Тороидальная турбина

Реферат

 

Тороидальная турбина, предназначенная для работы в качестве малоразмерного турбопривода, включает корпус 1 и охватывающее его с зазором рабочее колесо 2, совместно образующие тороидальный рабочий канал 3 из двух полуовальных сечений. На колесе установлены рабочие лопатки. На корпусе установлен разделитель, с винтовой канавкой 10, по разные стороны от которого размещены впускной 6 и выпускной 7 патрубки. Впускной патрубок 6 сообщен с рабочим каналом при помощи сопла с прямоугольным сечением среза, выпускной - при помощи окна 11. Срез сопла смещен относительно плоскости вращения колеса, проходящей через малые оси полуовальных образующих канала. Уплотнение по торцевым поверхностям рабочего колеса выполнено в виде лабиринта из кольцевых гребешков 12 и канавок, со стороны ответных поверхностей корпуса в канавки колеса обращены гребешки 13 с радиальными пропилами. Техническим результатом изобретения является повышение КПД турбины путем улучшения организации течения и уменьшения утечек. 27 з.п. ф-лы, 17 ил.

Изобретение относится к турбомашинам и предназначено для работы в качестве малоразмерного турбопривода.

Известны турбомашины (1, 2) тороидального (вихревого) типа, в которых поток газа, жидкости или пара, обладающий высокой потенциальной и кинетической энергией, многократно взаимодействуя с облопаченным рабочим колесом в торообразном канале, постепенно отдает ему свою энергию подобно тому, как это происходит многоступенчатой турбине. Благодаря этому обстоятельству такие турбины, рассчитанные на невысокие расходы рабочего тела, являются тем не менее низкооборотными в отличие от турбин обычного типа (осевых и центростремительных), частота вращения рабочих колес которых достигает сотен тысяч оборотов в минуту. Это очень затрудняет использование турбин обычного типа в качестве приводов. Современные малорасходные вихревые турбины имеют сравнительно невысокий КПД (0,2 - 0,45), обусловленный неорганизованностью течения и утечками рабочего тела. Примерно такой же уровень КПД имеют малорасходные турбины обычного типа, что в первую очередь связано с уменьшением числа Рейнольдса и применением принципа парциальности.

Из известных технических решений наиболее близким к заявляемой является машина (а. с. 979716, кл. F 04 D 17/06, опубл. 07.12.82 в Бюлл. N 45). Она содержит корпус с цилиндрическим выступом, на боковой поверхности которого выполнен рабочий канал, сообщенный с впускным и выпускным патрубками. В рабочем канале между патрубками установлен разделитель. В корпусе размещено рабочее колесо в виде стакана, охватывающего выступ, и на внутренней поверхности колеса расположен лопаточный канал с лопатками. При работе машины рабочее тело подается через впускной патрубок, многократно поступает в межлопаточные каналы колеса, а из них - в рабочий канал и, отдав энергию колесу, выводится через выпускной патрубок. КПД турбины составляет около 0,3. Ее невысокая эффективность обусловлена в первую очередь отсутствием организации течения на начальном участке взаимодействия потока с рабочим колесо, где поток имеет наиболее высокие энергетические характеристики, повышенными потерями при обтекании рабочих лопаток и утечками в зазорах.

Предлагаемое изобретение направлено на повышение КПД тороидальной турбины, что является его техническим результатом и обеспечивает повышенные потребительские свойства.

Технический результат достигается за счет того, что в турбине, содержащей корпус и охватывающее его с зазором рабочее колесо, совместно образующие тороидальный рабочий канал. Рабочие лопатки и разделитель, установленные в канале соответственно на колесе и на корпусе, впускной и выпускной патрубки, сообщенные с каналом по разные стороны от разделителя, тороидальный рабочий канал снабжен уплотнениями по торцевым поверхностям колеса и корпуса и в меридиональном сечении выполнен в виде двух полуовальных образующих, при этом впускной патрубок сообщен с каналом при помощи сопла, срез которого смещен относительно плоскости вращения колеса, проходящей через малые полуоси полуовальных образующих канала.

Кроме того, полуовальные образующие канала могут быть выполнены с шириной 2S на радиусе R зазора, а длины их малых полуосей соответственно А - в колесе, В - в корпусе могут находиться в соотношении A(R+A/2)/(SRsin) = 0,8-1,2, B(R-B/2)/(SRsin) = 0,8-1,2. Кроме того, впускной патрубок может быть направлен под острым углом к плоскости вращения колеса и выполнен конфузорным с плавным переходом к соплу.

Кроме того, срез сопла может быть выполнен прямоугольной формы.

Кроме того, ось сопла может быть параллельна плоскости вращения колеса, смещена по оси его вращения относительно этой плоскости на расстояние (0,3 - 0,7) S и направлена под углом = 15-45 к касательной зазора.

Кроме того, выпускной патрубок может быть сообщен с каналом при помощи окна, смещенного по оси вращения колеса относительно плоскости его вращения на расстояние (0 - 0,5) S в сторону, противоположную смещению оси сопла.

Кроме того, разделитель со стороны впускного патрубка может быть выполнен с винтовой канавкой для придания потоку спирального движения.

Кроме того, винтовая канавка разделителя может быть выполнена с шагом, равным длине среза сопла.

Кроме того, уплотнение по торцевым поверхностям может быт выполнено в виде лабиринта из кольцевых гребешков и канавок на колесе и ответных кольцевых канавок и гребешков высотой h на корпусе, причем на последних равномерно по окружности могут быть выполнены радиальные пропилы шириной d = (1 - 2)h.

Кроме того, рабочие лопатки могут быть выполнены в виде плоских пластин, установленных параллельно оси вращения колеса под углом = arcctg((cos+(0,14-0,20))/sin) к касательной зазора.

Кроме того, рабочие лопатки могут быть выполнены в виде плоских пластин так, что их плоскости скрещиваются с осью вращения колеса, а углы на входе в рабочее колесо больше, чем углы на выходе.

Кроме того, рабочие лопатки могут быть выполнены в виде аэродинамических профилей так, что углы на входе в рабочее колесо больше, чем углы на выходе.

Кроме того, в канале по окружности корпуса могут быть установлены направляющие лопатки.

Кроме того, направляющие лопатки могут быть установлены с шагом на входе меньшим, чем на выходе, и выполнены в виде аэродинамических профилей с постоянными по высоте углами входа 1 и выхода 2, причем по окружности корпуса от сопла к окну углы 1 могут возрастать от исходной величины (15 - 45)o до 90o, а углы 2 - уменьшаться от исходной величины (15 - 45)o до 0o.

Кроме того, рабочие и направляющие лопатки могут быть выполнены из аэродинамических профилей с переменными по высоте углами входа и выхода.

Кроме того, канал может быть выполнен диффузорным за счет постепенного увеличения малой полуоси В по длине канала.

Кроме того, для дополнительной связи канала с выпускным патрубком к окну может примыкать щель, одна из протяженных сторон которой лежит в плоскости, параллельной плоскости вращения колеса, на продолжении стороны окна, наиболее удаленной от плоскости вращения колеса в направлении оси его вращения.

Кроме того, щель может быть выполнена с постоянной шириной.

Кроме того, щель может быть выполнена с переменной шириной, увеличивающейся в сторону окна.

Кроме того, первая половина канала может быть выполнена диффузорной, а вторая - конфузорной за счет эксцентричности части канала, размещенной в корпусе, причем щель выполнена на протяжении конфузорной половины канала.

Кроме того, внутри канала может быть размещен тороидальный обтекатель шириной 2 = (0,4-0,55)2S, выполненный в меридиональном сечении в виде двух полуовальных частей с длинами малых полуосей a = ( 0,4 -0,55) А и b = (0,4 - 0,55)В, разделенных зазором на радиусе R и установленных соответственно в рабочем колесе и в корпусе.

Кроме того, тороидальный рабочий канал может быть выполнен в виде 2n примыкающих один к другому одинаковых каналов с общей осью, впускной патрубок может быть сообщен с каналами при помощи ресивера, размещенного в корпусе и разделителе, и n конфузорных сопел, расположенных симметрично относительно плоскостей примыкания каналов, выпускной патрубок может быть сообщен с рабочий каналом при помощи окон, которые для внутренних каналов объединены попарно и симметрично относительно плоскостей примыкания каналов.

Кроме того, корпусом и рабочим колесом может быть образован по меньшей мере один дополнительный тороидальный рабочий канал, каналы последовательно сообщены при помощи конфузорных патрубков, каждый из которых является впускным для предыдущего канала и впускным для последующего, причем меридиональное сечение у каждого последующего канала больше, чем у предыдущего.

Кроме того, между каналами со стороны корпуса, обращенной к зазору, могут быть размещены лабиринтные уплотнения в виде кольцевых канавок и гребешков.

Кроме того, зазор между корпусом и рабочим колесом может быть выполнен с переменным радиусом, увеличивающимся от предыдущего канала к последующему.

Кроме того, зазор между корпусом и рабочим колесом может быть выполнен коническим.

Кроме того, зазор между корпусом и рабочим колесом может быть выполнен ступенчатым.

Кроме того, по торцевым поверхностям корпуса и рабочего колеса между каналами дополнительно могут быть выполнены лабиринтные уплотнения из кольцевых гребешков и канавок на колесе и ответных кольцевых канавок и гребешков высотой h на корпусе, причем на последних равномерно по окружности могут быть выполнены радиальные пропилы шириной d = (1 - 2)h.

Сравнительный анализ предложенной турбины с протоитпом позволил выявить в первой наличие новых существенных признаков, а именно тороидальный рабочий канал снабжен уплотнениями по торцевым поверхностям колеса и корпуса, которые уменьшают утечки рабочего тела из канала и тем самым повышают КПД турбины, рабочий канал в меридиональном сечении выполнен в виде двух полуовальных образующих, что уменьшает деформации полей параметров рабочего тела и повышает КПД, впускной патрубок сообщен с каналом при помощи сопла, срез которого смещен относительно плоскости вращения колеса, проходящей через малые полуоси полуовальных образующих канала. Это способствует организации спирального движения рабочего тела в канале турбины и повышает ее КПД, полуовальные образующие канала выполнены с шириной 2S на радиусе R зазора, а длины их малых полуосей соответственно А - в колесе, В - в корпусе находится в соотношении A(R+A/2)/(SRsin) = 0,8-1,2, B(R-B/2)/(SRsin) = 0,8-1,2. Такие диапазоны изменения конструктивных соотношений создают условия для наименьшей деформации полей параметров рабочего тела при переходах из корпуса в колесо и обратно вследствие уменьшения изменения проходных сечений витков рабочего тела и позволяют получить наибольшее приращение КПД турбины за счет овализации образующих канала, впускной патрубок направлен под острым углом к плоскости вращения колеса и выполнен конфузорным с плавным переходом к соплу. Это ведет к резкому снижению потерь энергии при подводе рабочего тела к колесу, срез сопла выполнен прямоугольной формы, что способствует плотной "навивке" витков спирального движения рабочего тела в тороидальном канале турбины и тем самым снижает потери энергии, ось сопла параллельна плоскости вращения колеса, смещена по оси его вращения относительно этой плоскости на расстояние (0,3 - 0,7) S и направлена под углом = 15-45 к касательной зазора. Это, во-первых, также способствует плотной "навивке" витков спирального движения рабочего тела в канале, во-вторых, такая подача на вход в колеса непосредственно приводит к образованию крутящего момента на лопатках рабочего колеса, проходящих против среза сопла. Указанный диапазон углов обеспечивает максимальную работу на колесе турбины, выпускной патрубок сообщен с каналом при помощи окна, смещенного по оси вращения колеса относительно плоскости его вращения на расстояние (0 - 0,5) S в сторону, противоположную смещению оси сопла. Это во-первых, способствует обеспечению организованного спирального течения в рабочем канале непосредственно перед выпуском, во-вторых, увеличивает сектор взаимодействия и передачи энергии рабочего тела лопаткам вплоть до разделителя и тем самым дополнительно увеличивает эффективность турбины, разделитель со стороны впускного патрубка выполнен с винтовой канавкой, что способствует организации спирального движения рабочего тела с самого начала рабочего канала, увеличивая эффективность турбины, винтовая канавка разъединителя выполнена с шагом, равным длине среза сопла. Это обеспечивает плотность "навивки" витков рабочего тела с самого начала тороидального рабочего канала и тем самым снижает потери энергии в особенности на начальном участке, где они имеют наиболее существенное значение, уплотнение по торуевым поверхностям выполнено в виде лабиринта из кольцевых гребешков и канавок на колесе и ответных кольцевых канавок и гребешков высотой h на корпусе, причем на последних равномерно по окружности выполнены радиальные пропилы шириной d = (1 - 2)h. Наличие гребешков и канавок уменьшает потери рабочего тела, радиальные пропилы препятствуют перетечкам по щелям в окружном направлении из области высокого давления в районе сопла в область низкого давления, по направлению к окну и выпускному патрубку. Это уменьшение потерь значительно увеличивает эффективность турбины, рабочие лопатки выполнены в виде плоских пластин, установленных параллельно оси вращения колеса под углом = arctg((cos+(0,14-0,20))/sin) к касательной зазора. Такая зависимость для угла входа в рабочие лопатки обеспечивает безотрывное течение в межлопаточных каналах при оптимальном для данного типа турбин диапазоне отношений переносной (окружной) и абсолютной скоростей на входе в рабочие лопатки. Это уменьшает потери турбине, рабочие лопатки выполнены в виде плоских пластин так, что их плоскости скрещиваются с осью вращения колеса, а углы на входе в рабочее колесо больше, чем углы на выходе. Такой принцип установки лопаток обеспечивает конфузорность межлопаточных каналов, т.е. реактивный тип турбины. Кроме того, при этом может быть обеспечено равенство углов входа 1 и выхода 2 из части рабочего канала, размещенной в корпусе, т.е. плотная и равномерная "навивка" витков спирального течения в канале (по крайней мере на начальном его участке), уменьшающая потери, рабочие лопатки выполнены в виде аэродинамических профилей так, что углы на входе в рабочее колесо больше, чем углы на выходе. При этом обеспечиваются все те же особенности и преимущества течения, что и в предыдущем случае, однако использование специально спрофилированных лопаток вместо плоских пластин позволяет дополнительно снизить потери, в канале по окружности корпуса установлены направляющие лопатки, что способствует повышению организованности течения в рабочем канале и повышению эффективности турбины, направляющие лопатки установлены с шагом на входе меньшим, чем на выходе, и выполнены в виде аэродинамических профилей с постоянными по высоте углами входа 1 и выхода 2, причем по окружности корпуса от сопла к окну 1 углы возрастают от исходной величины (15 - 45)o до 90o, а углы 2 уменьшаются от исходной величины (15 - 45)o до 0o. Увеличение шага от входа к выходу из направляющих лопаток обеспечит расширение рабочего тела подобно тому, как это имеет место, например, в обычных многоступенчатых осевых турбинах, где увеличивается высота лопаток по ходу потока. Это, так же как и использование аэродинамических профилей, способствует снижению потерь. Описанный выше характер изменения углов при постепенном уменьшении скорости течения, обусловленном расширением потока и трением, позволит сохранить режим безотрывного хода в решетки рабочих и направляющих лопаток от начала и до конца рабочего канала. Это также обеспечит снижение потерь, рабочие и направляющие лопатки выполнены из аэродинамических профилей с переменными по высоте углами входа и выхода, что дополнительно повысит КПД турбины, канал выполнен диффузорным за счет постепенного увеличения малой полуоси В по длине канала. При отсутствии решетки направляющих лопаток с возрастающим от входа к выходу шагом такой способ выполнения рабочего канала обеспечит режим расширения рабочего тела, что, как уже было отмечено выше, приведет к снижению потерь, для дополнительной связи канала с выпускным патрубком к окну примыкает щель, одна из протяженных сторон которой лежит в плоскости, параллельной плоскости вращения колеса, на продолжении стороны окна, наиболее удаленной от плоскости вращения колеса в направлении оси его вращения. При отсутствии геометрического воздействия на поток путем расширения канала, либо путем увеличения шага направляющих лопаток, либо путем увеличения малой оси В по длине канала расширение рабочего тела, необходимое для снижения потерь, будет обеспечено с помощью так называемого расходного воздействия, за счет постепенного выхода части рабочего тела через протяженную щель остающиеся в канале основная часть рабочего тела будет иметь возможность расширения, и тем самым будет обеспечена возможность снижения потерь, щель выполнена с постоянной шириной, что представляет собой наиболее простой способ для реализации эффекта расходного воздействия, щель выполнена с переменной шириной, увеличивающейся в сторону окна. Такой вариант исполнения щели повысит эффект расходного воздействия, первая половина канала выполнена диффузорной, а вторая - конфузорной за счет эксцентричности части канала, размещенной в корпусе, причем щель выполнена на протяжении конфузорной половины канала. Сочетание диффузорности канала в первой части его длины, полученной технологически наиболее простым способом - за счет эксцентричности при его проточке и обеспечивающей геометрическое воздействие на поток, с расходным воздействием во второй его части, где будет иметь место конфузорность, также приведет к расширению рабочего тела и, как следствие, уменьшению потерь, внутри канала размещен тороидальный обтекатель шириной 2 = (0,4-0,55)2S, выполненный в меридиональном сечении в виде двух полуовальных частей с длинами малых полуосей а = (0,4 - 0,55)А и b = (0,4 - 0,55)В, разделенных зазором на радиусе R и установленных соответственно в рабочем колесе и в корпусе. Наличие такого обтекателя не позволит возникнуть обратному течению по центру меридионального сечения канала и приведет к упорядочению витков спиралеобразного потока. Указанное соотношение геометрических характеристик обтекателя и канала обеспечит наилучшие условия для упорядочения витков спирали. Все это снизит потери и повышает КПД турбины, тороидальный рабочий канал выполнен в виде 2n примыкающих один к другому одинаковых каналов с общей осью, впускной патрубок сообщен с каналами при помощи ресивера, размещенного в корпусе и разделителе, и n конфузорных сопел, расположенных симметрично относительно плоскостей примыкания каналов, впускной патрубок сообщен с рабочим каналом при помощи окон, которые для внутренних каналов объединены попарно и симметрично относительно плоскостей примыкания каналов. Такое конструктивное исполнение турбины позволит в 2n раз увеличить ее пропускную способность (расход рабочей среды), а значит и мощность без увеличения габаритного диаметра. Примыкание каналов и объединение окон уменьшат потери на трение и тем самым снизят общие газодинамические потери в турбине, корпусом и рабочим колесом образован по меньшей мере один дополнительный тороидальный рабочий канал, каналы последовательно сообщены при помощи конфузорных патрубков, каждый из которых является выпускным для предыдущего канала и впускным для последующего, причем меридиональное сечение у каждого последующего канала больше, чем у предыдущего. Такая схема является многоступенчатой и позволит сработать более значительные перепады давлений, а значит и повысить эффективность турбины - увеличить ее мощность при низком уровне потерь, между каналами со стороны корпуса, обращенной к зазору, размещены лабиринтные уплотнения в виде кольцевых канавок и гребешков, что уменьшает утечки между ступенями и тем самым повышает КПД турбины, зазор между корпусом и рабочим колесом выполнен с переменным радиусом, увеличивающимся от предыдущего канала к последующему. Увеличение радиуса зазора означает увеличение диаметра последующих ступеней, что приведет к возрастанию протяженности взаимодействия рабочего тела в каждой из последующих ступеней, улучшит условия ее расширения и, как следствие повысит эффективность турбины, зазор между корпусом и рабочим колесом выполнен коническим. Этот вариант исполнения при обеспечении улучшенных условий расширения рабочего тела упрощает конструкцию такой многоступенчатой турбины, - зазор между корпусом и рабочим колесом выполнен ступенчатым, что уменьшает перетечки рабочего тела от каналов с более высоким давлением к расположенным вниз по потоку каналам с более низким давлением и тем самым повышает КПД, по торцевым поверхностям корпуса и рабочего колеса между каналами дополнительно выполнены лабиринтные уплотнения из кольцевых гребешков и канавок на колесе и ответных кольцевых канавок и гребешков высотой h на корпусе, причем на последних равномерно по окружности выполнены радиальные пропилы шириной d = (1 -2)h. Наличие таких уплотнений, во-первых, дополнительно уменьшит перетечки между каналами с разным давлением, во-вторых, снизит утечки по торцам в окружном направлении, где также имеются значительные градиенты давления. Все это приведет к снижению потерь в такой многоступенчатой турбине и повышению ее КПД.

Все вышеизложенное убедительно доказывает наличие причинно-следственной связи каждого отличительного признака с техническим результатом, выступающим в качестве цели (повышение КПД), и позволяет сделать вывод о соответствии предложенного технического решения как критерию "новизна", поскольку заявленные признаки отсутствуют в прототипе, так и критерию "изобретательский уровень", поскольку на рассматриваемый класс технических устройств заявленная совокупность признаков неизвестна.

Предложенная тороидальная турбина соответствует условию патентоспособности "промышленная применимость", поскольку, имеется принципиальная возможность использования изобретения в качестве турбопривода малой и средней мощности во многих отраслях народного хозяйства в качестве средства малой механизации, для привода электрогенераторов, насосов, вентиляторов и пр., в строительстве, сельском хозяйстве, на электростанциях, промышленных предприятиях, нефтяных и газовых промыслах, в качестве рабочего тела высокого давления могут быть использованы различные жидкости, сжатый газ; пар; в двигателях внутреннего сгорания в качестве пускового агрегата и силовой турбины для получения дополнительной мощности при работе на выхлопных газах: материалы заявки достаточно убедительно при необходимом количестве сведений доказывают возможность реализации заявленного объекта в том виде и объеме, как он охарактеризован в предложенной к рассмотрению формуле изобретения.

На фиг. 1 представлено меридиональное сечение тороидальной турбины, а также вид на лабиринтное уплотнение с радиальными пропилами; на фиг. 2 - фронтальный вид и сечения тороидального рабочего канала, а также вид сверху на развертку канала по зазору разделителя, сопла и окна. На фиг.3 представлен план скоростей на входе в лопатки колеса с соответствующими углами наклона - в абсолютном и - в относительном движении. На фиг. 4 показана рабочая лопатка, плоскость которой скрещивается с осью турбины, при этом угол на входе 1 больше угла на выходе 2, а также вид сверху на развертку группы лопаток; на фиг. 5 - планы скоростей на входе и выходе из таких лопаток. На фиг. 6 представлено сечение канала с рабочими и направляющими лопатками из аэродинамических профилей; на фиг. 7 - развертка лопаток по средней линии тока с соответствующими планами скоростей на входе и выходе и изменением шага направляющих лопаток. На фиг. 8 показано сечение диффузорного рабочего канала, в котором по длине увеличивается высота оси В. На фиг. 9 изображен вид сверху на развертку канала по зазору, где для выхода рабочего тела помимо окна имеется щель постоянной ширины, а на фиг. 10 - щель переменной ширины, увеличивающейся по длине канала. На фиг. 11 показано сечение диффузорно-конфузорного канала, в котором его часть, размещенная в корпусе, выполнена с экстцентриситететом относительно оси вращения колеса и где его конфузорная половина дополнительно сообщена с выпускным патрубком при помощи щели. На фиг. 12 представлено сечение канала с тороидальным обтекателем; на фиг. 13 - меридиональное сечение турбины с 2n одинаковыми каналами; на фиг. 14 - сечения рабочего канала, сопла, окна и ресивера такой турбины в плоскости, перпендикулярной оси вращения колеса. На фиг. 15 показано меридиональное сечение и вид сверху на развертку канала по зазору R многоступенчатой турбины из нескольких последовательно сообщенных каналов, образованных корпусом и колесом; на фиг. 16 и 17 - варианты исполнения многоступенчатой турбины с увеличивающимися соответственно коническим и ступенчатым зазорами между корпусом и рабочим колесом.

Турбина (фиг. 1,2) состоит из корпуса 1 и охватывающего его с зазором рабочего колеса 2, совместно образующих тороидальный рабочий канал 3. В канале соответственно на колесе и на корпусе установлены рабочие лопатки 4 и разделитель 5. К корпусу присоединены впускной 6 и выпускной 7 патрубки, сообщенные с рабочим каналом по разные стороны от разделителя. Канал снабжен уплотнениями 12, 13 по торцевым поверхностям колеса и корпуса, которые уменьшают утечки рабочего тела из канала и тем самым повышают эффективность турбины. В меридиональном сечении канал 3 выполнен в виде двух полуовальных образующих. Овализация уменьшает деформации полей параметров рабочего тела при переходах из межлопаточных каналов рабочего колеса в корпус и обратно и тем самым повышает КПД турбины. Впускной патрубок 6 сообщен с каналом 3 при помощи сопла 8, срез которого 9 смещен относительно плоскости вращения колеса, проходящей через малые полуоси полуовальных образующих канала. Это способствует организации спирального движения рабочего тела в канале турбины и повышает ее КПД.

В турбине ширина 2S полуовальных образующих канала 3 на радиуса R зазора, длины малых полуосей образующих соответственно А - в колесе, В - в корпусе и угол могут находиться в соотношении A(R+A/2)/(SRsin) = 0,8-1,2, B(R-B/2)/(SRsin) = 0,8-1,2 (фиг. 1,2).

Такие диапазоны изменения конструктивного соотношения создают условия для наименьшей деформации полей параметров рабочего тела при переходах из корпуса в колесо и обратно вследствие уменьшения изменения проходных сечений витков рабочего тела и позволяют получить наибольшее приращение КПД за счет овализации образующих канала.

Действительно, согласно закону сохранения расхода в потоке рабочего тела, произведение площади проходного сечения потока не плотность и скорость есть величина постоянная. Известно, что условием уменьшения газодинамических потерь являются низкие градиенты скорости и плотности в потоке. Поэтому, исходя из закона сохранения расхода, при постоянстве скорости и плотности площадь проходного сечения следует, по возможности, сохранять неизменной, т.е. для сечения потока FR , проходящего через зазор, и для сечений колеса FA и рабочего канала FB плоскости вращения колеса можно записать FR = FA = FB .

Соответствующие площади, приходящиеся на элементарный угол поворота колеса d при спиральном течении (фиг. 1,2): dFR= SRdsin, dFA= (A(R+A/2)d и dFB= B(R-B/2)d. Тогда, учитывая возможное загромождение проходных сечений лопатками, относительное значение которого может составлять 0,8[3], а также расширение потока, обусловленное фактической парциальностью подачи рабочего тела на лопатки колеса и числом лопаток, отличным от условно бесконечного [4], можно записать A(R+A/2)/(SRsin) = 0,8-1,2, B(R-B/2)/(SRsin) = 0,8-1,2. В турбине впускной патрубок 6 может быть направлен под острым углом к плоскости вращения колеса 2 и выполнен конфузорным с плавным переходом к соплу 8 (фиг. 2). Как известно из гидродинамики, конфузорность и плавный поворот каналов на малый угол способствуют уменьшению потерь в потоке.

В турбине срез 9 сопла может быть выполнен прямоугольной формы (фиг. 2), что способствует плотной "навивке" витков спирального движения рабочего тела в тороидальном канале 3 и тем самым снижает потери энергии.

В турбине ось сопла 8 может быть параллельна плоскости вращения колеса, смещена по оси его вращения относительно этой плоскости на расстояние (0,3 - 0,7)S и направлена под углом = 15-45 к касательной зазора, т.е. к фронту рабочих лопаток 4 (фиг. 2). Это, во-первых, также способствует плотной "навивке" спирального движения рабочего тела в канале, во-вторых, такая схема подачи на вход в колесо непосредственно приводит к образованию крутящего момента на рабочих лопатках колеса, проходящих против среза сопла 9. Указанный диапазон угла обеспечивает максимальную работу турбины и безударный вход на рабочие лопатки [4]. Величина смещения оси сопла относительно плоскости вращения колеса получена из экспериментов.

В турбине выпускной патрубок 7 может быть сообщен с каналом 3 при помощи окна 11, смещенного по оси вращения колеса относительно плоскости его вращения на расстояние (0 - 0,5)S в сторону, противоположную смещению оси сопла 8 (фиг. 2). Это, во-первых, способствует обеспечению организованного спирального течения рабочего тела в канале непосредственно перед выпуском, во-вторых, увеличивает сектор взаимодействия и передачи энергии рабочего тела лопаткам вплоть до разделителя 5 и тем самым дополнительно увеличивает эффективность турбины. Расстояние смещения определено экспериментально.

В турбине разделитель 5 со стороны впускного патрубка 6 может быть выполнен с винтовой канавкой 10 (фиг. 2), что способствует организации спирального движения рабочего тела самого начала канала, увеличивая эффективность турбины.

В турбине винтовая канавка 10 разделителя может быть выполнена с шагом, равным длине среза 9 сопла. Это обеспечивает плотность "навивки" витков рабочего тела с самого начала тороидального канала и тем самым снижает потери энергии в особенности на начальном участке, где они особенно велики.

В турбине уплотнение по торцевым поверхностям рабочего колеса и корпуса может быть выполнено в виде лабиринта из кольцевых гребешков 12 и канавок на колесе 2 и ответных кольцевых канавок и гребешков 13 высотой h на корпусе 1 (фиг. 1), причем на последних равномерно по окружности могут быть выполнены радиальные пропилы 14 шириной d = (1 - 2)h. Гребешки на колесе входят в ответные канавки корпуса и наоборот, гребешкам корпуса соответствуют канавки колеса. Лабиринты такой конфигурации с многократным изменением направления потока будут препятствовать утечкам рабочего тела из канала. Наличие радиальных пропилов 14 на гребешках 13 корпуса будет препятствовать перетечкам по щелям в окружном направлении из области высокого давления в районе сопла 8 в область низкого давления, по направлению к окну 11 и выпускному патрубку 7. Это также уменьшит потери рабочего тела и увеличит эффективность турбины. Наличие пропилов именно на неподвижной детали, на корпусе, не приведет к возникновению циркуляционных вихрей в объемах этих пропилов и не потребует дополнительных затрат мощности, т.е. потерь энергии на поддержание вращательного движения вихрей. Соотношение ширины пропилов d и их высоты h(d/h = 1 - 2) получено экспериментально.

В турбине рабочие лопатки 4 могут быть выполнены в виде плоских пластин, установленных параллельно оси вращения колеса 1 под углом = arctg((cos+(0,14-0,20))/sin) к касательной зазора. Такая зависимость для угла входа в рабочие лопатки обеспечивает безотрывное течение в межлопаточных каналах при оптимальном для данного типа турбин диапазоне отношений переносной (окружной) и абсолютной скоростей на входе в рабочие лопатки.

Действительно, из плана абсолютной С, относительной и переносной (окружной) W скоростей (фиг. 3) следует, что Csin = Wsin и Ccos+U = Wcos. После преобразований получим Ccos+U = (Csin/sin)cos, = arcctg((cos+U/C)sin). Подставляя значение оптимального для данного типа турбин диапазона отношений переносной и абсолютной скоростей [3] U/C = 0,14 - 0,20, получим окончательно = aarcctg((cos+(0,14-0,20))/sin). Т.е. если рабочие лопатки турбины будут установлены под таким углом, отрыв потока на входе в них и связанные с ним потери не будут иметь места.

В турбине рабочие лопатки 4 могут быть выполнены в виде плоских пластин так, что их плоскости скрещиваются с осью вращения колеса, а углы на входе в рабочее колесо больше, чем углы на выходе (фиг. 4). Такой принцип установки лопаток обеспечивает конфузорность межлопаточных каналов, т.е. реактивный тип турбины, что снижает потери [4]. Кроме того, при этом может быть обеспечено равенство углов входа 1/ и выхода 2 из части рабочего канала, размещенной в корпусе (фиг. 5), и тем самым при спиральном движении рабочего тела наклон плоскости витка в корпусе обеспечит безотрывный вход на лопатки рабочего колеса, а также плотную и равномерную "навивку" витков спирального течения в канале (по крайней мере на начальном его участке). Все то уменьшит потери.

Турбина может иметь рабочие лопатки 4, выполненные в виде аэродинамических профилей так, что углы на входе в рабочее колесо больше, чем углы на выходе. При этом обеспечиваются все те же особенности и преимущества течения, что и в предыдущем случае, однако использование специально спрофилированных лопаток вместо плоских пластин позволит дополнительно снизи