Способ регулирования силы сопротивления гидравлического демпфера и устройство для его осуществления /варианты/

Реферат

 

Изобретение предназначено для использования в подвеске транспортного средства. Изобретение решает задачу автоматического изменения в широких пределах характеристики сопротивления демпфера в зависимости от амплитуды неровностей дорожного покрытия. Изобретение позволяет уменьшить амплитуду колебаний подрессоренной массы и уменьшить действующую на нее силу. Предлагаемый способ заключается в том, что кроме изменения проходного сечения канала, который связывает полости демпфера в зависимости от разницы давлений между этими полостями преобразуют движение поршня демпфера в перемещение детали демпфера, положение которой влияет на величину проходного сечения канала. При этом каждому положению поршня ставят в соответствие положение этой детали и величину проходного сечения канала, соответствующую постоянной разнице давлений. Способ может быть осуществлен с помощью демпфера, который имеет установленную на поршне подвижную заслонку, которая перекрывает постоянный дроссель, или подводящий канал клапана, или канал, через который разница давлений действует на запорный элемент клапана. Демпфер имеет элемент, на котором вдоль всего хода поршня выполнены винтообразная направляющая (или прямая направляющая с переменной глубиной профиля). При движении поршня подвижная заслонка, взаимодействуя с направляющей, совершает поворот (или движение вдоль радиуса поршня) и изменяет соответствующее сечение. 4 с. и 13 з.п.ф-лы, 36 ил.

Изобретение относится к области транспортного машиностроения, а более точно к способу регулирования силы сопротивления гидравлического демпфера, устанавливаемого в подвеску транспортного средства, а также к устройству для осуществления этого способа. Наиболее успешно настоящее изобретение может быть использовано в подвесках колесных транспортных средств. Кроме того, оно может быть использовано в подвесках снегоходов или транспортных средств на гусеничном ходу, а также в шасси летательных аппаратов.

Для эффективного предотвращения развития резонансных явлений во время вынужденных колебаний подрессоренной и неподрессоренной масс и обеспечения эффективного затухания колебаний этих масс в подвеску транспортного средства включают гидравлический демпфер. Демпфер преобразует кинетическую энергию подрессоренной и неподрессоренной масс, которую они приобретают во время вертикальных колебаний, и излишек потенциальной энергии, который запасается в упругом элементе подвески, в тепловую энергию и рассеивает ее в окружающую среду. Полость демпфера разделена по меньшей мере на две камеры. Объем одной из этих камер, камеры сжатия (растяжения), уменьшается, а объем другой, камеры растяжения (сжатия), увеличивается из-за перемещения разделяющего их поршня во время поступательного (возвратного) движения этого поршня в рабочем цилиндре демпфера. В результате изменения объема в камере сжатия (растяжения) образуется избыточное по отношению к другим полостям демпфера давление. Под действием избыточного давления рабочая жидкость перетекает через канал сжатия (растяжения), который во время поступательного (возвратного) движения поршня связывает камеру сжатия (растяжения) с другими полостями демпфера. Действие избыточного давления рабочей жидкости на детали демпфера, через которые демпфер взаимодействует с подрессоренной и неподрессоренной массами транспортного средства, создает силу сопротивления демпфера. На совершение работы по преодолению силы сопротивления демпфера расходуется механическая энергия, затрачиваемая на перемещение поршня. Абсолютная величина силы сопротивления демпфера имеет обратную зависимость от величины проходного сечения канала сжатия (растяжения) и прямую зависимость от скорости изменения объема полостей демпфера и, соответственно, от скорости движения поршня. Зависимость силы сопротивления демпфера от скорости движения его поршня называется характеристикой сопротивления демпфера. Характеристика сопротивления демпфера, имеющая в рабочем диапазоне скоростей движения поршня большие значения абсолютной величины силы сопротивления, называется жесткой. Характеристика сопротивления демпфера, имеющая в рабочем диапазоне скоростей движения поршня малые значения абсолютной величины силы сопротивления, называется мягкой.

Для уменьшения амплитуды колебаний подрессоренной массы и уменьшения силы, действующей на подрессоренную массу, необходимо увеличивать абсолютную величину силы сопротивления демпфера во время затухания колебаний подрессоренной массы и во время действия на транспортное средство внешних возмущений (неровностей дороги), частота следования которых приблизительно совпадает с собственной циклической частотой свободных колебаний подрессоренной массы.

Для уменьшения амплитуды колебаний подрессоренной массы и уменьшения силы, действующей на подрессоренную массу, необходимо уменьшать абсолютную величину силы сопротивления демпфера во время действия на транспортное средство внешних возмущений, частота следования которых больше собственной циклической частоты свободных колебаний подрессоренной массы.

Выполнение указанных требований осуществляют путем регулирования силы сопротивления, создаваемой демпфером.

Из выложенной заявки Германии DE 4139746 А1 известен способ регулирования силы сопротивления гидравлического демпфера. Этот способ основан на различии скоростей движения поршня демпфера и, соответственно, различии величин образующегося в камере сжатия (растяжения) избыточного давления рабочей жидкости, характерных для высокочастотных вынужденных колебаний подрессоренной массы и свободных колебаний подрессоренной массы. Способ заключается в том, что изменяют проходное сечение канала сжатия (растяжения) в прямой зависимости от величины избыточного давления в камере сжатия (растяжения). При этом текущее значение проходного сечения канала сжатия (растяжения) складывается из сечения постоянного дросселя, который постоянно связывает камеру сжатия (растяжения) с другими полостями демпфера, и текущего сечения щели клапана сжатия (растяжения). В случае отсутствия постоянного дросселя текущее значение проходного сечения канала сжатия (растяжения) равно текущему сечению щели клапана сжатия (растяжения). Изменение сечения канала сжатия (растяжения) обеспечивают тем, что силу, с которой избыточное давление действует на подвижный элемент клапана сжатия (растяжения), текущее положение которого определяет текущий линейный размер щели клапана, уравновешивают противоположно направленной силой упругости упругого элемента этого клапана. Подвижным элементом клапана может быть любой конструктивный элемент, который перекрывает выходное отверстие канала, подводящего рабочую жидкость. Таким элементом может быть, например, тарелка, шарик или плунжер.

Устройство для осуществления описанного способа также известно из выложенной заявки Германии DE 4139746 А1. Это устройство представляет собой гидравлический демпфер, имеющий камеры сжатия и растяжения, образованные в результате разделения полости демпфера поршнем, который закреплен на конце штока. Поршень состоит по меньшей мере из двух элементов. Канал сжатия (растяжения) состоит из постоянного дросселя и клапана сжатия (растяжения). Постоянный дроссель расположен в теле поршня и постоянно связывает камеры сжатия и растяжения. Постоянный дроссель может отсутствовать. В этом случае канал сжатия (растяжения) включает в себя только клапан сжатия (растяжения). Клапан сжатия (растяжения) включает в себя: а) подводящий канал, который выполнен в теле поршня и имеет по меньшей мере одно входное отверстие, расположенное со стороны камеры сжатия (растяжения), и по меньшей мере одно выходное отверстие, расположенное со стороны камеры растяжения (сжатия); б) тарелку, которая перекрывает выходное отверстие подводящего канала со стороны камеры растяжения (сжатия); в) упругий элемент, действие силы упругости которого на тарелку направлено в сторону поршня; г) опору упругого элемента, которая фиксирует положение противоположного поршню конца упругого элемента вдоль продольной оси демпфера относительно седла клапана.

Тарелка клапана сжатия (растяжения) и его упругий элемент могут быть конструктивно совмещены в одном элементе, в котором сила упругости возникает при его изгибе относительно плоскости сопряжения этого элемента с седлом клапана.

При избыточном давлении рабочей жидкости в камере сжатия (растяжения), сила действия которого на тарелку клапана сжатия (растяжения) меньше силы упругости упругого элемента этого клапана, действующей на тарелку в отсутствие избыточного давления в камере сжатия (растяжения), выходное отверстие подводящего канала клапана сжатия (растяжения) перекрыто тарелкой и проходное сечение канала сжатия (растяжения) равно сечению постоянного дросселя или, в случае отсутствия постоянного дросселя, отсутствует. При увеличении избыточного давления тарелка открывает выходное отверстие подводящего канала клапана сжатия (растяжения) и проходное сечение канала сжатия (растяжения) увеличивается в прямой зависимости от величины избыточного давления до максимального значения, которое равно сумме сечения постоянного дросселя и сечения подводящего канала клапана сжатия (растяжения) или равно сечению подводящего канала клапана сжатия (растяжения) в случае отсутствия постоянного дросселя.

Известный способ не позволяет в достаточной степени регулировать силу сопротивления демпфера из-за отсутствия различия между скоростями хода поршня при колебаниях большой амплитуды с частотой, приблизительно равной собственной циклической частоте свободных колебаний подрессоренной массы и при колебаниях малой и средней амплитуды с частотой, которая в несколько раз больше собственной циклической частоты свободных колебаний подрессоренной массы.

Поэтому для значительного уменьшения амплитуды колебаний подрессоренной массы и уменьшения силы, действующей на подрессоренную массу во время воздействия на транспортное средство внешних возмущений, частота следования которых приблизительно совпадает с собственной циклической частотой свободных колебаний подрессоренной массы, демпфер должен иметь достаточно жесткую характеристику сопротивления. Однако во втором случае такой демпфер вызывает увеличение амплитуды колебаний подрессоренной массы и увеличение силы, действующей на нее, по сравнению с демпфером, который имеет мягкую характеристику сопротивления.

Для уменьшения амплитуды колебаний подрессоренной массы и уменьшения силы, действующей на подрессоренную массу во время действия на транспортное средство внешних возмущений, частота следования которых в несколько раз больше собственной циклической частоты свободных колебаний подрессоренной массы, демпфер должен иметь достаточно мягкую характеристику сопротивления. Однако в первом случае такой демпфер рассеивает недостаточное количество энергии и вызывает увеличение амплитуды колебаний подрессоренной массы и увеличение силы, действующей на нее, по сравнению с демпфером, который имеет жесткую характеристику сопротивления.

Изобретение решает задачу автоматического изменения характеристики сопротивления демпфера в зависимости от амплитуды внешнего возмущения (автоматического адаптирования демпфера к характеру дорожного покрытия), которое позволяет достичь: а) уменьшения силы, действующей на подрессоренную массу, и уменьшения амплитуды ее колебаний во время действия на транспортное средство внешних возмущений, частота следования которых по меньшей мере в два раза больше собственной циклической частоты свободных колебаний подрессоренной массы по сравнению с демпфером, в котором используется известный способ регулирования силы сопротивления и который имеет жесткую характеристику сопротивления; б) уменьшения силы, действующей на подрессоренную массу, и уменьшения амплитуды ее колебаний во время действия на транспортное средство внешних возмущений, частота следования которых приблизительно совпадает с собственной циклической частотой свободных колебаний подрессоренной массы по сравнению с демпфером, в котором используется известный способ регулирования силы сопротивления и который имеет мягкую характеристику сопротивления.

Технический результат от использования каждого из вариантов настоящего изобретения выражается в: а) уменьшении силы, действующей на подрессоренную массу, и уменьшении амплитуды ее колебаний во время действия на транспортное средство внешних возмущений, частота следования которых по меньшей мере в два раза больше собственной циклической частоты свободных колебаний подрессоренной массы по сравнению с демпфером, в котором используется известный способ регулирования силы сопротивления и который имеет жесткую характеристику сопротивления; б) уменьшении силы, действующей на подрессоренную массу, и уменьшении амплитуды ее колебаний во время действия на транспортное средство внешних возмущений, частота следования которых приблизительно совпадает с собственной циклической частотой свободных колебаний подрессоренной массы по сравнению с демпфером, в котором используется известный способ регулирования силы сопротивления и который имеет мягкую характеристику сопротивления; в) уменьшении силы, действующей на подрессоренную массу, и уменьшении амплитуды ее колебаний при действии на транспортное средство однократного внешнего возмущения.

Предлагаемый способ регулирования силы сопротивления гидравлического демпфера включает в себя регулирование, которое осуществляется в известном способе, и дополнительное регулирование в зависимости от текущего положения поршня в рабочем цилиндре демпфера, за счет которого и осуществляется автоматическое адаптирование демпфера к характеру дорожного покрытия.

Предлагаемый способ заключается в том, что, как и в известном способе, изменяют проходное сечение канала сжатия (растяжения) в прямой зависимости от величины избыточного давления в камере сжатия (растяжения). Соответствие величины сечения канала сжатия (растяжения) текущей величине избыточного давления рабочей жидкости в камере сжатия (растяжения) обеспечивают тем, что силу, с которой избыточное давление действует на подвижный элемент клапана сжатия (растяжения), текущее положение которого определяет текущий линейный размер щели клапана, уравновешивают противоположно направленной силой упругости упругого элемента этого клапана.

Предлагаемый способ имеет следующие отличия от известного способа. Для осуществления дополнительного регулирования обеспечивают управляемое перемещение по меньшей мере одной детали демпфера, положение которой относительно другой детали демпфера влияет на величину проходного сечения канала сжатия (растяжения). Поступательное (возвратное) движение поршня в рабочем цилиндре демпфера преобразуют в изменение положения этих деталей относительно друг друга. При этом каждому положению поршня в рабочем цилиндре ставят в соответствие положение этих деталей относительно друг друга, а каждому такому положению деталей ставят в соответствие величину проходного сечения канала сжатия (растяжения), которая соответствует постоянной величине избыточного давления.

Предлагаемый способ имеет семь нижеперечисленных основных вариантов исполнения, а также производные варианты исполнения, представляющие собой различные сочетания основных вариантов.

Вариант 1. Поступательное (возвратное) движение поршня преобразуют в поворот детали демпфера, перекрывающей постоянный дроссель, относительно детали демпфера, в которой выполнено отверстие постоянного дросселя. Каждому углу поворота этих деталей относительно друг друга ставят в соответствие величину перекрытия отверстия постоянного дросселя подвижной деталью и, соответственно, проходное сечение постоянного дросселя.

Вариант 2. Поступательное (возвратное) движение поршня преобразуют в линейное перемещение детали демпфера, перекрывающей постоянный дроссель, относительно детали демпфера, в которой выполнено отверстие постоянного дросселя. Каждому положению этих деталей относительно друг друга ставят в соответствие величину перекрытия отверстия постоянного дросселя подвижной деталью и, соответственно, проходное сечение постоянного дросселя.

Вариант 3. Поступательное (возвратное) движение поршня преобразуют в поворот детали демпфера, перекрывающей подводящий канал клапана сжатия (растяжения), относительно детали демпфера, в которой выполнено отверстие этого подводящего канала. Каждому углу поворота этих деталей относительно друг друга ставят в соответствие величину перекрытия отверстия подводящего канала подвижной деталью и, соответственно, проходное сечение подводящего канала клапана сжатия (растяжения).

Вариант 4. Поступательное (возвратное) движение поршня преобразуют в линейное перемещение детали демпфера, перекрывающей подводящий канал клапана сжатия (растяжения), относительно детали демпфера, в которой выполнено отверстие этого подводящего канала. Каждому положению этих деталей относительно друг друга ставят в соответствие величину перекрытия отверстия подводящего канала подвижной деталью и, соответственно, проходное сечение подводящего канала клапана сжатия (растяжения).

Вариант 5. Поступательное (возвратное) движение поршня преобразуют в поворот детали демпфера относительно другой детали демпфера, которая вместе с первой деталью образует седло клапана сжатия (растяжения). Каждому углу поворота этих деталей относительно друг друга ставят в соответствие величину площади, ограниченной седлом клапана сжатия (растяжения), и силу, с которой избыточное давление рабочей жидкости в камере сжатия (растяжения) действует на подвижный элемент клапана сжатия (растяжения), текущее положение которого определяет текущий линейный размер щели этого клапана, и, следовательно, ставят в соответствие величину сечения щели клапана сжатия (растяжения), соответствующую постоянной величине избыточного давления рабочей жидкости в камере сжатия (растяжения).

Вариант 6. Поступательное (возвратное) движение поршня преобразуют в линейное перемещение детали демпфера относительно другой детали демпфера, которая вместе с первой деталью образует седло клапана сжатия (растяжения). Каждому положению этих деталей относительно друг друга ставят в соответствие величину площади, ограниченной седлом клапана сжатия (растяжения), и силу, с которой избыточное давление рабочей жидкости в камере сжатия (растяжения) действует на подвижный элемент клапана сжатия (растяжения), текущее положение которого определяет текущий линейный размер щели этого клапана, и, следовательно, ставят в соответствие величину сечения щели клапана сжатия (растяжения), соответствующую постоянной величине избыточного давления рабочей жидкости в камере сжатия (растяжения).

Вариант 7. Поступательное (возвратное) движение поршня преобразуют в линейное перемещение опоры упругого элемента клапана сжатия (растяжения) относительно седла этого клапана. Каждому положению опоры относительно седла ставят в соответствие величину упругой деформации упругого элемента клапана сжатия (растяжения) и силу упругости, с которой упругий элемент действует на подвижный элемент клапана, текущее положение которого определяет текущий линейный размер щели этого клапана. Таким образом, каждому положению опоры относительно седла клапана сжатия (растяжения) ставят в соответствие величину сечения щели этого клапана, соответствующую постоянной величине избыточного давления рабочей жидкости в камере сжатия (растяжения).

Устройство для осуществления первого и третьего основных вариантов исполнения предлагаемого способа представляет собой гидравлический демпфер, который имеет камеры сжатия и растяжения, образованные в результате разделения полости демпфера поршнем. Поршень закреплен на конце штока и состоит по меньшей мере из двух элементов. При поступательном (возвратном) движении поршня в рабочем цилиндре демпфера переток рабочей жидкости из камеры сжатия (растяжения) в камеру растяжения (сжатия) происходит через канал сжатия (растяжения), который включает в себя по меньшей мере клапан сжатия (растяжения). Клапан сжатия (растяжения) имеет: а) подводящий канал, который выполнен в теле поршня и имеет по меньшей мере одно входное отверстие, расположенное со стороны камеры сжатия (растяжения), и по меньшей мере одно выходное отверстие, расположенное со стороны камеры растяжения (сжатия); б) тарелку, которая перекрывает выходное отверстие подводящего канала со стороны камеры растяжения (сжатия); в) упругий элемент, действие силы упругости которого на тарелку направлено в сторону поршня.

Предлагаемое устройство имеет нижеперечисленные отличия от известного устройства, предназначенного для осуществления известного способа.

По меньшей мере два элемента поршня имеют возможность раздельного поворота вокруг продольной оси рабочего цилиндра демпфера. Устройство имеет соосный со штоком демпфера цилиндрический конструктивный элемент. На участке поверхности этого элемента, совпадающем с ходом поршня, выполнены по меньшей мере две продольные направляющие. По меньшей мере одна из этих направляющих выполнена винтообразной. В каждой точке хода поршня центральный угол между этими направляющими задает угол поворота первого элемента поршня относительно второго элемента поршня. На боковой поверхности как первого, так и второго элементов поршня, обращенной к цилиндрическому конструктивному элементу, расположен по меньшей мере один конструктивный элемент, через который первый элемент поршня взаимодействует с одной из направляющих цилиндрического конструктивного элемента, а второй элемент поршня взаимодействует с другой направляющей цилиндрического конструктивного элемента. Таким конструктивным элементом может быть любой элемент, который передает усилие, возникающее в пятне его контакта с направляющей, на элемент поршня. Этот конструктивный элемент может быть выполнен, например, в виде выступа на боковой поверхности элемента поршня или в виде шара, имеющего гнездо на боковой поверхности элемента поршня. По меньшей мере два отверстия, одно из которых выполнено в первом элементе поршня, а другое выполнено во втором элементе поршня, образуют сквозной канал в теле поршня. В положении поршня, соответствующем минимальному проходному сечению канала сжатия (растяжения) при полностью открытом клапане сжатия (растяжения), проходное сечение сквозного канала, образованного отверстиями первого и второго элементов поршня, по большей мере меньше проходного сечения этого же сквозного канала в положении поршня, соответствующем максимальному проходному сечению канала сжатия (растяжения) при полностью открытом клапане сжатия (растяжения).

Предлагаемое устройство может иметь два варианта исполнения, отличающиеся тем, что: а) направляющие, с которыми взаимодействуют элементы поршня, выполнены на внутренней поверхности рабочего цилиндра демпфера; б) шток демпфера выполнен полым, направляющие, с которыми взаимодействуют элементы поршня, выполнены на внешней поверхности штыря, который закреплен на дне камеры сжатия и который при поступательном движении поршня вдвигается в полость штока.

Устройство для осуществления третьего и пятого основных вариантов исполнения предлагаемого способа имеет нижеперечисленные отличия от устройства, предназначенного для осуществления первого и третьего основных вариантов исполнения предлагаемого способа.

Поршень демпфера имеет третий элемент, который аналогичен первым двум элементам и расположен со стороны камеры сжатия или камеры растяжения. На поверхности цилиндрического конструктивного элемента выполнена дополнительная направляющая, аналогичная другим направляющим. С дополнительной направляющей взаимодействует третий элемент поршня. В каждой точке хода поршня центральный угол между этой направляющей и направляющей, взаимодействующей с элементом поршня, расположенным в середине поршня, задает угол поворота этих элементов поршня относительно друг друга. Подводящий канал клапана сжатия (растяжения) образован по меньшей мере тремя отверстиями. Каждое из этих отверстий выполнено в одном из трех элементов поршня. Все эти отверстия имеют форму сектора кольца с центром на продольной оси рабочего цилиндра демпфера и имеют одинаковые внешние и внутренние радиусы. Радиальная сторона отверстия подводящего канала клапана сжатия (растяжения), выполненного в элементе поршня, расположенном в середине поршня, которая во время уменьшения проходного сечения этого подводящего канала сближается с радиальной стороной выходного отверстия этого же подводящего канала, ограничена выступом элемента поршня. Этот выступ имеет форму сектора кольца с центром на продольной оси рабочего цилиндра демпфера и выступает сквозь выходное отверстие подводящего канала клапана сжатия (растяжения). Этот выступ вместе с поверхностью элемента поршня, которая ограничивает выходное отверстие со стороны камеры растяжения (сжатия), образует седло клапана сжатия (растяжения). В каждой точке хода поршня проходное сечение, образованное входным отверстием подводящего канала клапана сжатия (растяжения) и отверстием этого же подводящего канала, которое выполнено в элементе поршня, расположенном в середине поршня, по меньшей мере равно проходному сечению, образованному последним отверстием и выходным отверстием подводящего канала клапана сжатия (растяжения).

Устройство для осуществления второго и четвертого основных вариантов исполнения предлагаемого способа представляет собой гидравлический демпфер, который имеет камеры сжатия и растяжения, образованные в результате разделения полости демпфера поршнем. Поршень закреплен на конце штока. При поступательном (возвратном) движении поршня в рабочем цилиндре демпфера переток рабочей жидкости из камеры сжатия (растяжения) в камеру растяжения (сжатия) происходит через канал сжатия (растяжения), который включает в себя по меньшей мере клапан сжатия (растяжения).

Клапан сжатия (растяжения) имеет: а) подводящий канал, который выполнен в теле поршня и имеет по меньшей мере одно входное отверстие, расположенное со стороны камеры сжатия (растяжения), и по меньшей мере одно выходное отверстие, расположенное со стороны камеры растяжения (сжатия); б) тарелку, которая перекрывает выходное отверстие подводящего канала со стороны камеры растяжения (сжатия); в) упругий элемент, действие силы упругости которого на тарелку направлено в сторону поршня.

Предлагаемое устройство имеет нижеперечисленные отличия от известного устройства, предназначенного для осуществления известного способа.

По меньшей мере одно сквозное отверстие в поршне перекрыто подвижной заслонкой. Устройство имеет продольный конструктивный элемент. На участке поверхности этого конструктивного элемента, по меньшей мере совпадающем с ходом поршня, выполнена по меньшей мере одна продольная направляющая. Подвижная заслонка прижата к направляющей упругим элементом. Поперечный профиль этой направляющей задает в каждой точке ходе поршня положение подвижной заслонки относительно перекрываемого ею отверстия. В положении поршня, соответствующем минимальному проходному сечению канала сжатия (растяжения) при полностью открытом клапане сжатия (растяжения), проходное сечение канала, образованного подвижной заслонкой и перекрываемым ею отверстием, по большей мере меньше проходного сечения этого же канала в положении поршня, соответствующем максимальному проходному сечению канала сжатия (растяжения) при полностью открытом клапане сжатия (растяжения).

Предлагаемое устройство может иметь два варианта исполнения, отличающиеся тем, что: а) направляющая, с которой взаимодействует подвижная заслонка, выполнена на внутренней поверхности рабочего цилиндра демпфера; б) шток демпфера выполнен полым, направляющая, с которой взаимодействует подвижная заслонка, выполнена на внешней поверхности штыря, который закреплен на дне камеры сжатия и который при поступательном движении поршня вдвигается в полость штока.

Устройство для осуществления четвертого и шестого основных вариантов исполнения предлагаемого способа имеет нижеперечисленные отличия от устройства, предназначенного для осуществления второго и четвертого основных вариантов исполнения предлагаемого способа.

Перекрываемое подвижной заслонкой отверстие образует подводящий канал клапана сжатия (растяжения). Размер этого отверстия, который перпендикулярен направлению движения заслонки, является неизменным. Подвижная заслонка имеет выступ, который перпендикулярен направлению ее движения. Этот выступ проходит сквозь перекрываемое заслонкой отверстие и вместе с поверхностью поршня, которая ограничивает это отверстие со стороны камеры растяжения (сжатия), образует седло клапана сжатия (растяжения).

Устройство для осуществления седьмого основного варианта исполнения предлагаемого способа представляет собой гидравлический демпфер, который имеет камеры сжатия и растяжения, образованные в результате разделения полости демпфера поршнем. Поршень закреплен на конце штока. При поступательном (возвратном) движении поршня в рабочем цилиндре демпфера переток рабочей жидкости из камеры сжатия (растяжения) в камеру растяжения (сжатия) происходит через канал сжатия (растяжения), который включает в себя по меньшей мере клапан сжатия (растяжения).

Клапан сжатия (растяжения) имеет: а) подводящий канал, который выполнен в теле поршня и имеет по меньшей мере одно входное отверстие, расположенное со стороны камеры сжатия (растяжения), и по меньшей мере одно выходное отверстие, расположенное со стороны камеры растяжения (сжатия); б) тарелку, которая перекрывает выходное отверстие подводящего канала со стороны камеры растяжения (сжатия); в) упругий элемент, упругая деформация которого происходит вдоль продольной оси рабочего цилиндра демпфера; г) опору упругого элемента, которая фиксирует положение противоположного поршню конца упругого элемента относительно седла клапана.

Предлагаемое устройство имеет нижеперечисленные отличия от известного устройства, предназначенного для осуществления известного способа.

Поршень демпфера и опора упругого элемента клапана сжатия (растяжения) имеют возможность раздельного поворота вокруг продольной оси рабочего цилиндра демпфера. На внутренней поверхности рабочего цилиндра демпфера на участке, совпадающем с ходом поршня, выполнены по меньшей мере две продольные направляющие. По меньшей мере одна из этих направляющих выполнена винтообразной. В каждой точке хода поршня центральный угол между этими направляющими задает угол поворота опоры упругого элемента клапана сжатия (растяжения) относительно поршня. На боковой поверхности поршня, обращенной к внутренней поверхности рабочего цилиндра демпфера, расположен конструктивный элемент, через который поршень взаимодействует с одной из направляющих. На боковой поверхности опоры упругого элемента клапана сжатия (растяжения), обращенной к внутренней поверхности рабочего цилиндра демпфера, расположен конструктивный элемент, через который эта опора взаимодействует с другой направляющей. Опора упругого элемента клапана сжатия (растяжения) имеет возможность перемещения вдоль цилиндрического хвостовика поршня, ось которого совпадает с продольной осью рабочего цилиндра демпфера. На внешней поверхности этого хвостовика выполнена по меньшей мере одна продольная винтообразная направляющая. Эта направляющая задает продольное положение опоры упругого элемента клапана сжатия (растяжения) на цилиндрическом хвостовике поршня для каждого угла поворота этой опоры относительно поршня. На боковой поверхности опоры упругого элемента клапана сжатия (растяжения), обращенной к цилиндрическому хвостовику поршня, расположен конструктивный элемент, через который эта опора взаимодействует с направляющей, расположенной на хвостовике поршня. Конструктивный элемент, через который опора упругого элемента клапана сжатия (растяжения) взаимодействует с направляющей, выполненной на рабочем цилиндре демпфера, имеет возможность перемещения вдоль этой опоры в направлении продольной оси рабочего цилиндра демпфера на величину, по меньшей мере равную максимальной величине перемещения этой опоры вдоль цилиндрического хвостовика поршня.

Изобретение содержит чертежи устройств, которые иллюстрируют возможность осуществления предлагаемого способа регулирования силы сопротивления гидравлического демпфера, и диаграммы, которые подтверждают возможность получения заявленного технического результата при использовании предлагаемого способа.

На фиг. 1 изображено устройство для осуществления первого основного варианта исполнения предлагаемого способа.

На фиг. 2 - вид сверху на деталь 6 и деталь 5 устройства, изображенного на фиг.1.

На фиг. 3 - развертка внутренней поверхности детали 1 устройства, изображенного на фиг.1.

На фиг. 4 - устройство для осуществления третьего и пятого основных вариантов исполнения предлагаемого способа.

На фиг. 5 - вид сверху на деталь 6, деталь 5 и деталь 25 устройства, изображенного на фиг.4.

На фиг. 6 - развертка внутренней поверхности детали 1 устройства, изображенного на фиг.4.

На фиг. 7 - устройство для осуществления второго основного варианта исполнения предлагаемого способа.

На фиг. 8 - устройство для осуществления четвертого и шестого основных вариантов исполнения предлагаемого способа.

На фиг. 9 - устройство для осуществления седьмого основного варианта исполнения предлагаемого способа.

На фиг. 10 - вид сверху на деталь 13 и деталь 5 устройства, изображенного на фиг.9.

На фиг. 11-36 - диаграммы, которые подтверждают возможность получения заявленного технического результата при использовании предлагаемого способа. На каждой фигуре, за исключением фиг. 11 и 12, изображены три диаграммы, каждая из которых соответствует: а) демпферу, в котором используется известный способ регулирования силы сопротивления и который имеет мягкую характеристику сопротивления (эти диаграммы изображены пунктирной линией); б) демпферу, в котором используется известный способ регулирования силы сопротивления и который имеет жесткую характеристику сопротивления (эти диаграммы изображены тонкой сплошной линией); в) демпферу, в котором используется предлагаемый способ регулирования силы сопротивления (эти диаграммы изображены толстой сплошной линией).

На фиг. 11 - зависимость силы сопротивления, создаваемой демпфером, в зависимости от абсолютной величины скорости перемещения поршня демпфера (характеристика сопротивления). На данной фигуре изображены характеристики сопротивления демпфера, в котором используется известный способ регулирования силы сопротивления и который имеет мягкую характеристику сопротивления (пунктирная линия), и демпфера, в котором используется известный способ регулирования силы сопротивления и который имеет жесткую характеристику сопротивления (сплошная линия). Силы, создаваемые при поступательном движении поршня (сжатии подвески транспортного средства), изображены на отрицательной ветви оси ординат. Силы, создаваемые при возвратном движении поршня (растяжении подвески транспортного средства), изображены на положительной ветви оси ординат.

На фиг. 12 - зависимость демпфирования подрессоренной массы от скорости перемещения поршня демпфера для демпфера, в котором используется известный способ регулирования силы сопротивления и который имеет мягкую характеристику сопротивления (пунктирная линия), и для демпфера, в котором используется известный способ регулирования силы сопротивления и который имеет жесткую характеристику сопротивления (сплошная линия). Демпфирование расчитано по формуле D = 0,5 (Fe/V+Fa/V) / (2 (C M)1/2) гд