Эмульсия типа вода-в-масле, взрывчатая композиция

Реферат

 

Изобретение относится к эмульсиям типа вода-в-масле и взрывчатым композициям на их основе. Эмульсии, согласно изобретению, стабильно смешиваются с гранулами нитрата аммония с получением модифицированных взрывчатых композиций. Эти эмульсии включают прерывистую водную фазу, содержащую по крайней мере один кислородпоставляющий компонент; непрерывную органическую фазу, включающую по крайней мере одно углеродистое топливо и незначительное количество по крайней мере одного эмульгатора. Эмульгатор представляет собой продукт, полученный при взаимодействии между компонентом (А) (по крайней мере один замещенный янтарный ацилирующий агент, содержащий в среднем по крайней мере 1,3 сукциновых групп на каждый эквивалентный вес замещающих групп, которые происходят из полиалкена) и компонентом (В) (аммиак и/или по крайней мере один амин). 3 с.п., 35 з.п. ф-лы, 2 табл.

Изобретение относится к эмульсиям типа вода-в-масле, которые являются полезными в качестве взрывчатых веществ. Эти эмульсии содержат по крайней мере один эмульгатор, производимый по крайней мере из одного замещенного янтарного ацилирующего агента. Замещенный янтарный ацилирующий агент состоит из замещающих групп /групп-заместителей/ и сукциновых групп, в которых замещающие группы происходят из полиалкилена /например, полибутены/, указанные ацилирующие агенты характеризуются присутствием в их структуре в среднем по крайней мере 1,3 сукциновых групп на каждый эквивалентный вес замещающих групп.

Известны гидрокарбилзамещенные карбоксильные ацилирующие агенты, имеющие по крайней мере около 30 алифатических атомов углерода в заместителе. Примеры таких ацилирующих агентов включают полиизобутенилзамещенные янтарные кислоты и ангидриды. Использование таких карбоксильных ацилирующих агентов в качестве присадок в обычных топливах и смазочных веществах описано в патентах США 3288714 и 3346354. Эти ацилирующие агенты также полезны в качестве промежуточных веществ при получении присадок для использования в обычно жидких топливах и смазочных веществах, как описано в патентах США 2892786; 3087936; 3163603; 3172892; 3189544; 3215707; 9219666; 3231587; 3235503; 3272746; 3306907; 3306908; 3331776; 3341542; 3346354; 3374174; 3379515; 3381022; 3413104; 3450715; 3454607; 3455728; 3476686; 3513095; 3523768; 3630904; 3632511; 3697428; 3755169; 3804763; 3836470; 3862981; 3936480; 3948909; 3950341; и 4471091; и французский патент 2223415.

Патент США 4234435 раскрывает карбоновокислотные ацилирующие агенты, происходящие из полиалкенов, таких как полибутены, и двухосновных карбоксильных реагентов, таких, как малеиновая или фумаровая кислота или некоторые их производные. Эти ацилирующие агенты характеризуются тем, что полиалкены, из которых они получаются, имеют значение Mn примерно от 1300 до 5000 и значение Mw/Mn примерно от 1,5 до 4. Ацилирующие агенты далее характеризуются прис утствием в их структуре по крайней мере 1, 3 групп, происходящих из двухосновного карбоксильного реагента на каждый эквивалентный вес групп, происходящих из полиалкена. Ацилирующие агенты могут вводиться в реакцию с амином, давая производные полезные в качестве присадок к смазочным маслам или в качестве промежуточных соединений, подвергаемых последующей обработке различными другими химическими соединениями и композициями, такими, как эпоксиды, для производства других производных, полезных в качестве присадок к смазочным маслам.

Взрывчатые эмульсии типа вода-в-масле обычно включают непрерывную органическую фазу /например, углеродистое топливо/ и прерывистую водную фазу, содержащую кислородпоставляющий компонент /например, нитрат аммония/. Примеры таких взрывчатых эмульсий типа вода-в-масле обычно включают непрерывную органическую фазу /например, углеродистое топливо/ и прерывистую водную фазу, содержащую кислородпоставляющий компонент /например, нитрат аммония/. Примеры таких взрывчатых эмульсий типа вода-в-масле раскрываются в патентах США 3447978; 3765964; 3985593; 4008110; 4097316; 4104092; 4218272; 4259977; 5357184; 4371408; 4391659; 4404050; 4409044; 4448619; 4453989; и 4534809 и патентной заявке Великобритании GB 2050340A.

Патент США 4216040 раскрывает эмульсионные взрывные средства типа вода-в-масле, имеющие прерывистую водную фазу, непрерывную масляную или водонесмешиваемую жидкую органическую фазу, и органический катионный эмульгатор, имеющий липофильную часть и гидрофильную часть, причем липофильная часть представляет собой ненасыщенную углеводородную цепь.

Патенты США 4708753 и 4644756 раскрывают эмульсии типа вода-в-масле, которые включают /A/ непрерывную масляную фазу; /B прерывистую водную фазу; /C/ небольшое эмульгирующее количество по крайней мере одной соли, происходящей или производимой из /C/ /I/ по крайней мере одной соли, гидрокарбидзамещенной карбоновой кислоты или ангидрида, эфирного или амидного производного указанной кислоты или ангидрида, причем гидрокарбильный заместитель /C/ /I/ имеет в среднем примерно от 20 до 500 атомов углерода, и /C/ /II/ аммиака или по крайней мере одного амина; и /D/ функциональное количество по крайней мере одной водорастворимой, нерастворимой в масле функциональной присадки, растворенной в указанной водной фазе.

Патент 4844756 раскрывает также, что компонентом /C/ /II/ может быть также щелочной или щелочноземельный металл. Эти эмульсии являются полезными в качестве взрывчатых эмульсий, когда функциональная присадка /D/ представляет собой поставляющий кислород компонент /например, нитрат аммония/.

Патент США 4710248 раскрывает взрывчатую эмульсионную композицию, включающую прерывистую окислительную фазу, диспергированную в непрерывной топливной фазе, с модификатором, гидрофильный и липофильный фрагменты. Гидрофильный фрагмент включает карбоновую кислоту или группу, способную гидролизоваться в карбоновую кислоту. Липофильный фрагмент представляет собой насыщенную или ненасыщенную углеводородную цепь. Величина pH взрывчатой эмульсионной композиции выше 4,5.

Патент США 4822433 раскрывает взрывчатую эмульсионную композицию, включающую прерывистую фазу, содержащую кислородпоставляющий компонент и органическую среду, образующую непрерывную фазу, в которой кислородпоставляющий компонент и органическая среда способны образовывать эмульсию, которая в отсутствии дополнительной присадки /или активирующего агента/ обнаруживает электропроводность при измерении при 60oC, не превышающую 60000/метр. Ссылка указывает на то, что проводимость может достигаться путем введения модификатора, который также функционирует, как эмульгатор. Модификатор включает гидрофильную часть /фрагмент/ и липофильную часть. Липофильная часть может быть получена из поли/алк/ен/ил/ янтарного ангидрида. В качестве являющегося полезным идентифицируется, в частности, поли /изобутилен/ янтарный ангидрид, имеющий среднечисленный молекулярный вес в пределах от 400 до 5000. Гидрофильная часть описывается как являющаяся полярной по характеру, имеющая молекулярный вес, не превышающий 450 и может получаться из полиолов, аминов, амидов, алканоламинов и гетероциклических соединений. Пример 14 ссылки раскрывает использование 1: 1 конденсата полиизобутенил янтарного ангидрида /среднемолекулярный вес = 1200/ и диметилэтаноламина в качестве модификатора/эмульгатора.

Патент США 4828633 раскрывает композиции солей, которые включают /A/ по крайней мере одну солевую часть, получаемую из /A/ /I/ по крайней мере одного высокомолекулярного поликарбоксильного ацилирующего агента, причем указанный ацилирующий агент /A/ /I/ имеет по крайней мере один гидрокарбильный /углеводородный/ заместитель, имеющий в среднем примерно от 20 до 500 атомов углерода, и /A/ /A/ аммиака по крайней мере одного амина, по крайней мере одного щелочного или щелочноземельного металла, и/или по крайней мере одного соединения щелочного или щелочноземельного металла; /B/ по крайней мере одну солевую часть, получаемую из /B/ /I/ по крайней мере одного низкомолекулярного поликарбоксильного ацилирующего агента, причем указанный ацилирующий агент /B/ /I/ не обязательно имеет по крайней мере один углеводородный заместитель, имеющий в среднем примерно до 18 углеродных атомов, и /B/ /II/ аммиака по крайней мере одного амина, по крайней мере одного щелочного или щелочноземельного металла, и/или по крайней мере одного соединения щелочного или щелочноземельного металла; причем указанные компоненты /A/ и /B/ соединяются /связываются/ вместе с помощью /C/ по крайней мере одного соединения, имеющего /I/ две или более первичных аминогрупп, /II/ две или более вторичных аминогрупп, /III/ по крайней мере одну первичную аминогруппу, /IV/ по крайней мере две гидроксильные группы или /V/ по крайней мере одну первичную или вторичную аминогруппу и по крайней мере одну гидроксильную группу. Эти композиции солей являются полезными в качестве эмульгаторов во взрывчатых эмульсиях типа вода-в-масле.

Патенты США 4840487 и 4956028 раскрывают взрывчатую композицию, включающую прерывистую окислительную фазу, включающую по крайней мере один кислородпоставляющий компонент, непрерывную органическую фазу, включающую по крайней мере одну несмешиваемую с водой органическую жидкость, и эмульгирующее количество по крайней мере одного азот-содержащего эмульгатора, получаемого из /A/ по крайней мере одного карбоксильного ацилирующего агента, /B/ по крайней мере одного полиамина и /C/ по крайней мере одной кислоты или соединения, дающего кислоту, способных образовывать по крайней мере одну соль с указанным полиамином. Примеры /A/ включает алкиленполиамины. Примеры /C/ включают кислоты фосфора /например, 0,9-диалкилфосфортиокислоту/. Эти взрывчатые композиции могут быть эмульсиями типа вода-в-масле или типа расплав в масле, один поставляющий кислород компонент, непрерывную органическую фазу, включающую по крайней мере углеродистое топливо, и эмульгирующее количество /A/ по крайней мере одной солевой композиции, получаемой из /A/ /I/ по крайней мере одной высокомолекулярной гидрокарбидзамещенной карбоновой кислоты или ангидрида, или эфирного или амидного производного указанной кислоты или ангидрида, причем гидрокарбильный заместитель соединения /A/ /I/ имеет в среднем примерно от 20 до 500 атомов углерода, и /A/ /2/ аммиака по крайней мере одного амина по крайней мере одного соединения щелочного или щелочноземельного металла; и /B/ по крайней мере одну солевую композицию, получаемую из /B/ /I/ по крайней мере одной низкомолекулярной гидрокарбидзамещенной карбоновой кислоты или ангидрида, или эфира или амидного производного указанной кислоты или ангидрида, причем гидрокарбильный заместитель /B/ /I/, имеет в среднем примерно от 8 до 18 углеродных атомов, и /B/ /2/ аммиака по крайней мере одного амина по крайней мере одного щелочного или щелочноземельного металла, и/или по крайней мере одного соединения щелочного или щелочноземельного металла.

Патент США 4,919,178 раскрывает эмульгаторы, которые включают продукт реакции компонента /I/т с компонентом /II/. Компонент /I/ включает продукт реакции некоторых карбоновых кислот или ангидридов, или их сложноэфирных или амидных производных с аммиаком по крайней мере одним амином по крайней мере одним щелочным и/или по крайней мере одним щелочноземельным металлом. Компонент /II/ включает некоторые фосфорсодержащие кислоты; или металлические соли указанных фосфорсодержащих кислот, причем металлы выбираются из группы, состоящей из магния, кальция, стронция, хрома, марганца, железа, молибдена, кобальта, никеля, меди, серебра, цинка, кадмия, алюминия, олова, свинца и смесей двух или более из них. Эти эмульгаторы полезны во взрывчатых эмульсиях типа вода-в-масле В патент США 4956028 раскрываются взрывчатые композиции, которые включают прерывистую фазу окислителя, включающую по крайней мере один кислородпоставляющий компонент, непрерывную органическую фазу, включающую по крайней мере одну не смешиваемую с водой органическую жидкость, и эмульгирующее количество по крайней мере одного азотсодержащего эмульгатора, выбранного из /A/ по крайней мере одного крабоксильного ацилирующего агента, /B/ по крайней мере одного полиамина и /C/ по крайней мере одной кислоты или продуцирующего кислоту соединения, способного образовывать по крайней мере одну соль с указанным полиамном. Эти взрывчатые композиции могут быть эмульсиями типа вода-в-масле или эмульсиями типа расплав-в-масле.

В патенте США 4999062 раскрывается эмульсионная взрывчатая композиция, включающая прерывистую фазу, включающую кислородвысвобождающую соль, непрерывную не смешиваемую с водой органическую фазу и эмульгаторный компонент, включающий продукт конденсации первичного амина и поли алк(ен)ил янтарной кислоты или ангидрида, и где продукт конденсации включает по крайней мере 70% по весу сукцинимидного продукта.

В патенте США N 4.820.361 раскрывается взрывчатый эмульсионный состав, включающий эмульсию типа вода-в-масле, содержащую прерывистую водную фазу, включающую по крайней мере один кислородпоставляющий компонент, и непрерывную органическую фазу, включающую углеводородное топливо, а также эмульгатор.

Взрывчатые эмульсии вода-в-масле часто смешиваются с гранулами нитрата аммония или ANFO с целью увеличения взрывчатой энергии таких эмульсий. Среди промышленно доступных аммоний-нитратных гранул используются гранулы, которые изготавливаются с использованием одного или более кристаллических габитусных модификаторов для регулирования роста кристаллов и одного или более поверхностно-активных веществ для уменьшения спекания. Проблема с использованием этих обработанных гранул заключается в том, что они имеют тенденцию дестабилизировать эмульсии. Поэтому было бы весьма благоприятным разработать взрывчатые эмульсии, которые остаются стабильными при смешении с такими обработанными гранулами нитрата аммония.

Данное изобретение направлено на эмульсии типа вода-в-масле, которые полезны в качестве взрывчатых веществ. Эти эмульсии включают прерывистую водную фазу, включающую по крайней мере один кислородпоставляющий компонент, непрерывную органическую фазу, включающую по крайней мере одно углеродистое топливо, и незначительное эмульгирующее количество по крайней мере одного эмульгатора. Эмульгатором является продукт, полученный по реакции компонента /A/ и компонента /B/: причем компонентом /A/ является по крайней мере один замещенный янтарный ацилирующий агент, при этом указанный замещенный янтарный ацилирующий агент состоит из замещающих групп и янтарных (сукциновых) групп, в котором замещающие группы или группы заместители происходят из полиалкена, указанные ацилирующие агенты характеризуются присутствием в их структуре в среднем не менее 1.3 янтарных групп на каждый весовой эквивалент замещающих групп; а компонентом /B/ является аммиак и/или по крайней мере один амин. Согласно одному воплощению эти эмульсии стабильно смешиваются с аммонийнитратными гранулами, которые были получены с использованием одного или более кристаллических габитусных модификаторов для регулирования роста кристаллов и одного или более поверхностно-активных веществ для уменьшения спекания.

Термин "эмульсия", используемый в данном описании и в прилагаемых пунктах формулы изобретения, предназначен для охвата не только эмульсий вода-в-масле, но также и композиций, полученных из таких эмульсий, в которых при температурах ниже той, при которой образуется эмульсия, прерывистая фаза является твердой или находится в виде капелек суперохлажденной жидкости. Этот термин охватывает также композиции, полученные из или сформированный в виде таких эмульсий вода-в-масле, которые находятся в виде желатиновых или полу-желатиновых композиций.

Термин "гидрокарбид или углеводородный радикал" используется здесь в том смысле, чтобы включать: /1/ углеводородные группы, то есть алифатические (например, алкильные или алкенильные), алициклические (например, циклоалкильные, циклоалкенильные), ароматически-, алифатически- и алицилически-замещенные ароматические группы и аналогичные, а также циклические группы, в которых кольцо завершается с помощью другой части молекулы (то есть, любые две указанные группы могут вместе образовывать алициклическую группу); /2/ замещенные углеводородные группы, то есть группы, содержащее неуглеводородные группы, которые в контексте данного изобретения не изменяют преимущественно углеводородную природу гидрокарбильной группы; специалисты в данной области осведомлены о таких группах, примеры которых включают простую эфирную группу, оксо, галоид /например, хлор или фтор/, алкоксил, меркапто, алкилмеркапто, нитро, нитрозо, сульфокси, и т.д.; /3/ гетерогруппы, то есть группы, которые, имея преимущественно углеводородную природу в контексте данного изобретения, содержат в кольце или цепи, составленной из атомов углерода, и другие атомы, отличные от углерода. Подходящие гетероатомы известны специалистам в данной области и включают, например, серу, кислород, азот, и такие заместители, как пипридил, фуранил, тиофенил, имидазолил и др.

Обычно на каждые десять атомов углерода в углеводородной группе присутствует не более, чем примерно три неуглеводородные группы или гетероатома, и предпочтительно, не более одной группы или гетероатома. В типичном случае в углеводородной группе нет таких групп или гетероатомов, и, следовательно, в этом случае они являются чисто углеводородными.

Углеводородные группы предпочтительно свободны от ацетиленового ненасыщения; этиленовое ненасыщенное, когда оно присутствует, обычно является таким, что на каждые десять углерод-углеродных связей присутствует не более одной этиленовой связи. Углеводородные группы часто являются полностью насыщенными и, следовательно, не содержат этиленовой ненасыщенности.

Термин "низший", используемый здесь в сочетании с такими терминами, как алкил, алкенил, алкокси и аналогичные, охватывает такие группы, которые содержат в общем до 7 атомов углерода.

Эмульсии вода-в-масле согласно изобретению, которые полезны в качестве взрывчатых веществ, включают прерывистую водную фазу, включающую по крайней мере один кислородпоставляющий компонент, непрерывную органическую фазу, включающую по крайней мере одно углеродистое топливо, и незначительное эмульгирующее количество по крайней мере одного эмульгатора. Согласно одному воплощению эти эмульсии стабильно смешиваются с аммонийнитратными гранулами, которые обработаны поверхностно-активными веществами и модификаторами роста кристаллов.

Непрерывная органическая фаза предпочтительно присутствует в количестве по крайней мере примерно 2% по весу, более предпочтительно в пределах примерно от 3,5% до 10%, более предпочтительно примерно 5% - 8% по весу в расчете на общий вес эмульсии вода-в-масле. Прерывистая водная фаза присутствует предпочтительно в количестве не менее примерно 85% по весу, более предпочтительно в количестве в интервале примерно от 85% до 98% по весу, и более предпочтительно примерно от 92% до 95% по весу в расчете на общий вес эмульсии. Эмульгатор предпочтительно присутствует в количестве в интервале примерно от 5% до 95%, более предпочтительно примерно 5% - 50% еще более предпочтительно примерно 5% - 20%, и еще более предпочтительно примерно от 10% до 20% по весу в расчете на общий вес органической фазы. Кислородпоставляющий компонент предпочтительно присутствует в количестве в пределах примерно от 70% до 95% по весу, более предпочтительно примерно 75% - 92% по весу, еще более предпочтительно примерно 78% - 90% по весу в расчете на общий вес водной фазы. Вода предпочтительно присутствует в количестве в интервале примерно от 5% до 30% по весу, более предпочтительно примерно от 8% до 25% по весу, и еще более предпочтительно примерно от 10% до 22% по весу в расчете на вес водной фазы.

Углеродистое топливо Углеродистое топливо, которое полезно в эмульсиях данного изобретения, может включать большинство углеводородов, например, парафиновые, олефиновые, нафтеновые, ароматические, насыщенные или ненасыщенные углеводороды, и типичным образом находится в форме масла или воска или их смеси. Обычно углеродистым топливом является не смешиваемый с водой, эмульгируемый углеводород, который является или жидким, или способным ожидаться при температуре до около 95oC, и предпочтительно при температуре между примерно 40oC и 75oC. В качестве углеродистого топлива могут использоваться масла из множества разнообразных источников, включая природные и синтетические масла и их смеси.

Природные масла включают животные масла и растительные масла /например, касторовое масло, лярд/ также как и очищенные от растворителя или очищенные от кислоты минеральные масла парафинового, нафтенового или смешанного парафиново-нафтенового типов. Полезны также масла, происходящие из каменного угля или горячих сланцев. Синтетические масла включают углеводородные масла и галоидзамещенные углеводородные масла, такие как полимеризованные и сополимеризованные /с регулярным чередованием звеньев/ олефины /например, полибутилены, полипропилены, пропилен-изобутиловые сополимеры, хлорированные полибутилены и проч. /; алкилбенозолы /например, додецилбензолы, тетрадецилбензолы, динонилбензолы, ди-/2-этилгексил/бензолы и др. /; полифенилы /например, бифенилы, терфенилы, алкилированные полифенилы и др./; и аналогичные.

Еще один подходящий класс синтетических масел, которые могут использоваться, включает сложные эфиры дикарбоновых кислот /например, фталевой кислоты, янтарной кислоты, алкилянтарной кислоты, малеиновой, азелаиновой, субериновой, себациновой, фумаровой, адипиновой кислоты, димера линолевой кислоты, малоновой кислоты, алкилмалоновых кислот, алкенилмалоновых кислот и др./ с различными спиртами /например, бутиловым спиртом, гексиловым, додециловым, 2-этилгексиловым спиртом, этиленгликолем, диэтиленгликолевым моноэфиром, пропиленгликолем, пентаэритритом и др. /. Конкретные примеры этих сложных эфиров включают дибутилацитат, ди-/2-этилгексил/-себацинат, ди-н-гексилфумарат, диоктилсебацинат, диизооктилазелаинат, диизодецилавелаинат, диоктилфталат, дидецилфталат, диэйкозилсебацинат, 2-этилгексиловй диэфир димера линоленовой кислоты, комплексный сложный эфир, образованные при реакции одного моля себациновой кислоты с двумя молями тетраэтиленгликоля и двумя молями 2-этил-гексановой кислоты и аналогичные.

Сложные эфиры, полезные в качестве синтетических масел, включают также эфиры, полученные из /5-12C/монокарбоновых кислот и многоатомных спиртов или полиолов и полиоловых простых эфиров, таких как неопентилгликоль, триметилолпропан, пентаэритрит, дипентаэритрит, трипентаэритрит и др.

Масла на основе кремния, такие как полиалкил-, полиарил-, полиалкокси- или полиарилокси-силоксановые масла и силикатные масла составляют еще один класс полезных масел. Эти масла включают тетраэтилсиликат, тетраизопропилсиликат, тетра-/2-этилгексил/-силикат, тетра-/4-метил-гексил/-силикат, тетра/п-третбутилфенил/-силикат, гексил/4-метил-2-пентокси/-ди-силоксан, поли/метил/-силоксаны, поли-/метилфенил/-силоксаны и др. Другие полезные синтетические масла включают жидкие сложные эфиры фосфорсодержащей кислоты /например, трикрезилфосфат, триоктилфосфат, диэтиловый эфир деканфосфоновой кислоты и др./, полимерные тетрагидрофураны и аналогичные.

Могут быть использованы нерафинированные (неочищенные), рафинированные и переочищенные масла (и смеси каждого друг с другом) типа раскрытых здесь выше. Нерафинированные масла получаются непосредственно из природных или синтетических источников без дальнейшей очистки. Например, сланцевое масло, полученное непосредственно путем перегонки в реторте, нефтяное масло, полученное непосредственно с помощью перегонки, или сложноэфирное масло, полученное непосредственно с помощью процесса сложной этерификации и используемое без дополнительной обработки, будет нерафинированным маслом. Рафинированные масла являются сходными с нерафинированными маслами за исключением того, что они были подвержены дополнительной обработке на одной или более стадиях очистки для улучшения одного или более свойств. Многие из таких приемов очистки известны специалистам в данной области, такие как экстракция растворителем, перегонка, кислотная или основная экстракция, фильтрация, фильтрация через адсорбирующий слой /перколяция/ и т.д. Рафинированные масла получаются с помощью процессов, сходных с процессами, используемыми для получения рафинированных масел и применяемыми по отношению к очищенным маслам, которые уже используются на практике. Такие перерафинированные масла также известны как регенированные или повторно переработанные масла и часто дополнительно перерабатываются с помощью технологии, направленной на удаление отработанных присадок и продуктов разрушения масла.

Примеры полезных масел включают белое минеральное масло, поставляемое фирмой Витко Кемикал Компани под торговой маркой КАЙДОЛ; белое минеральное масло, поставляемое фирмой Шелл под торговым наименованием ОНДИНА; и минеральное масло, поставляемое фирмой Пеннцойл под торговым наименованием N-750-HT. В качестве масла может использоваться дизельное топливо /например, сорта N 2-Д, по спецификации в ASTM D-975/.

Углеродистым топливом может быть любой парафин или воск, имеющий точку плавления по крайней мере примерно 25oC, такой как петролатумный воск, микрокристаллический воск и парафин, минеральные воски, такие как озокерит и монтановый воск, воски животного происхождения, такие как спермацетовый воск, и воски насекомых, такие как пчелиный воск и китайский воск. Полезные воски включают воски, идентифицируемые торговым наименованием МОБИЛВОСК 57, который поставляется фирмой Мобил Ойл Корпорейшин; Д02764, который представляет смешанный воск, поставляемый фирмой Астор Кемикал Лтд; и ВИБАР, который поставляется фирмой Петролайт Корпорейшн. Предпочтительными восками являются смеси микрокристаллических восков и парафина.

Согласно одному из воплощений углеродистое топливо включает сочетание воска и масла. Содержание воска может составлять по крайней мере около 25% и предпочтительно находится в интервале примерно от 25% до 90% по весу органической фазы, а содержание масла может составлять по крайней мере примерно 10%, и предпочтительно находится в интервале примерно от 10% до 75% по весу органической фазы.

Кислородпоставляющий компонент.

Кислородпоставляющим компонентом является предпочтительно по крайней мере одна неорганическая окислительная роль, такая как нитрат аммония, щелочного или щелочноземельного металла, хлорат или перхлорат аммония, щелочного или щелочноземельного металла. Примеры их включают нитрат аммония, нитрат натрия, нитрат кальция, хлорат аммония, перхлорат натрия и перхлорат аммония. Предпочитается нитрат аммония. Пригодны также смеси нитрата аммония и нитрата натрия или кальция. Согласно одному воплощению неорганическая окислительная соль включает, главным образом, нитрат аммония, хотя примерно до 25% по весу фазы окислителя может составлять или еще какой-либо неорганический нитрат (например, нитрат щелочного или щелочноземельного металла), или неорганический перхлорат (например, перхлорат аммония или перхлорат щелочного или щелочноземельного металла), или их смесь.

Эмульгатор Термины "заместитель" и "ацилирующий агент" или "замещенный янтарный ацилирующий агент" даются в их номинальных значениях. Например, заместителями являются атом или группа атомов, которая имеет еще один замещенный атом или группу в молекуле в результате реакции. Термин "ацилирующий агент" или "замещенный ацилирующий янтарный агент" относится к соединению самому по себе и не включает непрореагировавшие реагенты, используемые для образования ацилирующего агента или замещенного янтарного ацилирующего агента.

Замещенный янтарный ацилирующий агент /A/, используемый при получении эмульгатора, может характеризоваться присутствием в своей структуре двух групп или фрагментов. На первую группу или фрагмент для удобства здесь ниже ссылаются как на замещающую группу /группы/ и эта группа или фрагмент происходит из полиалкена. Полиалкен, от которого происходят замещенные группы, характеризуется величиной Mn /среднечисленный молекулярный вес/ по крайней мере примерно 500, более предпочтительно по крайней мере около 1000, еще более предпочтительно по крайней мере около 1300, и еще более предпочтительно примерно не менее 1500. В преимущественном случае полиалкен имеет Mn в интервале примерно от 500 до 10000, более предпочтительно примерно от 1000 до 7000, еще более предпочтительно примерно от 1300 до 5000, еще более предпочтительно от около 1500 до около 5000, еще более предпочтительно от около 1500 до около 3000, еще более предпочтительно от около 1500 до около 2400, еще более предпочтительно от около 1500 до около 2000, еще более предпочтительно от около 1600 до около 1900. Полиалкен предпочтительно имеет величину Mw/Mn по крайней мере около 1,5, предпочтительно примерно от 1,5 до 5, более предпочтительно примерно от 2 до 5, еще более предпочтительно от 2,8 до 5, более предпочтительно от 2,8 до 4,5, и еще более предпочтительно от 3,3 до 3,9. Сокращение Mw является общепринятым символом, представляющим средневесовой молекулярный вес.

Гельпроникающая хроматография /ГПХ/ представляет собой метод, который дает как средневесовой, так и среднечисленный молекулярные веса, а также полное распределение молекулярного веса полимеров. Для целей данного изобретения в качестве калибровочного стандарта при ГПХ используется стандарта при ГПХ используется ряд фракционированных полимеров изобутена, полиизобутена. Методики определения величин Mn и Mw полимеров хорошо известны и описаны в многочисленных книгах и статьях. Например, методы определения Mn и распределения молекулярного веса полимеров описываются в работе W.W. Join J.J. Kirkland and D. D. Bly, "Modern Siac Exelusion Liguid Chromatograths", J. Wilny & Sons, Jni. 1979.

Полиалкены, имеющие величины Mn и Mw, обсуждаемые выше, известны в технике и могут получаться в соответствии с обычными процедурами. Например, некоторые из этих полиалкенов описываются и приводятся их примеры в патенте США 4234435. Содержание данного патента относительно таких полиалкенов включено в данное описание для сведения. Несколько из таких полиалкенов, особенно, полибутенов, являются промышленно доступными.

Вторая группа или фрагмент в ацилирующем агенте упоминается здесь как "янтарная группа /группы"/. Янтарные или сукциновые группы являются группами, характеризуемыми структурой где X и X' являются одинаковыми или различными при условии, что по крайней мере один из X и X' является таким, что замещенный янтарный ацилирующий агент может функционировать как карбоксильный ацилирующий агент. То есть по крайней мере один из X и X'должен быть таким, чтобы замещенный ацилирующий агент мог образовывать, например, амиды, имиды, или аминные соли с аминосоединениями, и сложные эфиры, сложноэфирные соли, амиды, имиды и др. с гидроксиламинами, и в остальных отношениях функционировать как обычный карбоновокислотный ацилирующий агент. Для целей данного изобретения реакции переэтерификации и трансамидирования рассматриваются как обычные реакции ацилирования.

Так, X и/или X' обычно представляет -OH, -O-гидрокарбил, -O-M+, где M+ представляет один эквивалент катиона металла, аммония или амина, NH2, Cl, -Br, и вместе X и X' могут представлять -O-, так что образуют ангидрид. Конкретная природа любой из X и X' группы, которая не является одной из вышеуказанных, не является существенной, пока ее присутствие не предотвращает вхождение остающейся группы в реакции ацилирования. Предпочтительно, однако, X и X' каждый является таким, чтобы обе карбоксильные функции янтарной группы /т.е. как -C/O/X, так и -C/O/X' могли вступать в реакцию ацилирования.

Однако из незанятых валентностей в группировке формулы I образует углерод-углеродную связь с атомом углерода в замещающей группе. Хотя другая такая незанятая валентность может быть занята аналогичной связью с той же самой или иной замещающей группой, все, кроме указанной одной такой валентности, обычно заняты водородом; т.е. -H.

Замещенные янтарные или сукциновые ацилирующие агенты характеризуются присутствием в их структуре в среднем по крайней мере 1.3 сукциновых групп /то есть групп, соответствующих формуле I/ на каждой весовой эквивалент замещающих групп. Эти ацилирующие агенты могут иметь примерно от 1.5 до 2.5, предпочтительно примерно 1.7 - 2.1, более предпочтительно, примерно 1.8 - 2.0 сукциновых групп на каждый весовой эквивалент группы-заместителя. Для целей данного изобретения под весовым эквивалентом замещенных групп подразумевается число, полученное делением величины Mn полиалкена, из которого происходит заместитель, на общий вес замещающих групп, присутствующих в замещенных янтарных ацилирующих агентах. Таким образом, если замещенный янтарный ацилирующий агент характеризуется общим весом замещающих групп 40000, а величина Mn для полиалкена, из которого происходят замещающие группы, составляет 2000, тогда этот замещенный янтарный ацилирующий агент характеризуется общим числом весового эквивалента замещающих групп 20/4000 : 2000 = 20/. Следовательно, этот конкретный янтарный ацилирующий агент должен также характеризоваться присутствием в их структурепо крайней мере 26 /1.3 20 = 26/ янтарных групп.

Отношение янтарных групп к эквивалентному числу замещающих групп, присутствующих в ацилирующем агенте, может определяться специалистами в данной области с использованием общепринятых приемов /например, с использованием кислотного числа, числа омыления/.

В одном из воплощений янтарные группы соответствуют формуле где R и R' каждый независимо выбран из группы, состоящей из -OH, -Cl, -O-низшего алкила, а взятые вместе R и R' представляют -O-.

В последнем случае янтарной группой является группа янтарного ангидрида. Все янтарные группы в конкретном янтарном ацилирующем агенте необязательно должны быть одними и теми же, но они могут быть одинаковыми. Предпочтительно, янтарные группы соответствуют группам формул и смесям III/a/ и III/b/.

Получение замещенных янтарных ацилирующих агентов, в которых янтарные группы являются одинаковыми или различными, находится в проделах знаний специалистов в данной области и может достигаться с помощью общепринятых процедур, таких как обработка самих замещенных янтарных ацилирующих агентов /например, гидролиз ангидрида в свободную кислоту или превращение свободной кислоты в хлорангидрид кислоты с помощью тионилхлорида /и/или подбор соответствующих малеинового или фумарового реагентов.

Под предпочтительными характеристиками янтарных ацилирующих агентов следует понимать как зависимые, так и независимые. Они считаются независимыми в том смысле, что например, присутствие как минимум 1.4 или 1.5 янтарных групп на весовой эквивалент замещающих групп не связано с более предпочтительным значением Mn или Mw/Mn. Они рассматриваются как зависимые в том смысле, что, например, когда предпочтительно минимум 1.4 или 1.5 янтарных групп сочетается с более предпочтительными значениями Mn и/или Mw/Mn, совокупность или сочетание предпочтительных значений фактически описывает или характеризует еще более предпочтительные воплощения изобретения. Таким образом, в отношении конкретных обслуживаемых параметров различные параметры предназначены для рассмотрения их в отдельности, но для идентификации дополнительных предпочтительных признаков они могут также сочетаться с другими параметрами. Данная одна и та же концепция предназначена для применения на протяжении данного описания в отношении описания предпочтительных величин, интервалов, соотношений, реагентов и аналогичных, если не демонстрируется или явно не является очевидным противоположное намерение.

Полиалкены, из которых происходят замещенные группы, являются гомополимерами или сополимерами полимеризуемых олефиновых мономеров с числом атомов углерода от 2 до примерно 16; обычно от 2 до примерно 6 атомов углерода. Сополимерами являются такие, в которых два ли более олефиновых мономеров полимеризуются в соответствии с хорошо известными общепринятыми процедурами с образованием полиалкенов, имеющих в своей структуре звенья, полученные из каждого из указанных двух или более олефиновых мономеров. Таким образом, "Со