Способ неполного окисления с получением энергии

Реферат

 

Способ неполного окисления с получением энергии относится к получению топливного газа неполным окислением жидкого углеводородного топлива и сжиганию его в газовой турбине для выработки энергии. Способ неполного окисления включает в себя проведение реакции углеводородного топлива с газом, содеджащим свободный кислород в реакционной зоне неполного окисления с получением потока топливного газа. Топливный газ затем охлаждают водой с получением насыщенного водой топливного газа, который затем охлаждают путем первого бесконтактного теплообмена с водой, питающей котел, и превращением последней в пар. Промывку насыщенного охлаждающей водой углеводородного топлива осуществляют предварительно нагретой промывной водой. Затем понижают давление и температуру охлажденного топливного газа путем второго бесконтактного теплообмена с холодной водой с осуществлением конденсации воды. Затем производят повторную очистку охлажденного топливного газа, насыщение потоков азота и очищенного топливного газа подогретой водой, производят подачу этих потоков в камеру сгорания газовой турбины. Такое осуществление способа повышает его эффективность. 2 с. и 17 з.п.ф-лы, 1 ил.

Изобретение относится к получению топливного газа неполным окислением углеводородных топлив и сжиганию указанного топливного газа в газовой турбине для выработки энергии.

Обычно при производстве энергии сжиганием углеводородного топлива осуществляют получение топливного газа неполным окислением жидкого углеводородного топлива, при этом регулируют мольное соотношение CO/H2 топливного газа путем проведения реакции, обратной реакции конверсии водяного газа, затем проводят промывку топливного газа и сжигание потока улучшенного таким образом топливного газа в турбине, вырабатывающей энергию.

Например, в патенте США 5251433, F 02 B 43/12, опубл. 12.10.1993, предложен способ неполного окисления, включающий проведение реакции углеводородного топлива с газом, содержащим свободный кислород, в реакционной зоне неполного окисления с получением потока топливного газа, охлаждение топливного газа охлаждающей водой с получением потока насыщенного охлаждающей водой топливного газа, охлаждение этого насыщенного охлаждающей водой топливного газа путем первого бесконтактного теплообмена с водой, питающей котел, с понижением температуры упомянутого охлажденного водой топливного газа, и одновременным превращением упомянутой воды, питающей котел, в пар, промывку этого насыщенного охлаждающей водой углеводородного топлива предварительно нагретой промывной водой, понижение давления и температуры охлажденного топливного газа путем второго бесконтактного теплообмена с холодной водой с осуществлением конденсации воды из указанного потока охлажденного топливного газа при нагревании этой воды, повторную очистку охлажденного топливного газа, насыщение потоков азота и очищенного топливного газа подогретой водой, подачу этих потоков в камеру сгорания газовой турбины, сжигание указанного насыщенного топливного газа с газом, содержащим свободный кислород, в камере сгорания с получением отходящего газа с пониженным содержанием NOx.

Однако известный способ не достигает высокой эффективности использования тепла, достижение которой является задачей данного изобретения.

Указанная задача решается тем, что в способе неполного окисления, включающем проведение реакции углеводородного топлива с газом, содержащим свободный кислород, в реакционной зоне неполного окисления с получением потока топливного газа, охлаждение топливного газа охлаждающей водой с получением потока насыщенного охлаждающей водой топливного газа, охлаждение этого насыщенного охлаждающей водой топливного газа путем первого бесконтактного теплообмена с водой, питающей котел, с понижением температуры упомянутого охлажденного водой топливного газа, и одновременным превращением упомянутой воды, питающей котел, в пар, промывку этого насыщенного охлаждающей водой углеводородного топлива предварительно нагретой промывной водой, понижение давления и температуры охлажденного топливного газа путем второго бесконтактного теплообмена с холодной водой с осуществлением конденсации воды из указанного потока охлажденного топливного газа при нагревании этой воды, повторную очистку охлажденного топливного газа, насыщение потоков азота и очищенного топливного газа подогретой водой, подачу этих потоков в камеру сгорания газовой турбины, сжигание указанного насыщенного топливного газа с газом, содержащим свободный кислород, в камере сгорания с получением отходящего газа с пониженным содержанием NOx, охлаждение топливного газа охлаждающей водой с получением потока насыщенного охлаждающей водой топливного газа производят до достижения его температуры в пределах примерно от 177 до 316oC (350-600oF) при давлении в пределах примерно от 3,45 до 17,24 МПа (500-2500 фунтов на кв.дюйм), охлаждение этого насыщенного охлаждающей водой топливного газа путем первого бесконтактного теплообмена с водой производят до уровня примерно от 210 до 288oC (410-550oF) с одновременным превращением упомянутой воды, питающей котел, в пар с промежуточным давлением в пределах примерно от 1,896 до 4,14 МПа (275-600 фунтов на кв.дюйм), дополнительно после первого бесконтактного охлаждения топливного газа осуществляют предварительное нагревание промывной воды, состоящей из конденсата и подпитывающей воды, до температуры в пределах примерно от 191 до 288oC (375-550oF) путем прямого теплообмена с охлажденным насыщенным водой топливным газом, выходящим после первого бесконтактного охлаждения, в устройстве для осуществления прямого контакта между водой и газом, в результате чего температура охлажденного насыщенного топливного газа понижается до уровня, составляющего примерно от 149 до 282oC (300-540oF), давление охлажденного топливного газа понижается до величины, составляющей примерно от 0,6895 до 15,858 МПа (100-2300 ф/кв. дюйм), и происходит отделение сконденсированной воды от указанного топливного газа, дальнейшее охлаждение топливного газа путем второго бесконтактного теплообмена с водой осуществляют до температуры в пределах примерно от 4,4 до 60oC (40-140oF), при нагревании холодной воды с получением подогретой воды с температурой в пределах примерно от 107 до 204oC (225-400oF), осуществляют подачу ранее сконденсированной воды для использования ее в промывке топливного газа в устройстве для осуществления прямого контакта между водой и газом, производят перегрев насыщенных потоков топливного газа и азота до температуры примерно от 177 до 538oC (350- 1000oF) перед подачей их в камеру сгорания газовой турбины и сжиганием в ней при температуре, в пределах примерно от 1204 до 1427oC (2200 - 2600oF) и давлении примерно от 0,6894 до 6,894 МПа (100-1000 фунтов на кв.дюйм) и дополнительно осуществляют пропускание отходящего газа через турбину расширительного действия для получения энергии с повышенным выходом.

В предложенном способе по меньшей мере часть промывной воды из зоны промывки газа можно подавать в зону охлаждения газа.

На операции понижения давления охлажденного топливного газа давление охлажденного топливного газа можно понижать в средствах понижения давления.

Средства понижения давления могут быть выбраны из группы, состоящей из клапана, диафрагмы и турбины расширительного действия.

При охлаждении топливного газа до 4,4-60oC (40-140oF) путем бесконтактного теплообмена с холодной водой топливный газ можно охлаждать поэтапно в нескольких бесконтактных теплообменниках.

В качестве хладоагента в теплообменниках можно использовать циркулирующую воду и/или воду для питания котла.

Газ, содержащий свободный кислород, перед подачей в указанную реакционную зону неполного окисления можно насыщать водой.

Воздух в обычном воздухоразделителе может быть разделен на поток кислорода и поток азота, при этом поток кислорода можно подать в реакционную зону неполного окисления в качестве газа, содержащего свободный кислород, а поток азота можно подвергнуть насыщению подогретой водой.

Отходящий после расширительной турбины газ можно пропускать через парогенератор-утилизатор тепла при осуществлении его бесконтактного теплообмена с паром промежуточного давления, выходящим после первого бесконтактного теплообмена, с осуществлением его перегрева, а перегретый пар промежуточного давления можно пропускать через турбину расширительного действия по меньшей мере как часть рабочей среды.

Углеводородное топливо может быть выбрано из группы, состоящей из жидких и/или газообразных углеводородных топлив и пригодной для перекачки суспензии твердого углеродсодержащего топлива.

Пригодная для перекачки суспензия может содержать твердое углеродсодержащее топливо, выбранное из группы, состоящей из каменного угля, дисперсного углерода, нефтяного кокса, концентрированного осадка сточных вод и их смесей, и летучий жидкий носитель, выбранный из группы, состоящей из воды, жидкого CO2, жидкого углеводородного топлива и их смесей.

Жидкое углеводородное топливо может быть выбрано из группы, состоящей из сжиженного нефтяного газа, нефтяных дистиллятов и кубовых остатков, бензина, сырой нефти, керосина, лигроина, асфальта, газойля, мазута, каменноугольного масла, сланцевого масла, дистиллята каменноугольной смолы, ароматических углеводородов, таких как бензол, толуол и фракции ксилола, угольной смолы, рециклового газойля, полученного каталитическим крекингом в псевдоожиженном слое, фурфуролового экстракта коксовального газойля и их смесей.

Газообразное углеводородное топливо может быть выбрано из группы, состоящей из сжиженного природного газа, нефтезаводского отходящего газа, C1-C4 углеводородных газов и отработанных углеродсодержащих газов химических производств.

Промывку охлажденного насыщенного топливного газа можно совмещать с предварительным нагревом промывной воды при прямом теплообмене с охлажденным насыщенным водой топливным газом.

Указанная выше задача решается также тем, что в способе неполного окисления для выработки электроэнергии, включающем проведение реакции углеводородного топлива с газом, содержащим свободный кислород, в реакционной зоне неполного окисления с получением потока топливного газа, охлаждение топливного газа охлаждающей водой с получением потока насыщенного охлаждающей водой топливного газа, охлаждение этого насыщенного охлаждающей водой топливного газа путем первого бесконтактного теплообмена с водой, питающей котел, с понижением температуры упомянутого охлажденного водой топливного газа, и одновременным превращением упомянутой воды, питающей котел, в пар, промывку этого насыщенного охлаждающей водой углеводородного топлива предварительно нагретой промывной водой, понижение давления и температуры охлажденного топливного газа путем второго бесконтактного теплообмена с холодной водой с осуществлением конденсации воды из указанного потока охлажденного топливного газа при нагревании этой воды, повторную очистку охлажденного топливного газа, насыщение потоков азота и очищенного топливного газа подогретой водой, подачу этих потоков в камеру сгорания газовой турбины, сжигание указанного насыщенного топливного газа с газом, содержащим свободный кислород, в камере сгорания с получением отходящего газа с пониженным содержанием NOx, охлаждение топливного газа охлаждающей водой с получением потока насыщенного охлаждающей водой топливного газа производят до достижения его температуры в пределах примерно от 177 до 316oC (350-600oF) при давлении в пределах примерно от 3,45 до 17,24 МПа (500-2500 фунтов на кв.дюйм), охлаждение этого насыщенного охлаждающей водой топливного газа путем первого бесконтактного теплообмена с водой производят до уровня примерно от 210 до 288oC (410-550oF) с одновременным превращением упомянутой воды, питающей котел, в пар с промежуточным давлением в пределах примерно от 1,896 до 4,14 МПа (275-600 фунтов на кв. дюйм), дополнительно после первого бесконтактного охлаждения топливного газа осуществляют предварительное нагревание промывной воды, состоящей из конденсата и подпитывающей воды, до температуры в пределах примерно от 191 до 288oC (375-550oF) путем прямого теплообмена с охлажденным насыщенным водой топливным газом, выходящим после первого бесконтактного охлаждения, в устройстве для осуществления прямого контакта между водой и газом, в результате чего температура охлажденного насыщенного топливного газа понижается до уровня в пределах примерно от 149 до 282oC (300-540oF), происходит отделение конденсата от указанного охлажденного топливного газа, дальнейшее понижение температуры топливного газа путем второго бесконтактного теплообмена с водой осуществляют до температуры в пределах 149-260oC (300-500oF) c выработкой пара промежуточного давления в пределах 0,6894-1,896 МПа (100-275 фунтов/кв. дюйм) и отделением конденсата от потока охлажденного топливного газа, подогрев охлажденного после бесконтактного теплообмена с водой потока охлажденного топливного газа до температуры, обеспечивающей после последующего расширения превышение точки росы на величину от 5,6 до 55,6oC (10-100oF), расширение потока топливного газа в турбине расширительного действия с понижением его давления до величины в пределах примерно от 0,6894 до 15,86 МПа (100-2300 фунтов/кв.дюйм) и дальнейшее охлаждение топливного газа путем второго бесконтактного охлаждения до температуры в пределах примерно от 4,4 до 60oC (40-140oF) при нагревании холодной воды с получением нагретой воды с температурой в пределах примерно от 107 до 204oC (225-400oF), осуществляют подачу сконденсированной ранее воды с полученной на данном этапе совместно в устройство для осуществления прямого контакта, где ее нагревают для использования в качестве воды для промывки газа, причем промывку осуществляют до или после первого бесконтактного охлаждения насыщенного водой топливного газа, повторную после второго бесконтактного охлаждения, производят перегрев насыщенных потоков топливного газа и азота до температуры в пределах примерно от 177 до 538oC (350- 1000oF) перед подачей их в камеру сгорания газовой турбины и сжигание в ней при температуре в пределах примерно от 1204 до 1427oC (2200-2600oF) и давлении в пределах примерно от 0,6894 до 6,894 МПа (100-1000 фунтов/кв.дюйм), при этом отходящий после газовой турбины газ пропускают через турбину расширительного действия для выработки энергии с повышенным выходом.

Газ, содержащий свободный кислород, можно насыщать водой перед подачей в указанную зону неполного окисления.

Воздух в обычном воздухоразделителе может быть разделен на поток кислорода и поток азота, при этом поток кислорода можно подать в реакционную зону неполного окисления в качестве газа, содержащего свободный кислород, а поток азота можно насыщать подогретой водой.

Отходящий газ после пропускания его через турбину расширительного действия можно пропускать через парогенератор-утилизатор тепла при осуществлении его бесконтактного теплообмена с паром промежуточного давления с осуществлением его перегрева, а перегретый пар промежуточного давления можно пропускать через турбину расширительного действия по меньшей мере как часть рабочего тела.

Паровой конденсат, поступающий из турбины расширительного действия промежуточного давления, можно повторно нагревать путем бесконтактного теплообмена с потоком топливного газа при втором бесконтактном теплообмене топливного газа с холодной водой, далее можно нагревать, обезвоживать и перегревать повторно нагретый паровой конденсат с образованием пара высокого давления, осуществлять расширение полученного пара высокого давления в турбине для получения механической энергии и пара промежуточного давления, перегревать пар промежуточного давления и подвергать расширению в промежуточной турбине с получением механической энергии, и проводить конденсацию отходящего из нее пара.

Более полное понимание изобретения может дать прилагаемый чертеж, который иллюстрирует предпочтительный вариант осуществления изобретения, не ограничивая, однако, его объем описываемым процессом и используемыми материалами.

В предлагаемом способе сырой топливный газ, содержащий в основном H2, CO, CO2, H2O, с примесями пылевидных частиц угля и золы и по меньшей мере одного вещества из группы N2, Ar, COS, CH4, NH3, HCN, HCOOH и шлака, получают неполным окислением в свободном потоке жидких и/или газообразных углеводородных топлив (включая водную суспензию твердого углеродного топлива) газом, содержащим свободный кислород, обычно в присутствии ограничителя температуры, в реакционной зоне проточного вертикального некаталитического газогенератора. Массовое отношение H2O к топливу в реакционной зоне примерно 0,1-5/1, в частности примерно 0,2-0,7/1. Атомное отношение свободного кислорода к углероду топлива - примерно 0,6-1,6/1, , например около 0,8-1,4/1. Продолжительность реакции примерно 0,1-50 с, например около 2-6 с.

Генератор сырого топливного газа представляет собой стальной футерованный огнеупором вертикальный цилиндрический аппарат, работающий под давлением (см. патент США 2809104).

В этом патенте показан также типичный водоохладительный барабан. Горелка (см. патент США 2928460) может быть использована для введения питающих потоков в реакционную зону. Для получения синтез-газа в газогенераторе в реакцию с газом, содержащим свободный кислород, можно вводить широкий спектр горючих жидких и/или газообразных топлив или водных суспензий твердого углеродного топлива; реакция протекает в присутствии газа-ограничителя температуры.

Термин "жидкое углеводородное топливо" здесь и далее обозначает различные пригодные сырьевые материалы, включая жидкие углеводороды, жидкостные пригодные для перекачки суспензии твердых углеродных веществ и их смеси. Например, подходящим сырьем являются водные суспензии твердых углеродных топлив. Фактически любые горючие углеродсодержащие жидкие органические вещества или их суспензии могут подпадать под термин "жидкое углеводородное". Например: 1) пригодные для перекачки суспензии таких твердых углеродных топлив, как уголь, графитовая пыль, нефтяной кокс, концентрированный осадок сточных вод и их смеси, в летучем жидком носителе, например воде, жидком CO2, жидком углеводородном топливе и их смесях; 2) предполагается, что подходящее жидкое углеводородное топливо для газификации включает такие различные вещества, как сжиженный нефтяной газ, нефтяные дистилляты и кубовые остатки, бензин, сырую нефть, керосин, лигроин, асфальт, газойль, мазут, каменноугольное масло, сланцевое масло, дистиллят каменноугольной смолы, ароматические углеводороды (такие, как бензол, толуол, фракции ксилола), угольную смолу, рецикловый газойль, выделяемый при каталитическом крекинге в псевдоожиженном слое, фурфуроловый экстракт коксовального газойля и смеси перечисленных веществ; 3) к жидким углеводородам могут быть отнесены их кислородсодержащие производные, включая углеводы, целлюлозные материалы, альдегиды, органические кислоты, спирты, кетоны, окисленный мазут, отработанные жидкости и побочные продукты химических процессов, содержащие кислородсодержащие производные углеводородов, и смеси перечисленных веществ.

Газообразные углеводородные топлива, пригодные для неполного окисления в газогенераторе по отдельности или совместно с жидким углеводородным топливом, включают природный газ, отходящие газы очистных установок, C1-C4 углеводородные газы и отработанные углеродсодержащие газы химических производств.

Жидкое углеводородное сырье может иметь комнатную температуру или быть предварительно подогрето до температуры примерно 312-625oC (600-1200oF), но желательно ниже температуры крекинга. Жидкие сырьевые углеводороды можно вводить в горелку газогенератора в жидкой фазе или в пароообразной смеси с ограничителем температуры.

Потребность в ограничителе температуры для регулирования температуры в реакционной зоне зависит, в общем, от отношения углерод/водород в сырье и содержания кислорода в потоке окислителя. Ограничитель температуры используют с жидкими углеводородными топливами и с весьма чистым кислородом. Наилучшими ограничителями температуры являются вода или пар. Пар может быть использован как ограничитель температуры в смеси с одним или обоим потоками реагентов. В другом варианте ограничитель температуры может быть введен в реакционную зону газогенератора по отдельному каналу тарелки. Другие ограничители температуры включают газ, обогащенный CO2, азот и рециркулирующий синтез-газ.

Термином "газ, содержащий свободный кислород", здесь обозначены воздух, воздух, обогащенный кислородом, т.е. содержащий более 21 моль-% CO2, и весьма чистый (более примерно 95 моль-%) кислород с примесями обычно N2 и редких газов. Газ, содержащий свободный кислород, может быть подан через горелку неполного окисления при температуре не ниже примерно 477oC (900oF).

Поток сырого топливного газа покидает реакционную зону при температуре примерно 927-1927oC (1700-3500oF), например около 1093-1538oC (2000- 2800oF), и при давлении примерно 3,447-17,237 МПа (500-2500 фунтов на кв. дюйм), например около 4,826-10,342 МПа (700-1500 фунтов на кв.дюйм). Состав сырого горячего отводящего газа в моль-% примерно таков: H2 10-70, CO 15-37, CO2 0,1-25, H2O 0,1-20, CH4 0-60, NH3 0-5, H2S 0-5, COS 0-0,1, N2 - 0-60, Ar - 0-2,0, HCN + HCOOH 0-100 частей на миллион (по массе). Частицы углерода присутствуют в количестве около 0-20% по массе (основное содержание углерода в исходном сырье). Зола и/или расплав шлака могут присутствовать соответственно в количествах примерно 0-5,0% и 0-60% от массы исходного жидкого углеводородного или твердого углеродного топлива.

В предпочтительном воплощении предлагаемого способа весь поток горячего сырого топливного газа, покидающего футерованную реакционную зону газогенератора неполного окисления, имеет в основном ту же температуру и давление, что и в реакционной зоне, с учетом их обычного падения в трубопроводе. Этот газ вводят непосредственно в воду, находящуюся на днище барабана или сосуда для охлаждения (см. патент США 2896927). Предлагаемый способ обеспечивает минимизацию капитальных и эксплуатационных затрат и максимизацию температуры охлажденного газа, поскольку в нем применена система газификации с охлаждением водой при высоком давлении. Если бы тепло было выведено через выход газогенератора до охлаждения водой или если бы газогенератор работал при низком давлении, охлажденный газ имел бы температуру, недостаточную для получения пара промежуточного давления, необходимого для эффективного включения в паровой цикл.

Барабан для охлаждения водой располагают под реакционной зоной газогенератора, и поток поступающего в барабан сырого топливною газа уносит практически всю золу и/или шлак и дисперсный углерод в виде сажи из реакционной зоны газогенератора. Турбулентность в барабане охлаждения, создаваемая большими объемами газа, барботирующими через воду, способствует очистке отходящего газа от большинства твердых примесей. В охлаждающем сосуде образуется большое количество пара, которое насыщает поток газа. Поток сырого газа охлаждается в охлаждающем барабане и выходит при температуре от 177 до 316oC (от 3500 до 600oF, например при температуре от 232 до 288oC (от 4500 до 550oF) и давлении от 3,45 до 17,24 МПа (от 500 до 25000 фунтов/дюйм.кв.), например от 4,82 до 10,34 МПа (от 3700 до 1500 фунтов/дюйм.кв.). Предпочтительно свежая охлаждающая вода, используемая в изобретении, представляет собой смесь подпиточной воды и конденсата, полученного в ходе проведения процесса. Выражение "и/или" используется в своем обычном значении, т.е. А и/или Б означает либо А или Б либо А + Б.

Для того, чтобы предупредить забивание расположенного ниже по ходу потока слоя катализатора, а также загрязнение жидких абсорбентов-растворителей, которые могут использоваться на последующих операциях очистки, охлажденный и частично очищенный поток топливного газ, выходящего из охлаждающего барабана, далее очищают в контакте с горячими промывными водами в другой зоне очистки газа. В этой зоне очистки газа может быть расположено обычное сужение, например, такое, как описано в патенте США 3524630, и обычные скрубберы Вентури и оросители, а также скруббер (камера промывки газа), такой как показан и описан в патенте США 3232727. В камере промывки газа поток сырого топливного газа промывают промывной водой, содержащей горячий оборотный конденсат и подпиточную воду. Например, в одном примере реализации изобретения поток газа, выходящего из охлаждающего барабана, соединенного с газификатором, промывают и приводят в тесный контакт с промывной водой, например, в скруббере Вентури. Однако использование скруббера Вентури в зоне очистки газа необязательно. Топливный газ проходит через резервуар и с промывной водой, содержащейся в нижней части скруббера. Очищаемый газ пропускают затем сквозь пакет тарелок в верхней части скруббера, где он вступает в контакт с конденсатом, т. е. со стекающей вниз промывной водой. Эта вода из придонной части скруббера может быть рециркулирована в скруббер Вентури, если он имеется, и/или в газоохлаждающий бак, соединенный с газогенератором.

Промывка газа согласно предложенному способу позволяет снизить количество твердых частиц в потоке очищенного топливного газа до весьма низкого уровня, т. е. менее приблизительно 3 ч. на млн., желательно около 1 ч. на млн. Предлагаемый способ обеспечивает повышение температуры промывной воды до уровня примерно 191-288oC (375-550oF), например около 204-232oC (400-450oF) прямым контактом с вырабатываемым топливным газом сразу после парогенератора, вырабатывающего пар с промежуточным давлением примерно 1,896-4,14 МПа (275-600 фунтов на кв.дюйм), например около 2,068-2,76 МПа (300-400 фунтов на кв.дюйм), и температурой примерно 210-252oC (410-486oF), например около 214-229oC (418-445oF). В подогревателе промывной воды температура насыщенного водой топливного газа падает до уровня примерно 210- 288oC (410-550oF), например около 216-243oC (420-470oF). В качестве такого подогревателя можно использовать любой обычный аппарат, обеспечивающий прямой контакт воды и газа, включая обычную колонну с набором тарелок. Прямой контакт обеспечивает максимальный теплообмен между водой и газом, максимизируя этим подогрев воды. Увеличение теплосодержания промывной воды увеличивает теплосодержание проходящего через скруббер газа и тем самым повышает выход пара промежуточного давления (ППД). ППД вырабатывается в теплообменнике обычного типа бесконтактным теплообменом между горячим насыщенным водой топливным газом и питающей водой котла-утилизатора (ПВК). Теплообменник для получения ППД может быть расположен после резервуара охлаждающей воды и перед зоной промывки сырого топливного газа.

В другом варианте этот теплообменник может быть размещен после зоны промывки, как это показано на чертеже.

В одном из воплощений изобретения топливный газ, выходящий из подогревателя промывной воды, проходит через бесконтактный теплообменник для выработки ППД с параметрами примерно 0,6894-1,896 МПа (100-275 фунтов на кв.дюйм), например около 1,034-1,724 МПа (150-250 фунтов на кв. дюйм) и 163-210oC (325-410oF), например около 181-205oC (358-401oF). Топливный газ выходит из теплообменника ППД с температурой примерно 149-260oC (300-500oF), например около 182-221oC (360-430oF), и поступает в сепаратор, где от него отделяют конденсат.

На следующей стадии процесса в зоне редукции давление топливного газа понижают до уровня примерно 0,6894-15,17 МПа (100-2300 фунтов на кв.дюйм), например около 1,38-7,58 МПа (200-1200 фунтов на кв.дюйм). Это делают для согласования с рабочим давлением расположенной далее турбины с камерой сгорания. Таким образом, пар приобретает пониженное давление перед удалением кислых газообразных примесей. Предлагаемый способ более эффективен, поскольку при редуцировании давления топливного газа до его полного охлаждения в нем остается значительное количество воды, что увеличивает массу (рабочего тела) и съем мощности в цикле расширения. В одном из воплощений изобретения средства понижения давления выполнены в виде клапана, который может быть установлен как сам по себе, так и последовательно с диафрагмой. В другом воплощении в зоне понижения давления расположены бесконтактный теплообменник-подогреватель топливного газа и турбина расширительного действия, совмещающая понижение давления топливного газа с выработкой энергии. Далее в технологической линии расположен паровой котел-утилизатор тепла (ПКУ) отработавших в газовой турбине продуктов сгорания. В ПКУ получают горячую воду для нагрева топливного газа после расширения в турбине расширительного действия до температуры, превышающей точку росы на величину от 5,6 до 55,6oC (10-100oF).

Температура топливного газа после расширения составляет примерно 121- 427oC (250-800oF), например около 1479-232oC (300-450oF), и должна быть снижена до уровня примерно 4,4-60oC (40-140oF), например около 38-49oC (100- 120oF), перед вводом в зону удаления кислых газообразных примесей H2S и COS. Для осуществления предложенного способа целесообразно использовать несколько теплообменников для понижения температуры потока топливного газа и утилизации низкотемпературного тепла при подогреве топлива и азота. Поскольку азот и воду вводят в топливо, подаваемое в камеру сгорания расположенной далее газовой турбины, уровень насыщения топлива этими компонентами, необходимый для подавления выхода NOx и для повышения энергоотдачи турбины, будет значительно ниже. Это позволяет поддерживать температуру вблизи дна сатураторов настолько низкой, чтобы использовать для их подогрева низкотемпературное тепло. Участок утилизации низкотемпературного тепла содержит примерно 2-7, например 5, последовательно установленных бесконтактных теплообменников, через которые проходит, охлаждаясь, газовый поток. Сепаратор-отбойник для удаления сконденсированной воды устанавливают за каждым или по меньшей мере за последним теплообменником. Накапливаемый в них конденсат перекачивают в ранее описанный подогреватель промывной воды. В качестве хладоагента по меньшей мере в одном из теплообменников используют циркулирующую воду с температурой примерно 27-149oC (80-300oF), например около 38-93oC (100-200oF). Циркулирующую воду подогревают в теплообменнике бесконтактным теплообменом с топливным газом. Полученная горячая вода с температурой примерно 106-202oC (225-400oF), например около 135-188oC (275-370oF), поступает затем в сатураторы азота и топливного газа. Давление в обоих сатураторах примерно 0,6894-6,8947 МПа (100-1000 фунтов на кв.дюйм), например около 1,034-3,447 МПа (150-500 фунтов на кв. дюйм). По меньшей мере в одном бесконтактном теплообменнике в качестве хладоагента используют воду для питания ПКУ с температурой примерно 24-121oC (75-250oF). Таким образом в одном бесконтактном теплообменнике можно получить пар низкого давления с давлением примерно 34,47 кПа-1,034 МПа (5-150 фунтов на кв.дюйм), например около 207-345 кПа (30-50 фунтов на кв.дюйм). В одном из воплощений изобретения конденсат пара из расположенной далее паровой турбины может быть вновь подогрет до температуры 32-177oC (90-350oF), например около 38-121oC (100-250oF), в одном бесконтактном теплообменнике, затем возвращен в парогенератор ППД для дополнительного подогрева до температуры примерно 371-982oC (700-1800oF), например около 427-649oC (800-1200oF), при давлении примерно 4,14-20,68 МПа (600-3000 фунтов на кв.дюйм), например около 8,96-11,72 МПа (1300-1700 фунтов на кв.дюйм), и, наконец, использован как рабочее тело в одной из ступеней многоступенчатой турбины расширительного действия. В указанном ряде теплообменников температура топливного газа после расширения может быть снижена шаг за шагом: (1) 93-204oC (200-400oF), (2) 93-160oC (200-320oF), (3) 38-149oC (100-300oF), (4) 38-93oC (100-200oF), (5) 27-49oC (80-120oF). Таким образом, в предложенном способе низкотемпературное тепло, получаемое в процессе охлаждения, эффективно используют в ряде теплообменников, получая тепло для операции (1) насыщения топливного газа и азота, операции (2) получения пара низкого давления, требуемого для извлечения кислых газов в узле удаления кислот (УУК) и серы в узле удаления серы (УУС) и для подогрева холодного конденсата.

Топливный газ может быть очищен в произвольной подходящей системе, например в УУК, реализующем физическую или химическую абсорбцию таким жидким растворителем, как холодный метанол, N-метилпирролидон, диметилэфир, полиэтиленгликоль, ингибированный или неингибированный амин. Кислые газы, т.е. CO2, H2S и COS, хорошо растворяются в метаноле при высоком давлении и низкой температуре. После понижения давления и повышения температуры насыщенного раствора они могут быть легко выделены. H2S и COS могут быть объединены во фракцию, пригодную в качестве сырья для УУС в виде обычного аппарата Клауса, дающего конечный продукт в виде элементарной серы (см.: Kirk-Otmer Encyclopedia of Chemical Techinology, Second Edition, Vol 19, John Wiley, 1969, p.353; патент США 4052176).

Для разделения воздуха на потоки по существу чистого кислорода и азота в виде газов используют обычный воздухоразделитель (ВР). По меньшей мере часть азота насыщают водой, перегревают до температуры примерно 177-538oC (350-1000oF), например около 260-316oC (500-600oF), теплом питающей котел-утилизатор воды и подают его в камеру сгорания газовой турбины совместно с потоком насыщенного парами воды и перегретого до подобной температуры топливного газа. Перегрев насыщенных топливного газа и газообразного азота перед подачей в камеру сгорания необходим для уменьшения вероятности эрозии лопаток газовой турбины вследствие контакта с жидкостью. Потоки этих газов перед камерой сгорания содержат воду в количестве примерно 1-50, например около 5-30% по объему. Насыщением азота водой достигают снижения его расхода с целью уменьшения выхода NOx и повышения эффективности использования низкотемпературного тепла.

Поток газообразного кислорода из ВР с температурой не ниже примерно 482oC (900oF) подают в реакционную зону неполного окисления газогенератора через один канал кольцевой горелки. В одном из воплощений изобретения этот поток вначале насыщают водой, чтобы получить газообразный кислород с температурой примерно 49-260oC (120-500oF), например около 66-177oC (150- 350oF), и концентрацией H2O примерно 1-50, например около 5-35% по объему. Преимущество предложенного способа заключается в использовании низкотемпературного тепла при насыщении кислорода водой, что повышает эффективность процесса благодаря увеличению выхода пара промежуточного давления. В случаях, когда для генерирования топливного газа необходимо ограничение температуры, пар, содержащийся в кислороде, замещает потребный для такого ограничения пар более высокого давления, использование которого в работающей при повышенном давлении части парового энергетического цикла еще более повышает эффективность процесса.

Воздух сжимают в турбокомпрессоре, приводимом от соосного вала турбины расширительного действия, которая наряду с камерой сгорания является главной частью газовой турбины. Сжатый воздух поступает в камеру сгорания с температурой около 204-454oC (400-850oF) примерно под таким же давлением, что и насыщенные топливный газ и газообразный азот. Выходящий из камеры сгорания газ имеет температуру приблизительно 760-1649oC (1400-3000oF), а обычно примерно 1260-1316oC (2300-2400oF) и давление примерно 0,6894-6,8945 МПа (100-1000 фунтов на кв.дюйм) или выше, а желательно 1,034-3,447 МПа (150-500 фунтов на кв.дюйм) или выше. Типичный выходящий газ имеет следующий состав в мольных-%: CO2 4-10, H2O 4-20, N2 75-80, O2 0-20. Благодаря вводу насыщенных водой N2 и топливного газа концентрация оксидов азота NOx в отходящем газе близка к нулю, а именно ниже