Система персональной радиосвязи

Реферат

 

Частота приемопередачи и уровень мощности распределяются для системы персональной радиосвязи, которая содержит базовую станцию, подключенную к проводной телефонной сети, сотовый терминал, работающий внутри района крупнозональной сотовой сети, в состав базовой станции входят переносной корпус, средство для электрического подключения базовой станции к проводной телефонной сети, средство подключения линии питания, радиоприемопередающее средство, обнаруживающее средство, реагирующее на средство подключения проводной телефонной сети, или на средство подключения линии питания, или на них обоих, средство выделения сотовой частоты, реагирующее на обнаруживающее средство, для выделения сотовой частоты для связи с сотовым терминалом, когда сотовый терминал находится внутри локального района, а радиоприемопередающее средство реагирует на средство выделения сотовой частоты. Сотовый терминал может использоваться для связи по менее дорого стоящей проводной сети, когда он находится в диапазоне базовой станции, и по крупнозональной сотовой сети в других случаях. Технический результат заключается в снижении частотного перекрытия в системе персональной радиосвязи без необходимости в гибридной системе связи. 2 с. и 23 з.п.ф-лы, 10 ил., 1 табл.

Данное изобретение относится к системам связи, а конкретнее - к системам персональной радиосвязи для использования в крупнозональных сотовых связях.

Существующий уровень техники Системы радиосвязи все шире используются для беспроводной мобильной связи. Примером системы радиосвязи является сотовая телефонная система. Сотовые системы радиосвязи являются крупнозональными сетями связи, в которых применяют структуру повторного использования частот (каналов). Разработка и действие аналоговой сотовой телефонной системы описаны в статье, озаглавленной Advanced Mobile Phone Service by Blecher, IEEE Transactions on Vehicular Technology, vol. VT29, N 2, May, 1980, pp. 238 - 244. Аналоговая мобильная сотовая система именуется также УСМТ (Усовершенствованная система мобильного телефона) (AMPS).

Недавно предложены и воплощены цифровые сотовые телефонные системы, использующие архитектуру многостанционного доступа с временным разделением каналов (МДВР) (TDMA). Ассоциацией электронной промышленности (АЭП) (EIA) и Ассоциацией промышленности электросвязи (АПЭ) (TIA) установлены стандарты для Американской цифровой сотовой (АЦС) (ADC) архитектуры, которая является двухрежимной аналоговой и цифровой системой, соблюдающей документ IS-54B АЭП/АПЭ. Телефоны, в которых воплощена двухрежимная архитектура IS-54B, в настоящее время продаются владельцам прав на данное изобретение. В Европе пропагандируются различные стандарты для сотовых телефонных систем. Европейская цифровая сотовая система, именуемая также ГСМ (Глобальная система мобильной связи) (GSM), тоже использует архитектуру МДВР.

Недавно сделано предложение распространить сотовую телефонную сеть на систему персональной радиосвязи. Система персональной радиосвязи обеспечивает мобильную речевую, цифровую, видео- и/или мультимедийную радиосвязь с использованием терминалов персональной радиосвязи. Таким образом, может посылаться и приниматься любой вид информации. Терминалы персональной радиосвязи включают в себя радиотелефон, такой как сотовой телефон, и могут содержать иные компоненты для речевой, цифровой, видео и/или мультимедийной связи.

Система персональной радиосвязи включает в себя по меньшей мере одну телефонную базовую станцию, именуемую здесь также базовой станцией. Базовая станция - это низкомощностный приемопередатчик, который обеспечивает связь с терминалом персональной радиосвязи, таким как сотовый телефон, на ограниченной дальности, такой как десятки метров, и, кроме того, электрически соединен с обычной проводной сетью общего пользования. Базовая станция позволяет владельцу персональной радиосвязи иметь непосредственный доступ к проводной сети без прохождения через сотовую телефонную сеть, частоты обращения которой обычно более дороги. При расположении вне диапазона базовой станции терминал персональной связи автоматически связывается с сотовой телефонной сетью на преимущественных частотах обращения.

Главная проблема воплощения системы персональной связи, использующей распределение общих частот как для базовой станции, так и для сотовой телефонной сети, состоит в частотном перекрытии между сотовой телефонной и базовой станцией. Специалисту понятно, что для радиосвязи доступно лишь ограниченное число частот. В Соединенных Штатах на сотовые телефонные сети распределены 832 широкополосных канала на 30 кГц. В пределах этого спектра каждый региональный поставщик может распределять и использовать эти частоты по существу так, как ему удобнее. Для использования в качестве крупнозональных сетей связи в Соединенных Штатах распределены также дополнительные диапазоны частот.

Бесшнуровые телефоны, такие как применяемые людьми в их домах, используют отдельный диапазон частот, в Соединенных Штатах от 46 до 49 МГц. Поэтому они могут работать в сотовой сети без взаимных помех. Однако такие телефоны не могут работать в качестве сотовых телефонов, подключенных к сотовой сети, когда они расположены вне диапазона их индивидуальных базовых станций. Двухрежимные телефоны, которые работают и как сотовый телефон в сотовом частотном диапазоне (824 - 894 МГц), и как обычный бесшнуровой телефон (46 - 49 МГц), описаны в патенте США N 498923 на имя Gillig et al.

Частотное перекрытие между сетевыми и базовыми станциями можно предотвратить, если сетевые и базовые станции распределены по разным полосам частот, как в случае вышеописанного двухрежимного сотового и бесшнурового телефона. Однако такая гибридная система не является эффективным распределением частотного спектра. Кроме того, гибридный терминал персональной связи может быть более дорогим и усложненным, потому что могут потребоваться дополнительные схемные цепи.

Раскрытие изобретения Поэтому цель настоящего изобретения состоит в обеспечении усовершенствованной системы персональной радиосвязи, включающей в себя базовую станцию и сотовый терминал, а также способа ее использования.

Другая цель настоящего изобретения состоит в снижении частотного перекрытия в системе персональной радиосвязи без необходимости в гибридной системе связи.

В настоящем изобретении базовая станция соединяет проводную телефонную сеть с сотовым терминалом в пределах локального района крупнозональной сотовой сети. Базовая станция включает в себя корпус, предпочтительно переносной, и размещенный в корпусе соединитель проводной телефонной сети для подключения базовой станции к проводной телефонной сети. Средство активации в корпусе также электрически подключено к соединителю проводной телефонной сети для обнаружения приходящего по проводной телефонной сети вызова. Радиоприемопередатчик в корпусе реагирует на средство активации для связи с сотовым терминалом с использованием выделенной частоты в спектре крупнозональной сотовой сети, когда сотовый терминал находится в диапазоне базовой станции. Если же сотовый терминал находится вне диапазона базовой станции, имеет место связь от сотового терминала к крупнозональной сотовой сети. Связь через базовую станцию происходит на выделенной частоте (канале) в спектре крупнозональной сотовой сети, но на более низких тарифных частотах проводной телефонной сети, и может происходить без добавления нагрузки в крупнозональную сотовую сеть.

Средство активации базовой станции может также обнаруживать связь от сотового терминала, принимаемую радиоприемопередатчиком на выделенной частоте в спектре крупнозональной сотовой сети, и генерировать в ответ на это индикацию ЗАНЯТО (OFF-HOOK) для проводной телефонной сети. Таким образом, базовая станция поддерживает как трассировку вызовов от проводной сети к сетевому терминалу, так и трассировку вызовов от сотового терминала к проводной сети.

Упомянутые взаимные помехи каналов между крупнозональной сотовой сетью и базовой станцией снижаются путем выделения доступного канала в сотовом спектре для связи между сотовым терминалом и базовой станцией, когда сотовый терминал находится в диапазоне базовой станции. Выделенный канал использует одну из частот крупнозональной сотовой сети, которая не распределена для той ячейки крупнозональной сотовой системы, в которой расположена базовая станция.

В одном выполнении настоящего изобретения базовой станцией или сотовым терминалом по проводной телефонной сети от оператора крупнозональной сотовой сети принимается индицирующий частоту сигнал, отвечающий на запрос базовой станции или сотового терминала. Это позволяет оператору сети назначать для базовых станций частоты, которые минимизируют упоминавшиеся взаимные помехи каналов с крупнозональной сотовой сетью. Несущая системы также может получать дополнительный выигрыш от неиспользуемых в ячейке сети частот путем предоставления этих частот для работы базовой станции в пределах ячейки. Требование назначения частот может автоматически инициироваться путем приложения или повторного приложения питания к базовой станции. В противоположность этому может потребоваться ручное вмешательство пользователя.

В другом аспекте настоящего изобретения базовая станция обнаруживает ситуацию, когда прервано электрическое подключение проводной телефонной сети к соединителю проводной телефонной сети, и предохраняет приемопередатчик от передачи на ранее выделенной частоте, если это подключение прервано. Это предохраняет базовую станцию от отсоединения и повторной установки в новом местоположении, где могут происходить взаимные помехи ранее выделенной частоты с частотами, используемыми крупнозональной сотовой сетью в этой области. Факультативно этот аспект обнаружения и запрета реагирует на потерю подключения и питания, и телефона, а не только на потерю подключения телефона или питания.

Предложен также способ распределения частот для базовой станции. Крупнозональная сотовая сеть извещается по проводной сети о расположении базовой станции, и от крупнозональной сотовой сети по проводной сети запрашивается частота. Указание затребованной частоты принимается по проводной сети от крупнозональной сотовой сети и предпочтительно запоминается на базовой станции. Указание принятой частоты передается затем на сотовый терминал и предпочтительно запоминается в сотовом терминале. Запрос может инициироваться факультативно базовой станцией путем вызова крупнозональной сети с использованием заранее заданного служебного номера. Такой вызов может инициироваться пользовательским вводом в базовую станцию. В противоположность этому вызов может инициироваться автоматически путем определения ситуации, когда подключение телефона или подключение телефона и питания прерваны с тех пор, как в последний раз принято указание затребованной частоты. Если это так, то повторяются операции по запрашиванию новой выделенной частоты для связи между базовой станцией и сотовым терминалом. Тем самым обеспечивается связь между базовой станцией и сотовым терминалом с использованием сотового спектра со сниженной вероятностью частотного перекрытия и без необходимости в гибридной системе.

Краткое описание чертежей Фиг. 1A и 1B схематически представляют систему персональной радиосвязи, включающую в себя базовую станцию и сотовые терминал, с радиосвязью между терминалом и базовой станцией и радиосвязью между терминалом и крупнозональной сотовой сетью соответственно.

Фиг. 2 представляет вид спереди в изометрии выполнения базовой станции по настоящему изобретению с терминалом, показанным пунктирными линиями.

Фиг. 3 является блок-схемой базовой станции согласно настоящему изобретению.

Фиг. 4 является блок-схемой приемопередатчика базовой станции согласно настоящему изобретению.

Фиг. 5 является блок-схемой сотового терминала персональной радиосвязи согласно настоящему изобретению.

Фиг. 6 является блок-схемой алгоритма, иллюстрирующей операции во время инициализации системы персональной радиосвязи согласно настоящему изобретению.

Фиг. 7 является схематической иллюстрацией первой структуры повторного использования ячеек для крупнозональной сотовой сети.

Фиг. 8 является схематической иллюстрацией второй структуры повторного использования ячеек для крупнозональной сотовой сети, представляющей способ распределения частот базовых станций согласно настоящему изобретению.

Фиг. 9 является блок-схемой алгоритма, иллюстрирующей работу системы персональной радиосвязи согласно настоящему изобретению.

Подробное описание изобретения Настоящее изобретение будет теперь описано более полно со ссылками на сопровождающие чертежи, на которых показаны предпочтительные выполнения изобретения. Это изобретение, однако, может быть выполнено в многих разных видах и не должно рассматриваться как ограниченное нижеследующими выполнениями, - наоборот, эти выполнения приведены, чтобы сделать данное описание подробным и полным и полностью представить объем изобретения специалистам.

На фиг. 1A и 1B показаны обобщенные схемы системы персональной радиосвязи в соответствии с настоящим изобретением. Такая система работает в сотовой сети связи, которая распределяет части из множества частот (каналов) в пределах спектра для разделения географических ячеек. Таким образом, система обеспечивает крупнозональную беспроводную сеть связи со способностью осуществлять высококачественную беспроводную связь большого числа пользователей с ограниченным числом частот, распределенных для крупнозональной сотовой сети. Как показано на фиг. 1A, крупнозональная сотовая сеть включает в себя по меньшей мере одну радиосетевую ячеечную станцию 102, такую как сотовая телефонная ячеечная станция, для передачи и приема сообщений в диапазоне сетевой ячейки, обозначенном позицией 104, через ячеечную антенну 106. Диапазон 104 радиосетевой ячеечной станции 102 обычно представляется графически так, как показано на фиг. 1A, 1B, 7 и 8. Радиосетевая ячеечная станция 102 взаимодействует также с проводной сетью 108. Специалистам понятно, что крупнозональная сотовая сеть 100 обычно включает в себя много радиосетевых ячеечных станций 102, чтобы покрыть большую площадь, как показано на фиг. 7 и 8. В такой системе каждая радиосетевая ячеечная станция 102 покрывает ячейку (диапазон) 104 в крупнозональной сотовой сети 100 и может взаимодействовать с центральной станцией (не показано) посредством беспроводной (радио) связи. Центральная станция может обеспечить подключение к проводной сети 108 для всех сетевых ячеечных станций 102, которые образуют крупнозональную сотовую сеть 100.

На фиг. 1A телефонная базовая станция 110 расположена внутри ячейки (диапазона) 104 сетевой ячеечной станции 102 крупнозональной сотовой сети. Базовая станция 110 включает в себя низкомощностный приемопередатчик для передачи и приема через антенну 112 базовой станции в ограниченном диапазоне 114 базовой станции, обычно порядка десятков метров. Таким образом, базовая станция может использоваться для передачи и приема персональной радиосвязи в доме или учреждении. Базовая станция 110 электрически подключена также к проводной сети 108. Проводная сеть 108 именуется также коммутируемой телефонной сетью общего пользователя (КТСО) (PSTN). КТСО 108 является регулярной "проводной" телефонной системой, предлагаемой региональными компаниями Bell Operating, и может использовать медный провод, оптическое волокно или другие стационарные передающие каналы. Базовая станция 110 может подключаться непосредственно к КТСО 108 или соединяться через учрежденческую станцию с исходящей и входящей связью (РАВХ) (не показано).

На фиг. 1A показан терминал 120 персональной радиосвязи для радиосвязи как с базовой станцией 110, так и с радиосетевой ячеечной станцией 102 через антенну 122. (Сотовый) терминал персональной радиосвязи включает в себя радиотелефон, такой как сотовый телефон. Сотовый терминал 120 может также содержать, к примеру, полную компьютерную клавиатуру и дисплей, сканер и полные графические и мультимедийные возможности.

Как представлено на фиг. 1A, когда терминал 120 находится в диапазоне 114 базовой станции 110, между ними устанавливается радиостанция 124. Как показано на фиг. 1B, когда терминал 120 находится вне диапазона 114 базовой станции 110, но в пределах диапазона (ячейки) 104 сетевой ячеечной станции 102, автоматически устанавливается новая радиолиния 126 с сетевой ячеечной станцией 102 для установления связи через крупнозональную сотовую сеть 100. Таким образом, когда пользователь находится относительно близко к базовой станции 110 (т.е. в пределах дома или учреждения), имеет место беспроводная связь с базовой станцией, чтобы обойти крупнозональную сотовую сеть с ее структурой более высоких частот обращения. Когда пользователь находится относительно далеко от базовой станции 110, имеет место связь с сотовой сетью.

Специалисту понятно, что полная система персональной радиосвязи будет обычно содержать много базовых станций 110, терминалов 120 и радиосетевых ячеечных станций 102. Специалисту также понятно, что с настоящим изобретением могут использоваться протоколы обычной связи занятия линии, и описывать их дополнительно здесь нет надобности. Для целей этого описания предположим, что спектральное распределение для радиосетевых ячеек есть распределение сотового телефонного спектра IS-54B, которое представлено в таблице.

В описанной на фиг. 1A и 1B системе персональной радиосвязи важно избежать упомянутых взаимных помех каналов между базовой станцией 110 и радиосетевой ячеечной станцией 102. Упомянутых взаимных помех каналов можно избежать путем использования двух дискретных спектров для сетевых вызовов и для базовой станции. Например, базовая станция может использовать протоколы бесшнуровых телефонов. К сожалению, это требует, чтобы терминал 120 работал и по сетевому, и по бесшнуровому протоколам, что может быть дорого и неэкономно.

Согласно изобретению оператору сети 100, которой органами власти обычно предписано использование конкретного множества частот в частотном спектре в назначенном географическом районе, позволено назначать частоты и - факультативно - уровни мощности базовой станции 100. Оператор крупнозональной сотовой сети (поставщик) может назначить частоты и - факультативно - уровни мощности базовой станции 110, чтобы минимизировать упомянутые взаимные помехи каналов и максимизировать выигрыш от назначения частотного спектра.

Согласно изобретению базовая станция 110 использует полученные частоту и уровень мощности соответственно для управления базовой станцией 110. Сигналы частоты и уровня мощности могут также использоваться для операции управления (сотовым) терминалом 120 персональной радиосвязи, как будет описано ниже. Сотовый терминал 120, как тоже будет описано ниже, может управляться для работы на тех же самых частоте и уровне мощности, что и базовая станция 110. В противоположность этому могут предоставляться разные частота и уровень мощности. Таким образом, оператор крупнозональной сотовой сети может получать выигрыш от использования частоты и одновременно предохранять радиосвязь между базовой станцией 110 и терминалом 120 от помех связи в сотовой сети 100.

Выполнение базовой станции и сотового терминала согласно настоящему изобретению иллюстрируется на фиг. 2. Базовая станция 110 включает в себя корпус 130, который приспособлен для состыковки с сотовым терминалом 120 и обеспечивает электрическое взаимодействие между базовой станцией 110 и сотовым терминалом 120 с использованием электрического соединителя 132 или другого средства электрического подключения. Базовая станция 110 подключена к источнику питания (розетке питания) шнуром 134 питания или другим средством подключения питания, а к проводной телефонной сети - соединителем 136 проводной телефонной сети, проведенным из базовой станции 110 внутрь корпуса 130, или другим средством для электрического подключения базовой станции 110 к проводной телефонной сети. Как показано на фиг. 2, корпус 130 предпочтительно переносной, чтобы позволить пользователю передвигать его и устанавливать заново в других местоположениях. Базовая станция 110, как показано на фиг. 2, может содержать далее соединитель 138 для зарядки аккумуляторов или другое средство для обеспечения зарядки, которое подключает запитываемый аккумуляторами сотовый терминал 120 к устройству зарядки аккумуляторов (не показано на фиг. 2), когда сотовый терминал 120 вставлен в корпус 130 или пристыкован к нему, как представлено пунктирными линиями на фиг. 2. Датчик 140 обнаруживает состояние, когда сотовый терминал 120 пристыкован к корпусу 130, и устройство зарядки аккумуляторов активируется для зарядки аккумуляторов запитываемого аккумуляторами сотового терминала 120. Специалисту понятно, что нет нужды использовать отдельный датчик 140 для обнаружения состояния, когда терминал 120 пристыкован к корпусу 130.

Базовая станция 110, как показано на фиг. 2, включает в себя также дисплей 142 или другое пользовательское индикаторное средство. В противоположность этому сотовый терминал 120 может содержать индикаторное средство, которое может использоваться для отображения сигналов от базовой станции 110, передаваемых по электрическому соединителю 132, когда сотовый терминал 120 пристыкован к корпусу 130. Базовая станция 110 может содержать также клавиатуру 144 или другое пользовательское средство ввода. В противоположность этому, как и в случае с дисплеем 142, сотовый терминал 120 может содержать средство ввода, которое может использоваться для обеспечения вводов в базовую станцию 110, когда сотовый терминал 120 пристыкован к корпусу 130.

Блок-схема выполнения базовой станции 110 по настоящему изобретению представлена на фиг. 3. Источник 150 питания подключен к шнуру 134 питания и подает напряжение питания на схему базовой станции 110. Источник 150 питания далее содержит средство 151 обнаружения мощности для обнаружения состояния, когда шнур 134 питания к источнику питания оборван, и для обеспечения сигнала считывания на управляющий процессор 154, индицирующего, что мощность отключена.

Обнаружитель 152 звонкового тока и напряжения аккумулятора станции электрически подключен к соединителю 136 проводного телефона и содержит средство для обнаружения приходящего вызова на соединителе 136 проводного телефона, который подключен к проводной телефонной сети 108. Обнаружитель 152, кроме того, обнаруживает состояние, когда электрическое подключение проводной телефонной сети 108 к соединителю 136 прервано. Обнаружитель 152 подает сигналы на управляющий процессор 154, когда обнаружен "звонок" приходящего вызова и когда прервано подключение к проводной телефонной сети 108. Индикация того, что подключение к проводной телефонной сети (линии) прервано, может быть послано на дисплей 142 под управлением управляющего процессора 154.

Управляющий процессор 154 совместно с обнаружителем 152 звонкового тока и напряжения аккумулятора станции образуют средство активации для инициирования связи между проводной телефонной сетью 108 и сотовым терминалом 102 через базовую станцию 110, когда сотовый терминал 120 находится в районе 114. Для приходящих из проводной телефонной сети (линии) 108 вызовов обнаружитель 152 обнаруживает приходящий вызов и посылает сигнал активации на управляющий процессор 154, который в свою очередь управляет последовательными операциями связи базовой станции 110. Для вызовов, инициируемых с сотового терминала 120, управляющий процессор 154 обнаруживает связь с сотового терминала 120, принятую приемопередающей схемой 164 или другим радиоприемопередающим средством, соединенным с антенной 112, на выделенной частоте в спектре крупнозональной сотовой сети 100. Управляющий процессор 154 посылает управляющий сигнал на схему 152 обнаружения для генерирования сигнала ЗАНЯТО и других сигналов, таких как импульс набора номера, которые могут быть необходимы для взаимодействия с линейным интерфейсом типа разомкнутая петля, таким как тот, который обычно используется проводной телефонной сетью 108.

Разделительная схема 156 обеспечивает разделение двухпроводного двунаправленного телефонного речевого сигнала в четырехпроводную систему из раздельно посылаемых и принимаемых сигналов. Принимаемые из проводной телефонной сети 108 сигналы преобразуются из аналоговой в цифровую форму посредством аналого-цифрового преобразователя (АЦП) (A to D) 158, тогда как передаваемые в проводную телефонную сеть 108 сигналы преобразуются из цифровой в аналоговую форму посредством цифроаналогового преобразователя (ЦАП) (D to A) 160. Это позволяет выполнять всю последовательную обработку речевых сигналов в цифровом виде, используя цифровые процессоры сигналов. Эхоподавитель 162 ослабляет эхо сигнала, посылаемого через соединитель 136 к КТСО 108 для предотвращения искажения сигнала, принимаемого от КТСО. Эхоподавляющая схема 162, кроме того, предотвращает передачу эхо к сотовому терминалу 120 приемопередающей схемой 164 или другим радиопередающим средством, подключенным к антенне 112.

По приходящим от соединителя 136 проводной телефонной сети (линии) вызовам приемопередающая схема 164 реагирует на обнаружение звонка от обнаружителя 152 под управлением процессора 154 для связи с сотовым терминалом 120 с использованием выделенной частоты в частотном спектре крупнозональной сотовой сети 100. Запоминающая схема 155 или другое запоминающее средство электрически соединено с управляющим процессором 154 для обеспечения способности запоминать данные программы и информации, такие как индицирующий частоту сигнал, представляющий выделенную частоту. Запоминающая схема 155 может содержать обычную считываемую и записываемую память, такую как ОЗУ (RAM) или ЭСППЗУ (EEPROM).

После эхоподавления модем 166 обрабатывает принятые оцифрованные звуковые сигналы для выделения каких-либо цифровых управляющих сообщений, которые могли быть приняты вместе со звуковым сигналом от проводной телефонной сети (линии). Такие цифровые управляющие сообщения могут, например, быть программирующей информацией для базовой станции 110, переданной оператором крупнозональной сотовой сети 100. Выделенные цифровые управляющие сообщения поступают на управляющий процессор 154. Модем 166 может выполнять различение данных/речи. Для эхоподавителя 162 и модема 166 может использоваться цифровой процессор сигналов, такой как процессор типа TMS320C56 фирмы Tеxas Instruments.

Принятая оцифрованная речь пропускается на приемопередатчик 164 для передачи. Оцифрованная речь может быть сначала сжата сжимающей схемой (не показано) для более низкой разрядной скорости с использованием обычного алгоритма речевого декодирования, такого как CELP или VSELP. В выполнении аналоговой передачи базовой станции 110 по настоящему изобретению преобразующая схема (не показано) преобразует обнаруженную речь обратно в аналоговый сигнал для модуляции приемопередатчика 164, который в этом выполнении является аналоговым приемопередатчиком.

Радиосигналы от сотового терминала 120 к базовой станции 110, принимаемые антенной 112, детектируются и преобразуются в цифровые речевые сигналы приемопередатчиком 164. Цифровые речевые сигналы пропускаются на схему 162 эхоподавления и модемную схему 166 для передачи на соединитель 136 проводной телефонной сети (линии) к проводной сети 108. В противоположность этому принятые сигналы могут оцифровываться в форму комплексных чисел с использованием, к примеру, метода LOGPOLAR, описанного в патенте США N 5048049. Поток комплексных чисел проходит затем к модему 166 для числовой демодуляции и преобразования в аналоговую речь для посылки на проводную телефонную линию.

Настоящее изобретение может также использоваться для передачи данных от сотового терминала 120, когда сотовый терминал 120 либо встроен в персональную компьютерную систему, либо при вставлении сотового терминала 120 в персональный компьютер для подключения компьютера к модемной схеме 166 без использования прямого кабельного соединения проводной телефонной линии к компьютеру. При осуществлении передачи данных модемная схема 166 и приемопередатчик 164 переводят поток данных между протоколами передачи по эфиру и обычными протоколами передачи данных проводной телефонной линии. Приемопередатчик 164 может также обнаруживать, когда принимаемый сигнал возвращается к речевому, и, подчиняясь управляющему процессору 154, вызывать возврат модемной схемы 166 и эхоподавляющей схемы 162 к обработке речевых сигналов.

Приемопередатчик 164 может быть выбран для генерирования и приема сигналов, соответствующих любому стандарту, например, AMPS, ETACS, NMT450, NMT900, GSM, DSC1800 или IS54. В дополнение к этому приемопередатчик 164 может генерировать или принимать сигналы, соответствующие стандарту эфирного взаимодействия для связи со спутниковыми системами, такими как INMARSAT-M, INMARSAT-P, IRIDIUM, ODYSSEY, GLOBSTAR, ELLIPSAT или M-SAT. Все такие стандарты могут использоваться с настоящим изобретением для обеспечения связи от сотового терминала 120 через обычные проводные линии 108 КТСО и избегая использования крупнозональной системы.

Фиг. 4 представляет блок-схему радиоприемопередатчика 164 фиг. 3. Как показано на ней, приемопередатчик 164 включает в себя схемы как для приема, так и для передачи высокочастотных радиосигналов. Принимаемые антенной 112 сигналы направляются антенным переключателем 201 на приемные схемы. Антенный переключатель представляет собой фильтр с двумя раздельными полосовыми откликами: один - для пропускания сигналов в полосе приема и другой - для пропускания сигналов в полосе передачи. Антенный переключатель 201 обеспечивает одновременную передачу и прием сигналов путем использования разных частот приема и передачи. Например, в архитектуре АЦС частоты приема и передачи разнесены на 45 МГц.

После прохождения через антенный переключатель 201 принятые сигналы усиливаются малошумящим высокочастотным (ВЧ) (RF) усилителем 202. Этот усилитель обеспечивает достаточное усилие для перекрытия ожидаемых потерь в схемах входных каскадов. После усиления нежелательные составляющие сигнала отфильтровываются приемным фильтром 203. После фильтрации сигнал гетеродинируется на первую промежуточную частоту (ПС) (IF) путем смешивания в смесителе 204 со вторым сигналом, генерируемым канальным синтезатором 215 и фильтруемым гетеродинным (Г) (LO) фильтром 214. Сигнал первой ПЧ затем усиливается усилителем 205, а нежелательные продукты смешивания удаляются фильтром 206 ПЧ. После фильтрации первая ПЧ смешивается в смесителе 207 с еще более низкой частотой, или сигналом второй ПЧ, с использованием сигнала, выдаваемого гетеродинным синтезатором 216. Сигнал второй ПЧ затем фильтруется двумя фильтрами 208 и 210 и усиливается многоступенчатыми усилителями 209 и 211 для получения сигнала 212 ПЧ и сигнала 213 индикации напряженности радиосигнала (ИНРС) (RSSI). После этого он подвергается процессу детектирования, к примеру, как описано в патенте США N 5048049 на имя Dent, рассмотрение которого включено сюда посредством ссылки.

Для передачи поток 219 данных генерируется модемом 166 (фиг. 3). В архитектуре ФЦС поток данных организуется в виде пакетов для мультиплексирования с временным разделением с другими пользователями. Опорный генератор 218 генерирует точную частоту, которая используется в качестве стабильного эталона для ВЧ цепей. Выход генератора 218 пропускается через умножитель 221, где он испытывает шестикратное умножение по частоте. Эта частота затем подается в квадратурную схему 222, которая вырабатывает два сигнала равной амплитуды, которые имеют квадратурное соотношение фаз, т.е. они сдвинуты друг относительно друг на 90o. Эти квадратурные сигналы объединяются в модуляторе 223 с потоком 219 данных для создания модулированного сигнала, как это описано в статье, озаглавленной I and Q modulators for Cellular Communications Systems, D.E. Norton et al., Microwave Journal, vol. 34, N 10, October 1991, pp. 63 - 79. Модулированный сигнал проходит в смеситель 224, который переводит этот сигнал на высокую частоту. Точная высокая частота определяется гетеродинным сигналом, подаваемым канальным синтезатором 215. Высокочастотный сигнал пропускается через управляемый усилитель 225 с переменным усилением. Усиление этого усилителя, которое управляется посредством напряжения на линии 220 управления мощностью передачи, определяет окончательную выходную мощность, поскольку линейный усилитель 227 мощности имеет постоянное усиление. Фильтрация выполняется передающим фильтром 226.

Как показано на фиг. 5, конструкция терминала 120 аналогична конструкции базовой станции 110 (фиг. 3) за исключением того, что отсутствует обнаружитель 152 звонкового тока и напряжения аккумулятора станции. Как представлено на фиг. 5, сотовый терминал 120 включает в себя приемопередатчик 250 или другое средство для связи с крупнозональной сотовой сетью 100, когда сотовый терминал 120 не находится внутри базового района (диапазона) 114 базовой станции 110, и для связи с приемопередатчиком 164 базовой станции 110, когда сотовый терминал 120 находится внутри базового района 114. Приемопередатчик 250 подключен к антенне 122. Сотовый терминал 120 содержит далее свои собственные управляющий процессор 254 и запоминающее средство 255, аналогичные тем, что описаны для базовой станции 110, а также передающую схему 251 и приемную схему 253 для обработки соответственно принимаемых и передаваемых сигналов.

Как показано далее на фиг. 5, когда терминал 120 представляет собой сотовый телефон, он включает в себя кнопочный номеронабиратель 257, дисплей 259, громкоговоритель 261 и микрофон 263. Чтобы получить терминал компьютерной связи для приема и передачи звуковых, видео- и информационных и/или мультимедийных сигналов, кнопочный номеронабиратель 257 может быть полномасштабной клавиатурой персонального компьютера, а дисплей 250 может быть широким графическим дисплеем. Сканер 265 также может быть выполнен, как и другие устройства 267, такие как дисковые драйверы и модемы. Конструкция терминала 120 хорошо известна специалистам и не нуждается в дополнительном описании здесь.

Как описано выше, радиосвязь между базовой станцией 110 и сотовым терминалом 120 происходит на частоте, назначенной поставщиком крупнозональной сотовой сети, чтобы избежать упомянутых взаимных помех каналов между базовой станцией 110 и сетевой ячеечной станцией 102. В описанном выше выполнении по настоящему изобретению в базовую станцию 110 включено средство выбора канала, которое получает канал в сотовом спектре крупнозональной сотовой сети 100 для связи между сотовым терминалом 120 и базовой станцией 110. Для немультиплексируемых систем любая данная частота представляет собой один канал; однако для систем мультиплексируемого типа каждая частота может нести множество каналов связи. Настоящее изобретение будет далее описано со ссылкой на частоту, однако понятно, что в мультиплексируемых системах базовой станции 110 может быть назначен конкретный канал или участок, использующий такую выделенную частоту.

Выделенная частота может быть введена в базовую станцию 110 извне базовой станции 110 в качестве выделенного цифрового управляющего сообщения, как описано выше, - в этом случае индицирующий частоту сигнал принимается базовой станцией 110 по связи с проводной линии через соединитель 136. Индицирующий частоту сигнал преобразуется в команду синтезатору и подается по линии 217 для получения требуемой частоты передачи и приема. Сигнал, индицирующий уровень мощности, преобразуется в сигнал управления мощностью передачи и подается по линии 220 для управления мощностью передачи. Преобразования предпочтительно выполняются управляющим процессором 154 с использованием обычных методов. Действия, выполняемые для установки частоты и - факультативно - уровни мощности, будут описаны ниже в связи с фиг. 6.

Индицирующий частоту сигнал от оператора крупнозональной сети выбирается для минимизации взаимных помех между базовой станцией 110 и сетевой ячеечной станцией 102. Предпочтительно, используется частота, которая является одной из частот в сетевом спектре, нераспределенной для сетевой ячеечной станции 102 в ячейке 104, где расположена базовая станция 110. Более предпочтительно, из группы частот в сетевом спектре выделяется частота, распредел