Производные циклопентан- или циклопентен -- аминокислот и их соли, композиция, активная в отношении штаммов s.aureus candida и trichophyton
Реферат
Предложены циклопентан- или циклопентен--аминокислот формулы I, где A, B, D, E, G, L, M и T означают H, галоген, OH, возможно замещенный C1-C8-алкил или B и D, E и G или L и M означают остаток формулы =CR6R7 или = N-OH, или E и G или B и D вместе означают =0, R1 - H, C1-C8-алкил; R2 - H, аминозащитная группа, C1-C8-алкил, C1-C8-ацил, бензоил или остаток аминоксилоты -CO-chr9-NHR10; R3 - H, возможно замещенный C1-C8-алкил и их соли. Соединения формулы I являются биологически активными соединениями и могут использоваться в композиции, активной в отношении штаммов S.aureus, Candida и Trichophyton. 2 с. и 3 з.п.ф-лы, 5 табл.
Изобретение относится к новым химическим соединениям с ценными свойствами, в частности к производным циклопентан- или циклопентен--аминокислот общей формулы (I) где A, B, D, E, G, L, M и T одинаковые или различные и означают водород, галоген, гидроксил, линейный или разветвленный алкил с 1 - 8 атомами углерода, который может быть замещен галогеном, гидроксилом, фенилом, бензилокси- или карбоксигруппой или группой формулы -NR4R5, где R4 и R5 одинаковые или различные и означают водород, фенил или линейный или разветвленный алкил с 1 - 6 атомами углерода, причем по меньшей мере один из заместителей A, B, D, E, L, M и T не означает водород, или B и D, E и G или L и M соответственно вместе означают остаток формулы где R6 и R7 одинаковые или различные и означают водород, галоген, линейный или разветвленный алкил с 1 - 8 атомами углерода, бензил или фенил, или E и G или B и D вместе означают остаток =0, R1 означает водород или линейный или разветвленный алкил с 1 - 8 атомами углерода, R2 означает водород, аминозащитную группу, линейный или разветвленный алкил с 1 - 8 атомами углерода, который может быть замещен формилом или линейным или разветвленным ацилом с 1 - 6 атомами углерода, или фенилом или бензоилом, линейный или разветвленный ацил с 1 - 8 атомами углерода, бензоил или остаток аминокислоты формулы где R9 означает водород или циклоалкил с 3 - 8 атомами углерода, линейный или разветвленный алкил с 1 - 8 атомами углерода, который может быть замещен группой формулы -NR11R12 или R13-OC-, где R11 и R12 независимо друг от друга означают водород, линейный или разветвленный алкил с 1 - 8 атомами углерода или фенил, R13 означает гидросил, бензиокси, алкокси с 1 - 6 атомами углерода, R10 означает водород или аминозамещенную группу, R3 - означает водород, линейный или разветвленный алкил с 1 - 8 атомами углерода, возможно замещенный фенилом, и их соли. Под солями понимают, в частности, кислотно-аддитивные соли. Предпочтительными являются физиологически переносимые соли. К кислотам, образующим соли, относятся предпочтительно галоидводородные кислоты, как, например, хлористоводородная кислота и бромистоводородная кислота, в частности хлористоводородная кислота, далее фосфорная кислота, азотная кислота, серная кислота, моно- и бифункциональные карбоновые кислоты и гидроксикарбоновые кислоты, как, например, уксусная кислота, малеиновая кислота, малоновая кислота, щавелевая кислота, глюконовая кислота, янтарная кислота, фумаровая кислота, винная кислота, лимонная кислота, салициловая кислота, сорбиновая и молочная кислоты, а также сульфокислоты, как, например, п-толуолсульфокислота, 1,5-нафталиндисульфокислота или камфарсульфокислота. Защитными группами в рамках настоящего изобретения являются обычно используемые в пептидной химии остатки. К ним относятся бензилоксикарбонил, 3,4-диметоксибензилкарбонил, 3,5-диметоксибензилоксикарбонил, 2,4-диметоксибензилоксикарбонил, 4-метоксибензилоксикарбонил, 4-нитробензилоксикарбонил, 2-нитробензилоксикарбонил, 2-нитро-4,5-диметоксибензилоксикарбонил, метоксикарбонил, этоксикарбонил, трет-бутоксикарбонил, аллилоксикарбонил, винилоксикарбонил, 2-нитробензилоксикарбонил, 3,4,5-триметоксибензилоксикарбонил, фталоил, 2,2,2-трихлорэтоксикарбонил, 2,2,2-трихлор-трет. бутоксикарбонил, ментилоксикарбонил, 4-нитрофеноксикарбонил, флуоренил-9-метоксикарбонил, формил, ацетил, пропионил, пивалоил, 2-хлорацетил, 2-бромацетил, 2,2,2-трифторацетил, 2,2,2-трихлорацетил, бензоил, бензил, 4-хлорбензоил, 4-бромбензоил, 4-нитробензоил, фталимидогруппу, изовалероил или бензилоксиметилен, 4-нитробензил, 2,4-динитробензил, 4-нитрофенил или 2-нитрофенилсульфенил. Предлагаемые соединения могут существовать в стереоизомерных формах, которые имеются в виде изображения и зеркального изображения (энантиомеры) или не имеются в виде изображения и зеркального изображения (диастереомеры), предпочтительно в виде смеси диастереомеров или в виде чистых цис- или транс-изомеров. Изобретение относится также к антиподам, рацематам, смесям диастереомеров, а также чистым изомерам. Рацематные формы, также как и диастереомеры, можно разделять известным способом на чистые стереоизомерные компоненты. Разделение на чистые стереоизомеры проводят, например, путем хроматографического расщепления рацематов диастереомерных эфиров и амидов на оптически активных фазах. Кроме того, возможна кристаллизация диастереомерных солей. Предпочтительными являются соединения общей формулы (I), где A, B, D, E, G, L, M и T одинаковые или различные и означают водород, галоген, гидроксил или линейный или разветвленный алкил с 1 - 6 атомами углерода, который может быть замещен галогеном, гидроксилом, бензилоксигруппой или группой формулы -NR4R5, где R4 и R5 одинаковые или различные и означают водород или линейный или разветвленный алкил с 1 - 4 атомами углерода, причем по меньшей мере один из вышеуказанных заместителей A, B, D, E, G, L, M и T не означает водород, или B и D, E и G или L и M соответственно вместе означают остаток формулы где R6 и R7 одинаковые или различные и означают водород, фтор, хлор, бром, линейный или разветвленный алкил с 1 - 6 атомами углерода, бензил или фенил, или E и G или B и D вместе означают остаток =0, R1 означает водород или линейный или разветвленный алкил с 1 - 6 атомами углерода, R2 означает водород, трет.бутоксикарбонил, бензил, 9-флуоренилметилоксикарбонил, линейный или разветвленный алкил с 1 - 6 атомами углерода, который может быть замещен формилом, линейным или разветвленным ацилом с 1 - 4 атомами углерода, фенилом или бензилом, линейный или разветвленный ацил с 1 - 6 атомами углерода, бензоил или остаток аминокислоты формулы где R9 означает водород, линейный или разветвленный алкил с 1 - 6 атомами углерода, R10 означает водород, трет.бутоксикарбонил, флуоренил-9-метоксикарбонил, R3 означает водород, линейный или разветвленный алкил с 1 - 6 атомами углерода или бензил, и их соли. Особенно предпочтительными являются соединения формулы (I), где A, B, D, E, G, L, M и T одинаковые или различные и означают водород, фтор, хлор, бром, гидроксил или линейный или разветвленный алкил с 1 - 4 атомами углерода, который может быть замещен гидроксилом или бензилоксилом, причем по меньшей мере один из вышеуказанных заместителей не означает водород, или B и D, Е и G или L и M соответственно вместе означают остаток формулы где R6 и R7 одинаковые или различные и означают водород, фтор, хлор, бром, линейный или разветвленный алкил с 1 - 4 атомами углерода, или фенил, или E и G, или B и D соответственно вместе означают остаток =0, R1 означает водород или линейный или разветвленный алкил с 1 - 4 атомами углерода, R2 означает водород, бензил, трет.бутоксикарбонил, 9-флуоренилметоксикарбонил, линейный или разветвленный алкил с 1 - 4 атомами углерода, линейный или разветвленный ацил с 1 - 4 атомами углерода или остаток аминокислоты формулы где R9 означает водород, линейный или разветвленный алкил с 1 - 4 атомами углерода, R10 означает водород, трет.бутоксикарбонил или 9-флуоренилметоксикарбонил, R3 означает водород или линейный или разветвленный алкил с 1 - 4 атомами углерода, и их соли. Новые соединения общей формулы (I) можно получать способами-аналогами, например следующими способами. а) Соединения общей формулы (II) где A, B, D, L, M и T имеют указанное выше значение, переводят в органическом растворителе, предпочтительно диоксане, сначала с (С1-С3)-триалкилсилилазидами, затем с эфирами, в присутствии воды в соединения общей формулы (III) где A, B, D, L, M и T имеют указанное выше значение, и в следующей стадии при помощи кислот, предпочтительно соляной кислоты, переводят с раскрыванием кольца в соединения общей формулы (Ia) где A, B, D, L, M и T имеют вышеуказанное значение, с последующим выделением, при необходимости, кислотами, предпочтительно соляной кислотой, или б) соединения общей формулы (IV) где A, B, D, E, L, M и T имеют указанное выше значение, взаимодействием с хлорсульфонилизоцианатом переводят сначала в соединения общей формулы (V) где A, B, D, E, L, M и T имеют указанное выше значение, и затем при помощи кислот, предпочтительно соляной кислоты, с ракрыванием кольца освобождают аминовую и карбоксильную функцию, или в) соединения общей формулы (VI) где B, D, E, G, L, M и T имеют указанное выше значение и R15 означает С1-С4-алкил, взаимодействием с аминами общей формулы (VII) H2N-R16 (VII), где R16 означает бензил, который может быть замещен галогеном, нитрогруппой, цианогруппой или алкилом, содержащим до 4 атомов углерода, или остаток формулы -CH(C6H4-nOCH3)2, переводят в органическом растворителе, при необходимости, в присутствии основания в соединения общей формулы (VIII) где B, D, E, G, L, M, R15 и R16 имеют указанное выше значение, и затем двукратным гидрированием сначала восстанавливают двойную связь, затем освобождают аминофункцию и в последней операции омыляют кислотой эфир карбоновой кислоты, и получают производные заместителей А - Т, при необходимости с предварительным блокированием аминофункции обработкой защитных групп обычными методами, например окислением, восстановлением или алкилированием, и в случае кислоты омыляют сложный эфир обычными способами, а в случае чистых энантиомеров проводят расщепление рацематов. Способы могут быть пояснены следующими схемами: В качестве растворителя для отдельных путей синтеза а), б), в) можно использовать воду и все инертные органические растворители, не изменяющиеся в условиях реакции. К ним относятся спирты, например метанол, этанол, пропанол, изопропанол, простые эфиры, как, например, простой диэтиловый эфир, диоксан, диизопропиловый эфир, тетрагидрофуран, монометиловый и диметиловый эфиры гликоля, галогенированные углеводороды, как хлороформ или метиленхлорид, или амиды, как, например, диметилформамид, диметилацетамид или триамид гексаметилфосфорной кислоты, или ледяную уксусную кислоту, диметилсульфоксид, ацетонитрил или пиридин. Предпочтительными являются диизопропиловый эфир, диэтиловый эфир, диоксан, метанол, этанол и дихлорметан. Температура реакции варьируется в широком интервале. В основном работают при температуре от -78oС до +150oС, предпочтительно от -10oС до +100oС. Взаимодействие проводят при нормальном давлении, а также при повышенном или пониженном давлении (например 0,5 - 80 бар). В основном работают при нормальном давлении или при повышенном давлении от 3 до 80 бар. При осуществлении вариантов способа а), б) и в) соотношение участвующих в реакции веществ может быть любым. В основном работают, однако, с молярными соотношениями реагентов. Выделение и очистку соединений согласно изобретению проводят предпочтительно таким образом, что отгоняют в вакууме растворитель и полученный, при необходимости, после охлаждения льдом кристаллический остаток перекристаллизовывают из подходящего растворителя. В некоторых случаях может быть необходимым полученные соединения очищать хроматографией. В качестве окислителя пригодны, например, перекись водорода, периодат натрия, надкислоты, как м-хлорпербензойная кислота, или перманганат калия. Предпочтительным является перекись водорода, м-хлорпербензойная кислота и периодат натрия. В качестве оснований годятся органические амины (триалкил(С1-С6)амины), например триэтиламин, или гетероциклы, как пиридин, метилпиперидин, пиперидин или морфолин. Предпочтительным является триэтиламин. В качестве кислот для раскрытия кольца (V) пригодны в основном минеральные кислоты. Предпочтительными являются хлористоводородная кислота, бромистоводородная кислота, серная кислота, фосфорная кислота или смеси названных кислот. Предпочтительной является хлористоводородная кислота. В качестве кислот для деблокирования (III) пригодны С1-С6-карбоновые кислоты, например уксусная или пропионовая. Предпочтительной является уксусная кислота. Кислоты применяются в основном в количестве 2 - 30 моль, предпочтительно 5 - 15 моль, в расчете на 1 моль соединения формулы (III) или (V). Омыление сложного эфира карбоновой кислоты проводят обычными способами, обрабатывая эфир в инертном органическом растворителе обычными основаниями, причем образовавшиеся сначала соли могут быть переведены обработкой кислотой в свободные карбоновые кислоты. Омыление эфира карбоновой кислоты может быть проведено с одной из вышеназванных кислот. В качестве основания можно использовать обычно используемые для омыления неорганические основания. Предпочтительно используют гидроокиси щелочных или щелочно-земельных металлов, как, например, гидроокись натрия, калия или бария, или карбонаты щелочных металлов, как, например, карбонат натрия или калия, или бикарбонат натрия, или алкоголяты, например метилат или этилат натрия, метилат или этилат калия или трет.бутилат калия. Особенно предпочтительно используют гидроокись натрия или калия. В качестве растворителя при омылении можно использовать воду или органические растворители, обычно используемые для омыления. Предпочтительно используют спирты, как, например, метанол, этанол, пропанол, изопропанол или бутанол, простые эфиры, как, например, тетрагидрофуран или диоксан, диметилформамид или диметилсульфоксид. Особенно предпочтительно используют спирты как, например, метанол, этанол, пропанол или изопропанол. Также возможно использовать смеси указанных растворителей. Обычно омыление осуществляют при температуре от 0oС до +100oС, предпочтительно от +20oС до +80oС. Обычно омыление осуществляют под атмосферным давлением. Однако также возможно осуществлять его под повышенным или пониженным давлением, например под давлением от 0,5 до 5 бар. При осуществлении омыления основание или кислоту обычно используют в количестве от 1 до 3 моль, предпочтительно от 1 до 1,5 моль, в пересчете на 1 моль сложного эфира. Особенно предпочтительно используют молярное количество реагентов. При проведении реакции сначала получают соли предлагаемых соединений в качестве промежуточных продуктов, которые можно выделять. Предлагаемые кислоты получают путем обработки карбоксилатов обычными неорганическими кислотами. К ним предпочтительно принадлежат минеральные кислоты, как, например, хлористоводородная кислота, бромистоводородная кислота, серная кислота или фосфорная кислота. При этом при получении карбоновых кислот целесообразным оказалось подкисление основной реакционной смеси омыления на второй стадии без выделения карбоксилатов. Затем кислоты можно выделять известными приемами. Кислотно-аддитивные соли соединений формулы (I) могут быть просто получены обычными способами, например растворением соединения формулы (I) в подходящем растворителе и добавлением кислоты, например хлористоводородной, выделены известным способом, например фильтрацией, и при необходимости очищены промывкой инертным органическим растворителем. Отщепление аминозащитных групп происходит известным способом. Перевод двойных связей в карбонильные функции происходит озонолизом и восстановлением озонида восстановительным агентом, например диметилсульфоксидом, цинком или (С1-С3)-триалкилфосфином. Восстановление алкоксикарбонильных соединений или альдегидов до соответствующих спиртов обычно проводят гидридами, как, например, боргидридом натрия или калия, предпочтительно боргидридом натрия, в среде инертных растворителей, как, например, простых эфиров, углеводородов или спиртов или в среде их смесей, предпочтительно в среде простых эфиров, как, например, простого диэтилового эфира, тетрагидрофурана или диоксана, или спиртов, как, например, этанола, в случае альдегидов предпочтительно боргидридом натрия в этаноле, при температуре 0oС - 150oС, предпочтительно 20 - 100oС, при атмосферном давлении. Введение двойных связей происходит в основном переводом спиртов в соответствующие мезилаты, тозилаты, бромиды, иодиды или арилселенильные соединения предпочтительно с 2-нитрофенилселеноцианатом и три-н-бутилфосфином и последующим отщеплением отходящих групп основаниями, предпочтительно одним из вышеприведенных органических атомов, или отщеплением селенильных групп окислением предпочтительно перекисью водорода в смеси воды и тетрагидрофурана. В качестве растворителей для алкилирования пригодны все обычные органические растворители, не меняющиеся в условиях реакции. К ним предпочтительно принадлежат простые эфиры, как диэтиловый эфир, диоксан, тетрагидрофуран, гликольдиметиловый эфир, или углеводороды, такие, как, например, бензол, толуол, ксилол, гексан, циклогексан, или нефтяные фракции, или галогенированные углеводороды, такие, как, например, дихлорметан, трихлорметан, тетрахлорметан, дихлорэтилен, трихлорэтилен или хлорбензол, или сложный этиловый эфир уксусной кислоты, триэтиламин, пиридин, диметилсульфоксид, диметилформамид, амид гексаметилфосфорной кислоты, ацетонитрил, ацетон или нитрометан. Кроме того, можно также использовать смеси упомянутых растворителей. Предпочтительно используют дихлорметан. Алкилирование проводят в указанных выше растворителях при температуре от 0oС до +150oС, предпочтительно при комнатной температуре и до +100oС, при нормальном давлении. Гидрирование (восстановление, отщепление защитных групп) проходит в основном в одном из вышеприведенных растворителей, таких как спирты, например метанол, этанол или пропанол, в присутствии в качестве катализатора редкого металла, такого как платина, платина на угле, палладий, палладий на животном угле или никель Ренея, в случае двойной связи соединения общей формулы (VIII) предпочтительным является гидрирование водородом с платиной или палладием. В качестве катализатора применяются в основном кислоты. К ним относятся предпочтительно неорганические кислоты, например соляная или серная кислота, или органические сульфо- или карбоновые кислоты, например метансульфокислота, этансульфокислота, бензолсульфокислота, толуолсульфокислота, уксусная или пропионовая кислота. Гидрирование проводят при нормальном, повышенном или пониженном давлении (например 0,5 - 5 бар). Катализаторы и основания применяют в основном в количестве 0 - 10 моль, предпочтительно 1,5 - 3,5 моль, в пересчете на 1 моль соединений общих формул (IV), (V), (VI) или (VIII). Кислоты применяют в основном в количестве 2 - 30 моль, предпочтительно 5 - 15 моль, в пересчете на 1 моль соединений общих формул (IV), (V), (VI) или (VIII). Соединения общих формул (II) большей частью являются новыми и могут быть получены, например, тем, что соединения общей формулы (IX) где A, B, D, L, M и T имеют указанное выше значение, переводят в соответствующие дикарбоновые кислоты сначала щелочным омылением, предпочтительно гидроокисью лития в воде в одном из вышеприведенных растворителей, предпочтительно тетрагидрофуране, с последующей обработкой ангидридом пропионовой кислоты. Соединения общей формулы (IX) являются известными или могут быть получены известными способами (см. H.J. Gais, J. Org. Chem. 1989, 54, 5115). Соединения общих формул (V) и (VIII) являются новыми и могут быть получены одним из вышеприведенных способов. Соединения общей формулы (IV) сами по себе известны или могут быть получены известными способами. Соединения общей формулы (VI) большей частью известны или могут быть получены описанным в литературе способом (см. Joc. 1983, 48, 5364; JACS, 1951, 73, 4286; JACS, 1978, 100, 6728). Амины общей формулы (VII) являются известными и могут быть получены известными способами или имеются в продаже. Соединения общей формулы (Ia) являются новыми и могут быть получены одним из приведенных выше способов. Чистые энантиомеры могут быть получены из рацемата тем, что сначала блокируют аминофункцию защитной группой, предпочтительно флуоренил-9-метоксикарбонилом, затем после взаимодействия с хиральными аминами, например фенэтиламином или (-)-хинином, предпочтительно с фенэтиламином, кристаллизуют соответствующие диастереомерные соли и затем отщепляют защитную группу, например, с жидким аммиаком. Данный способ может быть пояснен следующей схемой: Дальнейшим объектом изобретения является активная в отношении штаммов S. аureus, Candida и Trichophyton композиция, содержащая соединение вышеприведенной общей формулы (I) или его соль в эффективном количестве и фармацевтически приемлемый носитель. Активность предлагаемой композиции подтверждается следующими опытами. Опыт А Логарифметически размножающуюся культуру S. аureus 133 разбавляют физиологическим раствором поваренной соли, так чтобы можно было ввести мышам путем инъекции в 0,25 мл 1 108 бактерий. Лечение инфицированных животных происходит спустя 0,5 и 3 часа после заражения. Выживание мышей регистрировали вплоть до 6-го дня после инфицирования. Результаты опыта представлены в таблицах 1 и 2. Соединение по примеру 32 проявляет по сравнению с необработанным контролем зависящую от дозы терапевтическую активность. Аналогичным образом были получены приведенные в таблице 3 результаты испытаний. При этом исследуемые соединения давались либо подкожно (далее ПК), либо орально (далее о). Опыт Б Путем опыта с градиентом разбавления на агаровых пластинках с использованием набора Iso-Sensitest фирмы Oxoid определяют минимальную концентрацию торможения (МКТ), достигаемую соединением примера N 32. При этом подготовляют ряд агаровых пластинок, содержащих активное вещество в снижающихся по двойному разбавлению концентрациях. На агаровые пластинки с помощью прибора Multipoint (фирмы Denley) подают указанные в таблице 4 штаммы, которые предварительно разбавляют с обспечением содержания по 104 образующих колоний частиц в каждом пятне. Подготовленные таким образом агаровые плитки инкубируют при температуре 37oС, и рост штаммов определяют по истечении примерно 20 часов. Значение МКТ (кг/мл) стоит за минимальную концентрацию активного вещества, при которой невооруженным глазом не наблюдалось роста. Результаты опыта сведены в таблице 4. Таблица 4 Значения минимальных концентраций торможения (мкг/мл): Штамм - МКТ соединения примера N 32 в мкг/мл S. aureus 133 - 2 S. aureus 48N - <0,25 S. aureus 25701 - 0,5 Опыт В Аналогично опыту Б определяют МКТ соединения примера N 32 в мг/л в отношении штаммов, указанных в таблице 5. Таблица 5 Штамм - МКТ соединения примера N 32 в мг/л Candida albicans - 0,25 Candida krusei - 1,0 Candida tropicalis - 4,0 Candida glabrata - 0,4 Trichophyton mentagrophytes - <1 Активное вещество может быть на одном или нескольких носителях или находиться в микрокапсулированном виде. Вышеперечисленные фармацевтические композиции могут содержать кроме соединений согласно изобретению также другие фармацевтические соединения. Препаративные формы могут быть получены путем добавления к активному веществу растворителей и/или носителей, при необходимости, с применением эмульгаторов и/или диспергаторов, причем при использовании воды в качестве разбавителя могут быть использованы органические растворители в качестве вспомогательного растворителя. Введение препарата происходит обычным способом, предпочтительно орально или парентально, в частности чрезязычно или внутривенно. В случае парентального введения могут использоваться растворы активного вещества с применением подходящего жидкого носителя. В основном, для достижения желаемого результата предпочтительным является введение активного вещества в количестве 0,5 - 500, предпочтительно 5 - 100 мг/кг от веса тела каждые 24 часа, при желании в виде многократных доз. Одноразовая доза содержит активное вещество в количестве 1 - 80, в частности 3 - 30 мг/кг веса тела. Обычно является предпочтительной для достижения эффективного результата при внутривенном введении дозировка 0,001 - 10 мг/кг, предпочтительно 0,01 - 5 мг/кг, а при оральном введении дозировка 0,01 - 25 мг/кг, предпочтительно 0,1 - 10 мг/кг от веса тела. Также возможны отклонения от указанных количеств в зависимости от веса тела или пути введения, от индивидуального отношения к медикаменту, вида дозировки, времени и интервала введения препарата. Так, в некоторых случаях являются достаточными количества меньше минимальных, а в других случаях - больше максимальных количеств. В случае введения больших количеств является целесообразной многоразовая дозировка в течение дня. Нижеследующие примеры поясняют получение исходных и промежуточных соединений для получения конечных продуктов формулы (I). Пример I 1,2-цис-4-метилен-циклопентан-1,2-дикарбоновая кислота К раствору диэтилового эфира 1,2-цис-4-метилен-циклопентан-1,2-дикарбоновой кислоты (19,0 г; 84 ммоль) в 100 мл тетрагидрофурана прикапывают при 0oС раствор гидрата гидроокиси лития (7,8 г; 185 ммоль) в 150 мл воды. Полученный раствор перемешивают 20 часов при комнатной температуре, удаляют в вакууме тетрагидрофуран и остаток экстрагируют 40 мл этилового эфира. Доводят с помощью 10%-ной соляной кислоты водную фазу до pH 2 и трижды экстрагируют по 200 мл эфиром уксусной кислоты. Объединенные эфирные фазы сушат над сульфатом натрия и растворитель удаляют в вакууме. Выход: 13,4 г (93% от теории) Т.пл.: 116 - 120oС C8H10O4 (М.в. 170,2) Пример II Ангидрид 1,2-цис-4-метилен-циклопентан-1,2-дикарбоновой кислоты Раствор соединения по примеру I (13,0 г; 76,5 ммоль) в 65 мл ангидрида пропионовой кислоты кипятят 3 часа с обратным холодильником. Растворитель удаляют при 60oС/0,5 торр и остаток перегоняют. Выход: 10,0 г (86% от теории) Т.кип.: 130 - 140oС/0,1 торр Т.пл.: 47 - 49oС C8H8O3 (М.в. 152,1) Пример III 6-метилен-циклопентано[3,4-d]оксазин-2,4-(1Н)-дион Раствор соединения по примеру II (8,8 г, 58 ммоль) и триметилсилилазида (7,9 г, 69 ммоль) в 60 мл нагревают 2 часа при 80oС. Растворитель удаляют в вакууме, остаток вносят в 80 мл эфира и смешивают с водой (0,52 г, 29 ммоль). Смесь интенсивно перемешивают 5 минут и выдерживают 2 дня при 6oС. Выпавший продукт отфильтровывают и промывают диэтиловым эфиром. Выход: 4,2 г (43% от теории) Т.пл.: 145oС (разл.) C8H9NO3 (М.в. 167,2) Пример IV Метиловый эфир 1,2-цис-2-N-(трет. бутилоксикарбонил)-амино-4-(2-нитрофенил)-селенил-циклопентан-карбоновой кислоты Раствор соединения по примеру 63 (3,30 г; 12,7 ммоль) в 50 мл тетрагидрофурана смешивают в среде аргона с 2-нитрофенилселеноцианатом (3,46 г; 15,2 ммоль) и затем с три-н-бутилфосфином (3,08 г; 15,2 ммоль). Смесь перемешивают 1 час при комнатной температуре, растворитель удаляют в вакууме и остаток хроматографируют на силикагеле (элюент смесь эфира с петролейным эфиром 2 : 1). Выход: 4,45 г (79% от теории) Соотношение диастереомеров D1 : D2 = 3 : 1 Rf = 0,28 и 0,39 (эфир/петролейный эфир 2 : 1) C18H24N2O6Se (М.в. 443,4) Общее описание получения метиловых эфиров 2-бензиламино-циклопент-1-ен-карбоновой кислоты Раствор замещенного метилового эфира 2-гидрокси-циклопентан-карбоновой кислоты (160 ммоль) и бензиламина (34,2 г; 320 ммоль) в 540 мл дихлорметана смешивают с n-толуолсульфокислотой и 108 г молекулярного сита (4А) и нагревают 24 часа до кипени с обратным холодильником с водоотделителем. Смесь фильтруют и фильтрат сгущают в вакууме. Остаток хроматографируют на силикагеле. Пример V Метиловый эфир 2-бензиламино-4,4-диметил-циклопент-1-ен-карбоновой кислоты Аналогично вышеприведенной прописи получают целевое соединение. Выход: 30,0 г (72% от теории) Rf = 0,49 (петролейный эфир/эфир уксусной кислоты 3 : 1) C16H21NO3 (М.в. 259,3) Пример VI Метиловый эфир 2-бензиламино-5-метил-циклопент-1-ен-карбоновой кислоты Аналогично вышеприведенной прописи получают целевое соединение. Выход: 27,9 г (71% от теории) Rf = 0,42 (эфир/петролейный эфир 5 : 1) C15H19NO2 (М.в. 245,3) Пример VII Метиловый эфир 2-бензиламино-3-метил-циклопент-1-ен-карбоновой кислоты Аналогично вышеприведенной прописки получают целевое соединение. Выход: 20,0 г (51% от теории) Rf = 0,45 (эфир/петролейный эфир 5 : 1) C15H19NO2 (М.в. 245,3) Пример VIII Диэтиловый эфир 4-этилиден-циклопентан-1,2-дикарбоновой кислоты К раствору трет.бутанолята калия (24,8; 220 ммоль) в 1000 мл диэтилового эфира прибавляют при комнатной температуре в среде аргона этил-трифенилфосфонийбромид (100 г; 270 ммоль) и перемешивают 20 часов при комнатной температуре. При 0oС прикапывают раствор диэтилового эфира 4-циклопентанон-1,2-дикарбоновой кислоты (15,8; 69 ммоль) в 120 мл диэтилового эфира и перемешивают 1 час при 0oС. Смешивают с 300 мл воды, промывают органическую фазу насыщенным раствором поваренной соли, сушат над сульфатом натрия, фильтруют и удаляют в вакууме растворитель. Остаток хроматографируют на силикагеле (петролейный эфир/эфир 2 : 1). Выход: 13,1 г (79% от теории) смеси цис/транс-диастереомеров. 1Н-ЯМР (дейт. хлороформ): б = 1,23 (т, 6Н), 1,58 (м, 3Н), 2,3 - 2,6 (м, 4Н), 3,0 - 3,22 (м, 2Н), 4,17 (кв, 4Н), 5,35 (см, 1Н) С13H20O4 Пример IX 4-этилиден-циклопентан-1,2-дикарбоновая кислота К раствору соединения по примеру VIII (13,1 г; 54,5 ммоль) в 70 мл тетрагидрофурана прикапывают при 0oС раствор гидрата гидроокиси лития (51,1 г; 120 ммоль) в 130 мл воды. Раствор перемешивают 20 часов при комнатной температуре, удаляют в вакууме тетрагидрофуран и остаток экстрагируют один раз с 40 мл эфира. Водную фазу доводят 10%-ной соляной кислотой до значения pH 2 и трижды экстрагируют по 200 мл эфира уксусной кислоты. Объединенные уксусно-эфирные фазы сушат над сульфатом натрия и растворитель удаляют в вакууме. Выход: 9,0г (90% от теории) смеси диастереомеров Т.пл.: 170oС С9H12O4 (М.в. 184,2) Пример X Ангидрид 1,2-цис-4-этилиден-циклопентан-1,2-дикарбоновой кислоты Раствор соединения по примеру IX (8,25 г; 44,7 ммоль) в 37 мл ангидрида пропионовой кислоты кипятят 3 часа с обратным холодильником. Растворитель удаляют при 60oС/0,5 торр и остаток перегоняют. Выход: 2,0 г (27% от теории) Т.пл.: 150oС/0,1 торр (перегоняют в шариковой трубке) С9H18O2 (М.в. 166,2) Пример XI 6-этилиден-циклопентан[3,4-d]оксазин-2,4-(1Н)-дион Раствор соединения по примеру X (2,0 г; 12,0 ммоль) и триметилсилилазида (1,66 г; 14,4 ммоль) в 12 мл диоксана нагревают 2 часа при 80oС. Растворитель удаляют в вакууме, остаток вносят в 13 мл эфира и смешивают с водой (0,22 г; 12 ммоль). Смесь интенсивно перемешивают 5 минут и выдерживают 3 часа при 6oС. Выпавший продукт отфильтровывают и промывают эфиром. Выход: 0,48г (22% от теории) диастереозомерной смеси Т.пл.: > 250oС (разл.) С9H11NO3 (М.в. 181,2) Пример XII Диэтиловый эфир 4-бензилиден-циклопентан-1,2-дикарбоновой кислоты К раствору трет. бутанолята калия (22,0 г; 196 ммоль) в 1200 мл диэтилового эфира прибавляют при комнатной температуре в среде аргона хлорид бензил-трифенилфосфония (95,4 г; 245 ммоль) и перемешивают 4 часа при комнатной температуре. В заключение прикапывают раствор диэтилового эфира 4-циклопентанон-1,2-дикарбоновой кислоты (14,0 г; 61,3 ммоль) при 0oС и кипятят с обратным холодильником 8 дней. Дальнейшая обработка происходит аналогично примеру VIII. Выход: 15,9 г (86% от теории) цис/транс-изомеры Rf = 0,37; 0,43 (петролейный эфир/эфир 5 : 1) 1Н-ЯМР (дейт. хлороформ) : = 1,25 (2m, 6H), 2,70 - 3,35 (м, 6Н), 4,17 (кв., 4Н), 6,38 (см, 1Н), 7,12 - 7,40 (м, 5Н) С18H22O4 (М.в. 302,37) Пример XIII 4-бензилиден-циклопента-1,2-дикарбоновая кислота Целевое соединение получают аналогично примеру IX. Выход: 12,8 г (100%) Т.пл.: 172oС С14H14O4 (М.в. 246,26) Пример XIV Диэтиловый эфир 1,2-цис-4-дифторметилен-циклопентан-1,2-дикарбоновой кислоты К раствору диэтилового эфира 1,2-цис-4-циклопентанон-1,2-дикарбоновой кислоты (20,0 г; 87,6 ммоль) и дибромдифторметана (36,8 г; 175 ммоль) в тетрагидрофуране (400 мл) прикапывают при 0oС в среде аргона в течение 30 мин трис-(диметиламино)-фосфин (57,1 г; 350 ммоль). Медленно нагревают до комнатной температуры и еще час перемешивают при этой температуре. Смешивают с триэтиламином (17,6 г; 175 ммоль) и перемешивают 15 часов при комнатной температуре. После добавления 500 мл воды реакционную смесь экстрагируют диэтиловым эфиром (3 x 500 мл) и объединенные органические фазы промывают насыщенным раствором поваренной соли (2 х 300 мл), сушат над сульфатом натрия и сгущают в вакууме. Остаток хроматографируют на силикагеле (петролейный эфир/диэтиловый эфир 1 : 1). Выход: 5,93 г (27% от теории) 1Н-ЯМР (дейт. хлороформ) : = 1,28 (т, 6H), 2,55 - 2,90 (4Н), 3,17 (дт. , 2Н), 4,17 (кв., 4Н) С12H16F2O4 (М.в. 262,4) Пример XV 1,2-цис-4-дифторметилен-циклопентан-1,2-дикарбоновая кислота Целевое соединение получают аналогично примеру IX. Выход: 3,86 г (85% от теории) Т.пл.: 147 - 149oС С8H8F2O4 (М.в. 206,1) Пример XVI Ангидрид 4-дифторметилен-циклопентан-1,2-дикарбоновой кислоты Целевое соединение получают аналогично примеру X. Выход: 2,25 г (65% от теории) Т.пл.: 140 - 145oС/0,05 мбар (отгонка с шариковой трубкой) С8H6F2O3 (М.в. 188,1) Пример XVII 6-дифторметилен-циклопентано[3,4-d]оксазин-2,4-(1Н)-дион Целевое соединение получают аналогично примеру XI. Выход: 1,40 г (59% от теории) Т.пл.: 130oС (разл.) С8H7F2NO3 (М.в. 203,1) Пример XVIII Диэтиловый эфир 4,4-дифтор-циклопентан-1,2-дикарбоновой кислоты К раствору диэтилового эфира 4-циклопентанон-1,2-дикарбоновой кислоты (6,43 г; 28,2 ммоль) в 100 мл толуола прикапывают при 0oС диэтиламинотрифторид серы (11,28 г; 70 ммоль) и перемешивают 5 дней при комнатной температуре. Раствор выливают в ледяную воду, экстрагируют уксусным эфиром (2 х 200 мл), сушат органическую фазу над сульфатом натрия и удаляют растворитель в вакууме. Остаток хроматографируют на силикагеле (петролейный эфир/диэтиловый эфир 1: 1). Выход: 3,79 г (56% от теории) диастереомерной смеси. Rf = 0,65 (петролейный эфир/диэтиловый эфир 1 : 1) 1Н-ЯМР (дейтер. хлороформ) : = 1,28 (т, 6Н), 2,52 (см, 4Н), 3,29 (см, 2Н), 4,18 (кв, 4Н) С11H16O4F2 (М.в. 250,2) Пример XIX 4,4-дифтор-циклопентан-1,2-дикарбоновая кислота Целевое соединение получают аналогично примеру XI. Выход: 4,40 г (77% от теории) Т.пл.: 128oС С7H8O4F2 (М.в. 194,1) Пример XX Ангидрид 4,4-дифтор-циклопентан-1,2-дикарбоновой кислоты Целевое соединение получают аналогично примеру X. Выход: 2,90 г (75% от теории) Т. кип.: 150oC/0,15