 и вблизи верхнего и нижнего краев кадра, в районе моментов Tv1 и Tv4, при развертке строк L2+ и L2-.

Чтобы генерировать модуляционную компоненту тока ivc с модуляционной огибающей mv, блок коррекции искажения типа "крыло чайки" 70 содержит модулятор 50, который генерирует модулирующее напряжение "крыло чайки" Vgc на выходе 51 модулятора 50. Модуляционное напряжение "крыло чайки" Vgc усиливается транзисторами Q4 и Q5 и подается через регулирующее средство (потенциометр) установки амплитуды R24 на выходной транзистор Q6, который целесообразно используется как усилитель класса А.

Первичная обмотка Wa трансформатора крыла чайки Т1 соединена с коллектором выходного транзистора Q6. Вторичная обмотка Wb трансформатора Т1 генерирует напряжение коррекции искажения типа "крыло чайки" V1, которое прикладывается на кадровую обмотку отклоняющей системы Lv, чтобы модулировать кадровый отклоняющий ток iv.

Конденсатор C6, связанный с эмиттером транзистора Q4, и конденсатор C8, связанный с эмиттером транзистора Q6, увеличивают усиление блока коррекции 70 на высоких частотах, что дает опережение напряжения коррекции V1 относительно напряжения Vgc. Это компенсирует задержку между напряжением коррекции V1 и модуляционной компонентой тока ivc за счет индиктивной нагрузки на трансформаторе Т1. Суммарный результат получается тот, что фаза тока ivc правильно установлена для осуществления коррекции искажения типа "крыло чайки".

Модулятор 50 функционирует как двойной балансный модулятор, который использует напряжение строчной частоты в качестве несущей Vgcar с выхода первого генератора напряжения и перемножает это напряжение на напряжение кадровой частоты Vmodv, генерируемое вторым генератором напряжения формирователя кадрового напряжения 80, чтобы получить модуляционное напряжение крыла чайки Vgc. Напряжение Vgcar используется для получения модуляционной компоненты крыла чайки ivc, показанной на фиг. 1. Напряжение Vmodv используется для получения огибающей модуляции mv на фиг. 1.

В соответствии с признаком изобретения напряжение частоты строк Vqcar получается с резонансного контура LC 24 в генератор строчной развертки 20, который настроен для получения двух периодов резонансного колебания тока и напряжения за интервал развертки строки периода строчной развертки. Дополнительно, резонансный контур LC выдает один период колебания за время обратного хода строчной развертки. Генератор строчной развертки 20 имеет генератор строчной развертки и драйвер 21, выходной транзистор строчной развертки Trl, демпферный диод Dd, конденсатор обратного хода C и последовательную цепочку формирования S-образного напряжения Cs, строчную обмотку LH отклоняющей системы и резонансный контур LC 24, состоящий из конденсатора Cds и катушки с отводом Lds.

Конденсатор формирования S-образного напряжения Cs не в состоянии обеспечить полной коррекции S-образного искажения при развертке растра на несферическом экране прямоугольно-планарной телевизионной трубки. Резонансный контур LC 24 настроен на период резонансной частоты, равный половине интервала строчной развертки, или на резонансную частоту, к примеру, 38 кГц при интервале строчной развертки, равном 52,6 микросекунд. Резонансный контур LC 24 прикладывает напряжение Vgcar к строчной обмотке LH и формирует строчный ток в обмотке так, что остаточное S-образное искажение корректируется.

Напряжение Vgcar показано на фиг. 4; опорное напряжение импульсов обратного хода строчной развертки Vr показано на фиг. 4а. Фазировка напряжения Vgcar относительно импульсов обратного хода строчной развертки Vr такова, что за интервал прямого хода строчной развертки от момента tH1 до момента tH4 возникают два периода колебания так, что максимумы напряжения совпадают с моментами tH1, tH0 и tH4, минимумы напряжения совпадают с моментами tH2 и tH3.

Напряжение Vgcar подается на вход несущей модуляторной ступени 50. Напряжение Vmodv подается на вход амплитудно-модулирующего сигнала 55 модулятора 50. Напряжение Vmodv модулирует напряжение Vgcar для получения амплитудно-модулированного напряжения коррекции искажения типа "крыло чайки" Vgc на выходе 51 модулятора 50.

В соответствии с другим признаком изобретения формирователь кадрового напряжения 80 выдает приблизительно синусоидальное напряжение кадровой модуляции Vmodv, показанное на фиг. 5а. Для получения синусоидального напряжения Vmodv кадровое пилообразное напряжение 62, снимаемое с резистора Rs, через потенциометр R1 и разделительный конденсатор C9 подается на инвертирующий вход операционного усилителя U1A. Усилитель U1A работает как двойной интегратор. Выходной сигнал усилителя U1A имеет кадровую частоту и S-образную форму третьего порядка 81, которая через RC-цепочку подается на инвертирующий вход операционного усилителя U1B для генерирования напряжения Vmodv. Резистор R5 и конденсатор C3 RC-цепочки дают некоторую задержку сигнала 81, чтобы дать возможность правильной центровки напряжения Vmodv, с переходом через нуль вблизи центра интервала кадра, момент времени Тv0 фиг. 5а.

Кадровое напряжение модуляции Vmodv, показанное на фиг. 5а, выделенное на входе модуляции 55 модулятора 50 с подавлением несущей, модулирует несущую коррекции искажения "крыло чайки" Vgcar, показанную на фиг. 4b, которая подается на вход несущей 52 для получения на выходе 51 модулированного напряжения коррекции искажения "крыло чайки" Vgc, показанного в масштабе строчной развертки на фиг. 4с.

Во время развертки верхней половины кадра, до момента середины кадра Tv0 фиг. 5а, где напряжение модуляции Vmodv отрицательное по переменному току, напряжение коррекции искажения типа "крыло чайки" Vgc представляет собой несущую коррекции Vgcar фиг. 4b, но инвертированную по фазе. Таким образом, в течение верхней половины кадра напряжение Vgc в течение каждого периода строки представлено пунктирной кривой 56p на фиг. 4c. Напряжение коррекции искажения типа "крыло чайки" Vgc вида 56p совершает два периода колебания за время периода строчной развертки tH1 - tH4 и находится в правильной фазе при условии правильной полярности соединения обмоток Wa и Wb, чтобы блок коррекции искажения типа "крыло чайки" 70 мог генерировать ток коррекции искажения + ivc на фиг. 1.

В течение нижней части кадра после момента Тv0 на фиг. 5a, когда напряжение модуляции Vmodv положительное, напряжение коррекции искажения типа "крыло чайки" Vgc находится в фазе с напряжением Vgcar и представлено сплошной линией 56n на фиг. 4c. Колебание напряжения 56n точно соответствует инвертированному по фазе колебанию тока коррекции искажения типа "крыло чайки" - ivc на фиг. 1.

Кадровое напряжение модуляции Vmodv модулирует по амплитуде напряжение коррекции искажения типа "крыло чайки" Vgc для получения огибающей модуляции Vgc напряжения коррекции, как показано на фиг. 5b. Часть напряжения Vgc частоты строк схематически показана на фиг. 5b частыми вертикальными отрезками прямой. Высота или разделение огибающей модуляции "крыла чайки" mgc претерпевает два периода колебания в пределах интервала развертки кадра, время Тa - Тb, достигая нулевой высоты огибающей вблизи центра развертки кадра - момент Тv0 и достигая величин, близких к нулю, в начале и конце развертки кадра, вблизи моментов Tv1 и Тv4 соответственно.

Амплитудная модуляция огибающей mgc с кадровой частотой позволяет блоку коррекции искажения 70 дать огибающую модуляцию с кадровой частотой mv тока коррекции искажения типа "крыло чайки" ivc на фиг. 1, которая близко соответствует и находится в фазе с огибающей модуляции mgc фиг. 5b.

Так как модулятор 50 фиг. 3 работает как модулятор с подавлением несущей, фаза напряжения коррекции искажения типа "крыло чайки" Vgc переключается на 180o вблизи середины развертки кадра с фазы, показанной кривой 56p, на фазу, показанную кривой 56n. Это изменение фазы позволяет блоку коррекции 70 одновременно изменять фазу тока коррекции ivc в центре развертки кадра, с + ivc на - ivc, как это требуется для правильной коррекции искажения типа "крыло чайки".

Соответственно аспекту изобретения коррекция искажения север-юг типа "подушка" в кадровом токе развертки iv осуществляется блоком 60 для коррекции этого искажения, который работает совместно с блоком коррекции искажения типа "крыло чайки" 70. Блок коррекции "подушки" 60 генерирует напряжение модуляции север-юг V2, которое включается последовательно с напряжением модуляции "крыла чайки" V1 на кадровую обмотку Lv. Напряжение модуляции север-юг V2 представляет собой синусоидальное напряжение с частотой строк, сфазированное блоком коррекции 60, так чтобы переход его через нуль находился вблизи середины интервала развертки строки. Огибающая амплитуды напряжения частоты строк V2 изменяется с частотой кадров в общем по пилообразному закону, причем максимум высоты огибающей приходится на верх и низ кадра, а нуль высоты огибающей приходится вблизи середины кадра.

Чтобы получить напряжение модуляции север-юг V2, блок управления 61 получает сигнал частоты строк в виде импульсов обратного хода 23 со строчного трансформатора 22, и сигнал с частотой кадров в виде пилообразного напряжения 62. Блок управления 61 генерирует управляющий сигнал 133H с частотой строк и двумя уровнями прямоугольной формы.

Блок управления север-юг 61 изменяет уровни амплитуд 133a и 133b управляющего напряжения строчной частоты 133H с кадровой частотой по пилообразному закону, с уровнем 133a, изменяющимся в противоположном направлении относительно изменения уровня 133b. Управляющее напряжение север-юг 133H соединено через буферный транзистор Q7 с базой мощного усилителя Q8, работающего по классу A. Транзистор Q8 соединен с первичной обмоткой Ws трансформатора север-юг T2. Вторичная обмотка Wp трансформатора T2 соединена последовательно со вторичной обмоткой Wb трансформатора "крыло чайки" T1 и кадровой обмоткой Lv отклоняющей системы. Вторичная обмотка Wp трансформатора север-юг T2 и конденсатор C17 образуют резонансный контур LC 63, который настроен на строчную частоту.

В ответ на прямоугольное возбуждение со строчной частотой 133H усилитель мощности Q8 возбуждает резонансный контур 63 для генерации с частотой строк напряжение модуляции север-юг V2, которое подается на кадровую обмотку Lv отклоняющей системы. Изменение огибающей амплитуды напряжения V2 с кадровой частотой по в общем пилообразному закону осуществляется соответственно изменению с частотой кадров уровней 133a и 133b управляющего сигнала 133H.

Синусоидальный характер напряжения модуляции север-юг V2 выгодно помогает схеме коррекции искажения типа "крыло чайки" 70 в получении правильного уровня коррекции искажения типа "крыло чайки". Синусоидальное напряжение модуляции север-юг V2, приложенное к кадровой обмотке Lv, генерирует косинусоидальную составляющую тока коррекции север-юг в отклоняющем токе iv, то-есть сдвинутую по фазе на 90o относительно напряжения V2. Таким образом, относительно моментов развертки строк tH1 - tH4 на фиг. 1 составляющая коррекции север-юг тока кадровой развертки iv достигает максимальной величины у середины строки развертки в момент tH0.

Косинусоидальный ток коррекции в дополнение к существенной коррекции подушечного искажения в направлении север-юг также помогает в коррекции искажения типа "крыло чайки". Ток коррекции север-юг изменяет свою полярность при пересечении нуля косинусоидой вблизи моментов tH2 и tH3 фиг. 1. Это изменение полярности тока коррекции север-юг помогает коррекции, получаемой от составляющей тока коррекции искажения типа "крыло чайки" ivc на фиг. 1.

Как упоминалось выше, экран прямоугольно-планарной трубки является асферическим. Кривизна экрана относительно меньше вблизи центра экрана и увеличивается вблизи краев вдоль направлений, параллельных как большой, так и малой осям. Края экрана почти планарные, с точками вдоль верхнего, нижнего, правого и левого краев, практически находящимися в одной плоскости. При выполнении коррекции искажения типа "подушка" в направлении север-юг совместно с разверткой на асферическом экране прямоугольно-планарной телевизионной трубки пилообразная линейная модуляция огибающей в направлении север-юг оставляет остаточное искажение типа "подушка", в котором, например, слишком велика коррекция в районе центра кадра, слишком мала коррекция в верхней и нижней части. Схема коррекции искажения типа "подушка" в направлении север-юг 60 корректирует такие остаточные искажения посредством нелинейного формирования огибающей на частоте кадров.

Напряжение модуляции Vmodv, генерируемое вторым генератором напряжения формирователя кадрового напряжения 80 добавочно к использованию в схеме коррекции искажения типа "крыло чайки" 70, подключен также к схеме управления север- юг 61 для нелинейного формирования огибающей тока коррекции север-юг. Хотя и не показано на фиг. 3, в блоке управления север-юг 61 напряжение кадровой частоты Vmodv алгебраически складывается с пилообразным напряжением 62 частоты кадровой развертки для получения изменения уровней 133a и 133b с кадровой частотой в управляющем напряжении север-юг 133H. Блок управления 61 обрабатывает наложенные напряжения для получения изменения огибающей, которое в результате дает небольшое сжатие высоты огибающей при меньших амплитудах тока коррекции, при развертке центральных строк растра и небольшое увеличение высоты огибающей при увеличенных амплитудах тока коррекции, при развертке верхних и нижних строк растра. Это дает существенную компенсацию остаточного искажения типа "подушка" в направлении север-юг в прямоугольно-планарной телевизионной трубке.

Так как усилитель кадровой развертки 41 может иметь существенно повышенное выходное сопротивление на строчной частоте, модуляция тока кадровой развертки iv c частотой строк, возбуждаемая блоком коррекции 60 искажений типа "подушка" в направлении север-юг, может дать составляющую строчной частоты в выходном напряжении 42 усилителя кадровой развертки 41. Усилители кадровой развертки на интегральных микросхемах могут не позволить использовать достаточно высоких питающих напряжений для исключения ограничения выходного напряжения. В результате может получиться нелинейность развертки верхней и нижней части кадра.

Чтобы избежать ограничения напряжения, кадровая обмотка Lv отклоняющей системы настроена приблизительно на частоту строк с помощью конденсатора C18 и демпфирующего резистора R53, включенного параллельно последовательно соединенным кадровой обмотке Lv и вторичной обмотке Wb трансформатора "крыла чайки" T1. В такой схеме ток коррекции север-юг частоты строк циркулирует в настроенном контуре. Так как полное сопротивление настроенного контура 43 на строчной частоте относительно велико, то меньше напряжения частоты строк появляется на выходе усилителя кадровой развертки 41. Индуктивность трансформатора "крыло чайки" T1 должна включаться в настроенный контур 43, потому что частота тока коррекции искажения типа "крыло чайки" отличается от строчной частоты.

Для получения как коррекции "подушки" в направлении север-юг, так и коррекции искажения типа "крыло чайки" напряжения модуляции V2 и V1 накладываются друг на друга, прежде чем их прикладывать к кадровой обмотке Lv отклоняющей системы. Это наложение осуществляется последовательным соединением резонансного LC-контура 63 трансформатора T2 со вторичной обмоткой Wb трансформатора "крыла чайки" T1.

Резонансный контур LC 63 целесообразно используется для генерирования синусоидального напряжения модуляции север-юг V2 вследствие большой потребной амплитуды для коррекции относительно большого искажения типа "подушка", которое существует в 27 В прямоугольно-планарной телевизионной трубке. Составляющая север-юг кадрового отклоняющего тока iv может к примеру быть 10% от кадрового тока, тогда как составляющая "крыла чайки" может быть лишь 2%. Напряжение север-юг может иметь пиковое значение около 80 В, тогда как напряжение "крыла чайки" V1 может достигать лишь примерно 18 В.

В соответствии с признаком изобретения вторичная обмотка Wb трансформатора "крыла чайки" T1 представляет собой линейное полное сопротивление на основной частоте напряжения модуляции "крыла чайки" V1, примерно на удвоенной строчной частоте 38 кГц. Сохраняя линейным полное сопротивление обмотки Wb в области частот около 38 кГц избегают нежелательного взаимодействия между трансформатором "крыла чайки" T1 и настроенным контуром 63 трансформатора север-юг T2. Так как амплитуда напряжения, требуемая для модуляции "крыла чайки" V1 для нужной величины коррекции этого искажения, существенно меньше, чем требуется для напряжения модуляции север-юг V2, то можно с выгодой настроить трансформатор T2, а не трансформатор T1 для генерации соответствующего напряжения модуляции. Таким образом, конденсатор, как, например, C17, предусмотрен для настройки трансформатора север-юг T2 практически на строчную частоту, в то время как никакого элемента настройки не предусматривается, который был бы в состоянии настроить трансформатор "крыла чайки" T1 на частоту модуляции "крыла чайки", приблизительно равную удвоенной строчной частоте.

Теперь будет подробно описана работа модулятора 50 с подавлением несущей. Модулятор 50 может быть с выгодой применен не только в схеме коррекции искажений типа "крыло чайки", но также и в других применениях. Модуляторы с подавлением несущей могут найти применение в областях, где требуется одно или несколько из перечисленных ниже свойств: простота, стабильность, низкая стоимость, линейная работа, начиная с постоянного тока, отсутствие намоточных элементов и избежание фильтрации выхода. Модулятор 50 объединяет все вышеперечисленные свойства в простой схеме, использующей лишь три транзистора и два диода. Как в примере использования, модулятор 50 может применяться в умножителях низкой частоты.

Фиг. 6 показывает модулятор 50 с подавлением несущей для общего случая, где несущее напряжение является синусоидальным напряжением VCAR, выдаваемое идеальным источником несущего напряжения SC. Подобным же образом напряжение модуляции является синусоидальным напряжением более низкой частоты VMOD, выдаваемым идеальным источником напряжения модуляции SM. Модулятор 50 с подавлением несущей на фиг. 6 включает дифференциальный усилитель 54, имеющий включенную по разностной схеме пару транзисторов Q1 и Q2 и инвертирующий транзистор Q3, осуществляющий отрицательную обратную связь на первый вход 57 дифференциального усилителя 54 на базу транзистора Q1.

Для объяснения работы модулятора 50 примем, что оба источника напряжения SC и SM отсутствуют, о входы модулятора 52 и 55 заземлены. В соответствии с признаком изобретения в такой ситуации дифференциальный усилитель 54 балансируется действием отрицательной обратной связи через средство получения инверторов входного напряжения усилителя (транзистор Q3). Отрицательная обратная связь с транзистора Q3 на вход 57 на базе дифференциального транзистора Q1 поддерживает напряжение на входе 57 на уровне опорного напряжения на входе 58 дифференциального усилителя на базе транзистора Q2. При выборе резисторов в базах R10 и R19 одинакового номинала выходное напряжение модулятора VOUT на выходе 51 модулятора 50 поддерживается на уровне опорного напряжения VREF полупроводникового диода-стабилитрона D2 в условиях баланса.

Ток эмиттера, или ток смещения дифференциального усилителя i1 дифференциальной пары транзисторов Q1 и Q2 делится на токи i2 и i3 в коллекторах транзисторов Q2 и Q3 соответственно. Ток коллектора инвертирующего транзистора Q3 отражает по амплитуде ток i2, но инвертирован по фазе. Ток коллектора транзистора Q3 течет в виде тока - к выходу 51 модулятора 50. Диод D1 компенсирует температурный уход напряжения база-эмиттер транзистора Q3.

Примем теперь, что источник несущего напряжения SC соединен со входом 52 и подает на вход синусоидальное напряжение несущей VCAR (фиг. 7b). Примем также, что вход 55 по-прежнему заземлен. Ток несущей под действием напряжения VCAR течет как составляющая в резисторе R12 к общей точке эмиттеров дифференциальной пары транзисторов Q1 и Q2. Эта составляющая несущей отражена синфазными составляющими токов коллекторов i2 и i3 инвертируется транзистором Q3, чтобы дать составляющую тока несущей - i'2.

Инвертированная составляющая тока несущей - i2 алгебраически суммируется у клеммы 51 с неинвертированной составляющей тока несущей, текущей через средство формирования отрицательной обратной связи (потенциометр) баланса R14 и резистор R13.

Соответствующей установкой потенциометра R14 можно получить полную компенсацию тока несущей на клемме 51. На выходе 51 модулятора 50 получается выходное напряжение VOUT, компенсация тока несущей равносильна полному подавлению напряжения несущей на выходе 51 при сбалансированном состоянии модулятора 50.

Напряжение модуляции VMOD (фиг. 7a) разбалансирует дифференциальный усилитель 54. Напряжение постоянного тока на выходе 51 модулятора 50 остается практически постоянным за счет действия тока отрицательной обратной связи - который изменяется обратно пропорционально току iMOD. Разбаланс токов i2 и i3 также пропорционален току iMOD. В результате составляющие несущей токов i2 и i3 меняются обратно пропорционально току iMOD. Когда напряжение VMOD положительно и увеличивается, как, например, происходит вблизи момента tp (фиг. 7), цепь отрицательной обратной связи уменьшает ток - i2 ниже его сбалансированного уровня по постоянной составляющей в соответствии с амплитудой напряжения VMOD. Уменьшение в токе - i2 включает уменьшение величины инвертированной составляющей тока несущей. Неинвертированная составляющая несущей, протекающая через потенциометр R14 и резистор R13, уже не компенсируется инвертированной составляющей несущей от транзистора Q3. Неинвертированный ток несущей, таким образом, появляется на выходе 51 модулятора 50 как модулированный выход несущей частоты напряжения VOUT, имеющего амплитуду, которая изменяется соответственно изменению амплитуды напряжения VMOD.

Идущие в отрицательную сторону изменения напряжения VMOD, когда напряжение VMOD отрицательное, как, например, имеет место вблизи момента tn фиг. 7, имеют противоположное действие и дают в результате увеличение инвертированной составляющей тока несущей в токе - i2.

Результат этого процесса модуляции в напряжении VOUT показан на фиг. 7c, которая показывает напряжение VOUT в виде амплитудно-модулированного напряжения с подавленной несущей. Когда напряжение VMOD фиг. 7a равно нулю, вблизи момента t0 часть частоты несущей в напряжении VOUT подавлена.

Цепь обратной связи через дифференциальный усилитель 54 и транзистор Q3 существенно подавляет появление основной частоты напряжения модуляции VMOD на выходе 51 модулятора 50 при всех амплитудных уровнях напряжения модуляции. Малое количество напряжения модуляции, требуемое для модуляции базового тока транзистора Q2, сравнительно незначительно и можно им пренебречь при рассмотрении.

Цепь отрицательной обратной связи, однако, существенно не подавляет несущую часть напряжения VOUT. Развязывающий конденсатор C4 уменьшает напряжение VOUT на входе 57. Конденсатор C5 выгодно соединен между двумя входами 57 и 58 дифференциального усилителя 54. Величина конденсатора C5 выбирается так, чтобы создать практически короткое замыкание между входами 57 и 58 на частотах в районе частоты несущей напряжения VCAR. Так как дифференциальный усилитель 54 имеет большое подавление синфазной составляющей на входах, появление тока несущей частоты на выходе 51 модулятора 50, когда напряжение VMOD разбалансирует модулятор 50, не ухудшается появлением тока несущей частоты на входе 57.

Тем не менее, некоторая отрицательная обратная связь по синфазному сигналу на частоте несущей получается, когда напряжение VMOD разбалансирует модулятор 50, потому что напряжение на входах 57 и 58 модулирует в небольшой степени ток i1 и наложенную составляющую тока несущей. Это может быть улучшено заменой резистора R11 транзисторной схемой, работающей как генератор стабильного тока. Резистор R12 тогда подсоединяется соответствующим образом к управляющему входу этого транзисторного генератора тока для модуляции тока i1 напряжением VCAR. Частотный диапазон и максимально выдаваемое выходное напряжение VOUT существенно увеличиваются. Результатом является то, что не весь ток на несущей частоте, текущий в резисторе R12, проходит через транзисторы Q1 и Q2 в качестве коллекторных токов i2 и i3.

В противоположность другим схемам модуляторов с подавлением несущей модулятор 50 работает линейным образом. Выходное напряжение модулятора VOUT остается неискаженным, за счет чего избегают необходимости фильтрации фильтром нижних частот выходного напряжения или установки фильтра-ловушки на вторую гармонику на выходе 51 модулятора 50. Еще одно преимущество модулятора 50 заключается в том, что несущая частота может изменяться при работе без ухудшения модуляции. Таким образом, если даже несущая частота не является чистой синусоидой, модулированное выходное напряжение остается неискаженным. Эти преимущества частично