Фосфонооксиметиловые эфиры производных таксана, фармацевтическая композиция, способы ингибирования

Реферат

 

Предложены фосфонооксиметиловые эфиры производных таксана общей формулы А T-[OCH2(OCH2)mOP(O)(OH)2]n, где Т представляет собой таксановую часть, несущую на C13-атоме углерода замещенную 3-амино-2-гидроксипропаноилоксигруппу; m=0 или 1; n=1,2, или его фармацевтически приемлемые соли. Тиопроизводные баккатина формулы D 13-OH-txn-[OCH2(OCH2)mSCH3]n, где txn является таксановой частью; либо его C13-алкоксид металла. Тиопроизводные таксана формулы В T1-[OCH2(OCH2)mSCH3]n, где T1 представляет собой Т, в котором переактивные гидроксигруппы являются блокированными.

Сложноэфирные производные фосфонооксиметиловых эфиров производных таксана формулы С Т'-[OCH2(OCH2)m OP(O)(OR7)2]n, где T1, m, n определены выше; R7 является фосфонозащитной группой.

Фармацевтическая композиция, обладающая ингибирующей опухолеактивностью, способы ингибирования роста опухоли у млекопитающего-хозяина. 7 с. и 74 з.п. ф-лы, 6 табл.

Настоящая заявка является частичным продолжением нашей одновременно рассматриваемой заявки рег. N США 08/154840, поданной 24 ноября 1993 г., являющейся частичным продолжением заявки рег. N США 08/108015, поданной 17 августа 1993, и в свою очередь, являющейся частичным продолжением заявки с рег. N США 07/996455, поданной 24 декабря 1992, и ныне абандонированной. Заявка с рег. N 08/154840, во всей своей полноте, вводится в настоящее описание посредством ссылки.

Настоящее изобретение относится к противоопухолевым соединениям. В частности, настоящее изобретение относится к новым производным таксана; к фармацевтическим композициям, содержащим указанные производные; а также к их использованию в качестве противоопухолевых средств.

Таксоль (паклитаксел) представляет собой натуральный продукт, экстрагированный из коры деревьев тихоокеанского тиса (Taxus brevifolia). Было установлено, что этот продукт обладает прекрасной противоопухолевой активностью в in vivo - моделях, а в более поздних исследованиях было выявлено, что соединение обладает уникальным механизмом воздействия, который заключается в аномальной полимеризации тубулина и прекращения митоза. Недавно, это средство было апробировано для лечения рака яичника; а его испытания на активность против рака молочной железы, толстой кишки и легких дали обещающие результаты. Результаты клинических исследований паклитаксела представлены в работе Rowinsky и Donehower "The Clinical Pharmacology and Use of Antimicrotubule Agents in Cancer Chemotherapentics", Pharmac, Ther., 52: 35-84, 1991.

Недавно, было также обнаружено, что полусинтетический аналог паклитаксела, названный Таксотером, обладает хорошей противоопухолевой активностью в in vivo-моделях. В настоящее время, Таксотер также проходит испытания в клиниках Европы и США. Ниже представлены структуры паклитаксела и Таксотера, в которых дана стандартная система нумерации в молекуле паклитаксела.

Одним из недостатков паклитаксела является его очень ограниченная водорастворимость, а потому для изготовления лекарственных средств, содержащих паклитаксел, необходимо использовать безводные фармацевтические носители. Таким носителем является часто используемый в таких случаях Cremophor Eh., который сам по себе обладает нежелательными побочными эффектами при введении человеку. В соответствии с этим, был проведен ряд исследований в целях получения водорастворимых производных паклитаксела, которые раскрываются в следующих работах.

(a) Haugwitz и др., патент США N 4942184; (b) Kingston и др., патент США N 5059699; (c) Stella и др., патент США N 4960790; (d) Заявка на Европатент 0558959 AI, опубликованная 8 сентября 1993 г.

(e) Vyas и др. , Bioorganic 2 Medicinal Chemistry Letters, 1993, 3: 1357-1360; и (f) Nicolaou и др., Nature, 1993, 364: 464-466.

Соединения настоящего изобретения представляют собой фосфонооксиметиловые простые эфиры производных таксана и их фармацевтически приемлемые соли. Водорастворимость этих солей облегчает изготовление фармацевтических композиций.

Краткое описание изобретения Настоящее изобретение относится к производным таксана, имеющим формулу (A): T - [OCH2(OCH2)mOP(O)(OH)2]n (А), где T представляет собой таксановую часть, несущую на C13-атоме углерода замещенную 3-амино-2-гидроксипропаноилокси-группу; n = 1,2 или 3; m = 0 или целому числу от 1 до 6, включительно; или их фармацевтически приемлемой соли.

Другой вариант настоящего изобретения относится к производным таксана, имеющим формулу (B): T' - [OCH2(OCH2)mSCH3]n (В), где T представляет собой T, в котором нереактивные гидроксигруппы были блокированы; m и n являются такими, как они были определены в формуле (A).

В другом своем варианте, настоящее изобретение относится к промежуточным соединениям, имеющим формулу (C): T'-[OCH2(OCH2)mOP(O)(ORy)2]n где T', m и n являются такими, как они были определены в формуле (A); Ry является фосфонозащитной группой.

В следующем варианте своего осуществления, настоящее изобретение относится к соединениям формулы (D): 13-OH-txn-[OCH2(OCH2)mSCH3]n, где m и n определены выше; txn является таксановой частью; либо к их C13-алкоксидам металла.

В еще одном своем варианте, настоящее изобретение относится к способу ингибирования опухолевого роста у млекопитающих, заключающемуся в том, что указанному млекопитающему-хозяину вводят эффективное опухоль-ингибирующее количество соединения формулы (A).

В другом своем варианте, настоящее изобретение относится к способу ингибирования опухолевого роста у млекопитающих, заключающийся в том, что указанному млекопитающему вводят эффективное опухоль-ингибирующее количество соединения формулы (B'): где R1b' является гидроксигруппой, -OCO(O)Rx или -ОC(O)ORx; R3b' является водородом, гидроксигруппой, -OC(O)ORx, C1-6-алкилоксигруппой, или -OC(O)Rx; один из R6b' или R7b' является водородом, а другой гидроксигруппой или C1-6-алканоилоксигруппой; либо R6b' и R7b' вместе образуют оксогруппу; R4 и R5 независимо представляют собой C1-6-алкил, C2-6-алкенил; C2-6-алкинил, или -Z-R6; Z - является прямой связью, C1-6-алкилом, или C2-6-алкенилом; R6 является арилом, замещенным арилом, C3-6-циклоалкилом, или гетероарилом; p = 0 или 1; Px является C1-6-алкилом необязательно замещенным 1-6 атомами галогена, которые могут быть одинаковыми или различными, C3-6-циклоалкилом, C2-6-алкенилом, или гидроксигруппой; либо является радикалом формулы: где D является связью или C1-6-алкилом; Ra, Rb и Rc независимо представляют собой водород, амино, C1-6-алкиламино, ди-C1-6-алкиламино, галоген, C1-6-алкил, или C1-6-алкокси.

И наконец, в еще одном своем варианте, настоящее изобретение относится к фармацевтической композиции, которая включает в себя эффективное опухоль-ингибирующее количество соединения формулы (B) или (A), и фармацевтически приемлемый носитель.

Если это не оговорено особо, то термины, используемые в настоящей заявке имеют следующие значения. "Алкил" означает прямую или разветвленную насыщенную углеродную цепь, имеющую от 1 до 6 атомов углерода, например, такую, как метил, этил, н-пропил, изопропил, н-бутил, втор.-бутил, изобутил, т.-бутил, н-пентил, втор. -пентил, изопентил, и н-гексил. "Алкенил" означает прямую или разветвленную углеродную цепь, имеющую по крайней мере одну "углерод-углеродную", двойную связь, и имеющую от 2 до 6 атомов углерода; например, этенил, пропенил, изопропенил, бутенил, изобутенил, пентенил, и гексенил. "Алкинил" означает прямую или разветвленную углеродную цепь, имеющую по крайней мере одну углерод-углеродную тройную связь, и от двух до шести атомов углерода, например, этинил, пропинил, бутинил, и гексинил.

"Арил" означает ароматический углеводород, имеющий от 6 до 10 атомов углерода, например, такой, как фенил или нафтил. "Замещенный арил" означает арил, замещенный по крайней мере одной группой, выбранной из C1-6-алканоилокси, гидрокси, галогена, C1-6-алкила, трифторометила, C1-6-алкокси, арила, C2-6-алкенила, C1-6-алканоила, нитро, амино и амидо. "Галоген" означает фтор, хлор, бром и йод.

"Фосфоно-" означает группу -P(O)(OH)2, а "фосфонооксиметокси" или "фосфонооксиметиловый эфир", в общих чертах, означают группу -OCH2(OCH2)mOP(O)(OH)2. "(Метилтио)-тиокарбонил" означает группу -C(S)SCH3. "Метилтиометил" (также сокращенно обозначаемый МТМ), в основном, относится к группе -CH2SCH3.

"Таксановая часть" (также сокращенно обозначаемая txn) означает части, содержащие основной каркас молекулы таксана, имеющий 20 атомов углерода, и нижеприведенную структурную формулу с абсолютной конфигурацией Система нумерации, представленная выше, является стандартной системой, которая применяется в тривиальной номенклатуре таксанов, и используется в настоящем описании. Например, символ CI относится к атому углерода, обозначенному "1"; C5-C20-оксетан означает оксетановое кольцо, образованное атомами углерода, обозначенными 4, 5 и 20, и атомом кислорода; а C9-окси относится к атому кислорода, связанному с атомом углерода, обозначенные "9", где указанным атомом кислорода может быть оксогруппа, - или -гидрокси группа, либо - или -ацилоксигруппа.

"Замещенная 3-амино-2-гидроксипропаноилокси-группа" означает остаток, имеющий формулу: где X является группой, не содержащей водород; X' может быть водородом, или группой, не содержащей водород. Стереохимия этого остатка аналогична боковой цепи паклитаксела. В настоящем описании, эту группу иногда обозначали "C13-боковой цепью".

"Производное таксана" (сокращено обозначаемое "T") относится к соединению, имеющему таксановую часть, несущую C13-боковую цепь.

"Гетероарил" означает 5- или 6-членное ароматическое кольцо, содержащее по крайней мере от 1 до 4 атомов, не являющихся углеродом, и выбранных из атомов кислорода, серы и азота. Примерами гетероарила могут служить тиенил, фурил, пирролил, имидазолил, пиразолил, тиазолил, изотиазолил, оксазолил, изоксазолил, тиазолил, тиадиазолил, оксадиазолил, тетразолил, тиатриазолил, оксатриазолил, пиридил, пиримидил, пиразинил, пиридазинил, триазинил, тетразинил и аналогичные кольца.

"Фосфонозащитные группы" означают группы, которые могут быть использованы для блокирования или защиты функциональной фосфоногруппы; причем, предпочтительными являются такие защитные группы, которые могут быть удалены методами, не оказывающими какого-либо неблагоприятного воздействия на остальную часть молекулы. Подходящие фосфонооксизащитные группы хорошо известны специалистам, и в качестве примера таких групп могут служить бензильная и аллильная группы.

"Гидроксизащитными группами" являются (но не ограничиваются ими) простые эфиры, такие, как т-бутиловый, бензиловый п-метоксибензиловый, п-нитробензиловый, алилловый, тритиловый, метоксиметиловый, метоксиэтоксиметиловый, этоксиэтиловый, тетрагидропираниловый, тетрагидротиопираниловый и триалкилсилиловые эфиры (например, триметилсилиловый, триэтилсилиловый и т-бутилдиметилсилиловый эфир), сложные эфиры, такие, как бензоил, ацетил, фенилацетил, формил, моно-, ди-, и тригалогеноацетил (например, хлороацетил, дихлороацетил, трихлороацетил, трифторацетил); и карбонаты, такие, как метил, этил, 2,2,2-трихлорэтил, аллил, бензил и п-нитрофенил.

Другие примеры гидрокси- и фосфонозащитных групп можно найти в таких известных работах, как Grecne & Wuts, Protective Groups in Organic Synthesis, 2d Ed. , 1991, John Wiley & Jous; и Mc Omie, Protective Groups in Organic chemistry, 1975, plenum Press. В указанных работах также описаны методы введения и удаления защитных групп.

Термин "фармацевтически приемлемая соль" означает металлическую или аминовую соль кислотной фосфоногруппы, где катионы не оказывают неблагоприятного влияния на токсичность или биологическую активность активного соединения. Подходящими металлическими солями являются соли лития, натрия, калия, кальция, бария, магния, цинка, и алюминия. Предпочтительными являются соли натрия и калия. Подходящими аминовыми солями являются, например, соли аммиака, трометамина (TPI), триэтиламина, прокаина, бензатина, дибензиламина, хлоропрокаина, холина, диэтаноламина, триэтаноламина, этилендиамина, глюкамина, N-метилглюкамина, лизина, аргинина, этаноламина, и т.п. Предпочтительными аминовыми солями являются соли лизина, аргинина, триэтаноламина, и N-метилглюкамина. Наиболее предпочтительной является N-метилглюкаминовая соль или триэтаноламиновая соль.

В настоящем описании, термин "-OCH2(OCH2) OP(O)(OH)2" относится как к свободной кислоте, так и к ее фармацевтически приемлемым солям, если только конкретно не указывается, что данное выражение означает свободную кислоту.

В одном из своих вариантов, настоящее изобретения относится к производным таксана формулы (A): T-[OCH2(OCH2)mOP(O)(OH)2]n (А), где T представляет собой таксановую часть, несущую на C13-атоме углерода замещенную 3-амино-2-гидроксипропаноилоксигруппу; n = 1, 2 или 3; m = 0 или целое число от 1 до 6 включительно; или к их фармацевтически приемлемым солям.

В другом своем варианте, настоящее изобретение относится к производным таксана формулы (B): T'-[OCH2(OCH2)mSCH3] (В), которые могут быть использованы для получения производных таксана формулы (A).

В одном варианте настоящего изобретения, таксановая часть содержит по крайней мере следующие функциональные группы: C1-гидрокси, C2-бензилокси, C4-ацетилокси, C5-C20-оксетан, C9-окси, и C11-C12-двойную связь.

В предпочтительном варианте осуществления настоящего изобретения, таксановая часть происходит от остатка формулы: где R2е' является водородом; R является водородом, гидрокси, OC(O)Rx, или -OC(O)OPx; R является водородом, гидрокси, OC(O)Rx, -OC(O)OPx, или C1-6-алкилокси; один из R или R является водородом, а другой гидрокси или -OC(O)Rx; либо R и R, вместе взятые образуют оксогруппу; а Rx определен ниже.

В другом варианте настоящего изобретения, C13-боковая цепь происходит от остатка формулы: где R1е' является водородом, -C(O)Rx или -C(O)ORx; R4 и R5 независимо представляют собой C1-6-алкил, C2-6-алкенил, C2-6-алкинил, или -Z-R6; Z представляет собой прямую связь, C1-6-алкил, или C2-6-алкенил; R6 представляет собой арил, замещенный арил, C3-6-циклоалкил, или гетероарил; Rx представляет собой C1-6-алкил, необязательно замещенный 1-6 атомами галогена, которые могут быть одинаковыми или различными, C3-6-циклоалкил, C2-6-алкенил, или гидрокси; либо представляет собой радикал формулы: где D представляет собой связь или C1-6-алкил; Ra, Rb и Rc независимо представляют собой водород, амино, C1-6-алкиламино, ди-C1-6-алкиламино, галоген, C1-6-алкил, или C1-6-алкокси; p равно 0 или 1.

В предпочтительном варианте, R4 является C1-6-алкилом, а p равно 1; либо R4 является - Z - R6, а p равно 0. Более предпочтительно, если R4(O)p представляет собой т-бутокси, фенил, изопропилокси, н-пропилокси, или н-бутокси.

В другом предпочтительном варианте, R5 представляет собой C2-6-алкенил или -Z - R6, где Z и R6 определены выше. А более предпочтительно, если R5 представляет собой фенил, 2-фурил, 2-тиенил, изобутенил, 2-пропенил, или C3-6-циклоалкил.

В другом варианте настоящего изобретения, соединение формулы (A) может быть, в частности, представлено формулой (1): где R1 является гидрокси, OCH2(OCH2)m OP(O)(OH)2, -OC(O)Rx, или -OC(O)ORx; R2 является водородом; R2' является водородом, гидрокси, -OCH2(OCH2)mOP(O) (OH)2, -OC(O)Rx, или -OC(O)ORx; R3 является водородом, гидрокси, C1-6-алкилокси, -OC(O)Rx, -OCH2(OCH2)mOP(O)(OH)2, или -OC(O)ORx; один из R6 или R7 является водородом, а другой гидрокси, C1-6-алканоилокси, или -OCH2(OCH2)mOP(O)(OH2); либо R6 и R7, взятые вместе, образуют оксогруппу; при условии, что по крайней мере один из R1, R2, R3, R6 и R7 является -OCH2(OCH2)mOP(O)(OH)2); R4, R5, Rx, m и p являются такими, как они были определены выше; или его фармацевтически приемлемой солью.

В соединениях формулы (I), примерами Rx могут служить метил, гидроксиметил, этил, н-пропил, изопропил, н-бутил, изобутил, хлорометил, 2,2,2-трихлороэтил, циклопропил, циклобутил, циклопентил, циклогексил, этенил, 2-пропенил, фенил, бензил, бромофенил, 4-аминофенил, 4-метиламинофенил, 4-метилфенил, 4-метоксифенил, и т.п. Примерами R4 и R5 являются 2-пропенил, изобутенил, 3-фуранил(3-фурил), 3-тиенил, фенил, нафтил, 4-гидроксифенил, 4-метоксифенил, 4-фторфенил, 4-трифторметилфенил, метил, этил, н-пропил, изопропил, н-бутил, изобутил, т-бутил, этенил, 2-пропенил, 2-пропинил, бензил, фенетил, фенилэтенил, 3,4-диметоксифенил, 2-фуранил(2-фурил), 2-тиенил, 2-(2-фуранил)этенил, 2-метилпропил, циклопропил, циклобутил, циклопентил, циклогексил, циклогексилметил, циклогексилэтил, и т.п.

В одном из вариантов своего осуществления, настоящее изобретение относится к предпочтительной группе соединений формулы (I), в которых R5 является C2-6-алкенилом или -X-R6, где Z и R6 определены выше. Более предпочтительно, если R5 представляет собой 3-фурил, 3-тиенил, 2-пропенил, изобутенил, 2-фурил, 2-тиенил, или C3-6-циклоалкил.

В другом предпочтительном варианте осуществления настоящего изобретения. R4 в соединениях формулы (I) представляет собой C1-6-алкил, в случае, если p = 1; либо R4 представляет собой -Z-R6 (где Z и R6 определены выше), в случае, если p = 0. Более предпочтительно, если R4(O)p представляет собой т-бутокси, фенил, изопропилокси, н-пропилокси, н-бутокси.

В другом предпочтительном варианте своего осуществления настоящего изобретения относится к соединению формулы (I), в которых R1 представляет собой -OCH2(OCH2)mOP(O)(OH)2. В более предпочтительном варианте, P2 является гидрокси, -OCH2(OCH2)mOP(O)(OH)2, -OC(O)OPx, или -OC(O)Rx, а Rx является предпочтительно C1-6-алкилом. В другом более предпочтительном варианте, R3 является гидрокси или ацетокси.

В другом предпочтительном варианте своего осуществления настоящего изобретения относится к соединению формулы (I), в которых R2 представляет собой -OCH2(OCH2)mOP(O)(OH)2; R1 представляет собой гидрокси, -OC(O)Rx или -OC(O)ORx; R3 представляет собой водород, гидроксигруппу, ацетоксигруппу, -OCH2(OCH2)mOP(O)(OH)2 или -OC(O)ORx, а Rx определен выше. В более предпочтительном варианте, R1 является гидрокси, или -OC(O)Rx, Rx предпочтительно является C1-6-алкилом; а R3 является гидрокси или ацетокси.

В другом предпочтительном варианте своего осуществления настоящее изобретение относится к соединению формулы (I), в котором R3 является -OСH2(OCH2)mOP(O)(OH)2; R1 является гидрокси или -OC(O)OPx; R2 является водородом, R2 является водородом, гидрокси, или -OC(O)ORx; а Rx определен выше. В более предпочтительном варианте, R1 является гидрокси или -OC(O)ORx, а Rx является предпочтительно C1-6-алкилом. В другом более предпочтительном варианте, R2 является гидроксигруппой.

В другом предпочтительном варианте, m = 0, 1 или 2, если фосфонооксиметоксигруппа присутствует на C7 таксановой части.

Предпочтительными фармацевтически приемлемыми солями соединения формулы (A) являются соли щелочных металлов, например, соли триэтиламина, триэтаноламина, этаноламина, аргинина, лизина, и N-метилглюкамина. Более предпочтительными являются соли натрия, триэтаноламина и N-метилглюкамина.

Наиболее предпочтительными производными таксана, имеющими формулу (A), являются следующие соединения: (I) фосфонооксиметилпаклитаксел; (2) (этилоксикарбонил)-7--фосфонооксиметилпаклитаксел; (3) фосфонооксиметилпаклитаксел; (4) (фосфонооксиметил)паклитаксел; (5) 3'-N-дебензоил-3'-десфенил-3'-N-(т-бутилоксикарбонил)-3'-(2-фурил)фосфонооксиметилпаклитаксел; (6) 3'-N-дебензоил-3'-десфенил-3'-N-(т-бутилоксикарбонил)-3'-(2-тиенил)фосфонооксиметилпаклитаксел; (7) 10-дезацетил-3'-десбензоил-3'-N-(т-бутилоксикарбонил)-10-O-(фосфонооксиметил)паклитаксел; (8) фосфонооксиметоксиметилпаклитаксел; (9) фосфонооксиметилпаклитаксел; (10) фосфонооксиметоксиметилпаклитаксел; (11) фосфонооксиметилпаклитаксел; (12) фосфонооксиметилпаклитаксел; и их фармацевтически приемлемые соли, в частности, соли натрия, калия, аргинина, лизина, N-метилглюкамина, этаноламина, триэтиламина и триэтаноламина.

Соединения формулы (A) могут быть получены из таксанового производного T-[OH]n, используемого в качестве исходного материала, где T' и n определены выше. Идентичность T'-[OH]n не является строго ограниченной, поскольку имеется по крайней мере одна реактивная гидроксигруппа, присутствующая либо на таксановой части, либо на C13-боковой цепи, и способствующая образованию фосфонооксиметилэфирной связи. Следует отметить, что реактивная гидроксигруппа может быть непосредственно связана с C13-пропаноилокси-каркасом (например, 2-гидроксигруппа паклитаксела), либо с центральным каркасом таксана (например, 7-гидроксигруппа паклитаксела); или она может присутствовать на заместителе в C13-боковой цепи, или на заместителе в таксановом ядре. Для получения соединений формулы (A) может быть использована реакционная схема, показанная в Схеме I: Схема 1.

В Схеме I, T' представляет собой таксановое производное, в котором нереактивные гидроксигруппы являются блокированными; Ry представляет собой фосфонозащитную группу; а n и m определены выше. Таким образом, соответствующим образом защищенное T', имеющее одну или несколько реактивных гидроксигрупп, сначала превращают в соответствующий метилтиометиловый простой эфир формулы (B). Используя в качестве примера паклитаксел, T' можно определить следующим образом: T' может быть самим паклитакселом (для осуществления 2', 7-бисметилтиометилирования), бензилоксикарбонилпакситакселом; или 2--этоксикарбонилпаклитакселом. Соединение формулы (B), где m = 0, может быть получено путем обработки T'-[OH]n диметилсульфоксидом/уксусным ангидридом, либо диметилсульфидом и органическим пероксидом. Более подробно, эти реакции будут осуждаются в следующем разделе.

ТМТ-эфир, имеющий одну промежуточную метиленоксигруппу (т.е., соединения формулы (B), где m = 1), может быть получен несколькими способами. В одном из них, соединение формулы (B), где m = 0, подвергают реакции с N-иодосукцинимидом (NIS) и метиолтиометанолом, в результате чего цепь удлиняется на одну метиленоксигруппу.

Аналогичная реакция спирта с метилтиометилокси-группой в присутствии NIS описана Veeneman и др., в Tetrahedron, 1991, т. 47, стр. 1547-1562; соответствующие части этой работы вводятся в настоящее описание посредством ссылки. В качестве катализатора предпочтительно используют трифлат серебра. Соединение метилтиометанола и его получение описано в Syn. Comm, 1986, 16 (13): 1607-1610.

В альтернативном способе, T-алкоксид (Ad), полученный путем обработки соединения формулы (Aa) основанием, таким, как н-бутиллитий, диизопропиламид лития, или гексаметилдисилазид лития, подвергают реакции с простым хлорометилметилтиометиловым эфиром, в результате чего получают соединение формулы (B), в котором m = 1.

Соединение (Ae) получают с помощью реакции метилтиометоксида (полученного из метилтиометанола путем обработки основанием таким, как н-бутиллитий, диизопропиламид лития, гексаметилдизилазид лития) с хлороиодометаном. Соединение (Ae) может быть также получено путем обработки 1,1'-дихлородиметилэфира (ClCH2OCH2Cl) стехиометрическим количеством или меньшим количеством (например, около 0,8 эквивалентов) иодида натрия, а затем тиометоксидом натрия. 1,1'-Дихлородиметиловый простой эфир описан в Ind. J. Chem. , 1989, 28B, стр. 454-456.

В другом способе, соединение формулы (Aa) подвергают реакции с бис(МТМ)эфиром, CH3SCH2OCH2SCH3 и N1S в результате чего получают соединение формулы (B), где m = 1.

Бис-(МТМ)эфир получают путем реакции 1,1'-дихлородиметилового эфира с иодидом натрия, а затем с триметоксидом натрия.

Описанная выше процедура с использованием метилтиометанола и NIS может быть применена к любому реагенту, имеющему МТМ-группу, в целях одновременного удлинения цепи на одно метиленоксизвено. Например, соединение формулы (B), где m = 1, может быть подвергнуто реакции с метилтиометанолом и 1 для получения соединения формулы (B), где m = 2. Эту процедуру можно повторить в целях получения соединений формулы (В), в которых m = 3, 4, 5 или 6.

Во второй стадии схемы 1, метилтиометиловый эфир превращают в соответствующий защищенный фосфонооксиметиловый эфир.

Для этого, МТМ-эфир обрабатывают NIS и защищенным фосфатом HOP(O)(ORy)2. В третьей стадии, фосфонозащитную группу и любую гидроксизащитную группу (или группы) удаляют и получают в результате соединение формулы (A). Например, подходящей фосфонозащитной группой является бензил, который может быть удален путем каталитического галогенолиза; а подходящими гидроксизащитными группами, является триалкилсилил, который может быть удален с помощью фторидного иона, и трихлорэтоксикарбонил, который может быть удален с помощью цинка. Удаление защитных групп описано в справочных пособиях Green и Wuts, hotective Groups in Organic Synthesis John Wiley & Sons, 1991; McOnie, Protective in Organic Chemistry, Plenum Press, 1973. Обе эти стадии более подробно описаны в последующем разделе настоящего описания.

В нижеприведенной схеме II показан другой вариант реакционной последовательности, проиллюстрированной в схеме I.

В схеме II, соединение формулы (Aa) подвергают реакции с соединением формулы (Ca) и N1S, в результате чего получают соединение формулы (C), которое затем подвергают разблокированию и получают соединение формулы (A). Соединение формулы (Ca), в котором m = 0, может быть получено сначала путем обработки метилтиометанола основанием, таким, как гексаметилдисилазид натрия, лития или калия, с получением метилтиометоксида; а затем нужное соединение может быть получено посредством реакции указанного метоксида с защищенным хлорофосфатом, таким, как дибензилхлорофосфат. Соединения формулы (Ca), в которых m = 1, могут быть получены путем обработки CH3SCH2OCH2Cl дизащищенной фосфатной солью, например, дибензилфосфатными солями натрия, калия, или тетра(н-бутил)-аммония; либо CH3SCH2OCH2Cl может быть сначала превращен в соответствующее иодосоединение с использованием иодида натрия, и это иодосоединение может быть затем подвергнуто реакции с фосфатной солью. Альтернативно, соединения формулы (Ca), в которых m = 1, могут быть получены путем обработки ClCH2OCH2Cl иодидом натрия, а затем тиометоксидом натрия, с образованием соединения CH3CH2OCH2CH3, которое затем обрабатывают NIS и дизащищенным фосфатом, таким, как дибензилфосфат, в результате чего получают нужный продукт. Любой из вышеупомянутых реагентов, имеющих МТМ-группу, может быть удлинен на одно метиленоксизвено при взаимодействии этого реагента с метилтиометанолом и NIS.

В другом способе получения соединения (A), T-алкоксид (Ad) подвергают реакции с иодофосфатом, как показано в схеме III.

Схема III В схеме III, иодофосфатное соединение получают путем реакции ClCH2(OCH2)mCl с дизащищенной фосфатной солью, в результате которой образуется соединение ClCH2(OCH2)mOP(O)(ORу)2, которое затем обрабатывают иодидом натрия и получают нужный продукт.

В нижеприведенной схеме IV показан еще один метод, который может быть использован для получения подкласса соединений формулы (A), где по крайней мере одна из фосфонооксиметоксигрупп связана с таксоновой частью.

Схема IV.

В схеме IV, m и n являются такими, как они были определены ранее, X является группой, не содержащей водород, P является гидроксизащитной группой; а txn является таксоновой частью. Соединения формулы (I) представляют собой имеющие 13-альфа-гидроксигруппу и одну или несколько метилтиометилоэфирных групп, непосредственно или опосредованно связанных с таксановым ядром; а также C13-алкоксиды металлов формулы (D). Примером соединения формулы (D) является метилтиометилбаккатин III: Реакция взаимодействия таксана (D) с азетидиноном является аналогичной реакции, показанной в схеме VI (см. ниже); поэтому процедура, описанная для получения соединения формулы (1d), может быть также использована для получения соединения формулы (Ba)(т.е., соединения формулы (B), в котором, по крайней мере, одна из МТМ-групп непосредственно или опосредованно связана с таксановой частью), в том случае, если соединение (II) в схеме IV заменить соединением формулы (D). Сначала, таксан предпочтительно превращают в C13-алкоксид металла, например, алкоксид натрия, калия, или лития, а более предпочтительно, в алкоксид лития. Азетидинон служит в качестве предшественника C13-боковой цепи. После реакции присоединения с таксаном, гидроксизащитную группу P удаляют, и если это необходимо, то свободная гидроксигруппа на боковой цепи может быть превращена в МТМ-эфир, либо дериватизирована с образованием сложного эфира или карбоната, как описано ниже.

Азетидинон может быть получен описанными ниже способами, которые хорошо известны любому специалисту. Соединения формулы (D) могут быть получены при помощи общей процедуры, описанной выше для получения соединений формулы (B) с использованием соответствующим образом защищенного таксана. Однако предпочтительно, эти соединения могут получены из соединения формулы (Ba) путем расщепления 13-боковой цепи с использованием борогидрида, например, борогидрида натрия или тетрабутиламмония. Например, паклитаксела обрабатывают борогидридом тетрабутиламмония, в результате чего получают 7-О-МТМ-баккатина III.

Общая процедура, показанная в схеме 1 для получения соединения формулы (A), более наглядно представлены в схеме V, где проиллюстрировано получение соединения формулы (I') (т. е., соединения формулы (I), в котором m = 0). Процедура, используемая в этой последовательности реакций, может быть, в основном, применена к другим производным таксана, которые конкретно не относятся к соединениям формулы (I). Кроме того, процедура, используемая в схеме (V), может быть модифицирована в соответствии с указаниями, приведенными в данном описании в отношении получения производных таксана формулы (A), в которых m=1,2 или 3.

При этом, следует отметить, что в схеме V, а также в других разделах настоящего описания, термин "гидроксизащитные группы" может включать в себя соответствующие карбонаты (например, -OC(O)ORx, где Rx не содержит гидроксигруппу); поэтому, если карбонат используется в качестве гидроксизащитной Схема V группы, то в более поздней стадии, эта группа должна быть удалена с образованием свободной гидроксигруппы; либо, в противном случае, эта карбонатная группа останется как часть конечного продукта.

В схему V, R1a является гидроксигруппой, защищенной гидроксигруппой, -OC(O)Rx, или -OC(O)ORx; P2' является водородом, R2a является водородом, гидроксигруппой, защищенной гидроксигруппой, -OC(O)Rx или -OC(O)OR; R3a является водородом, гидроксигруппой, защищенной гидроксигруппой, C1-6-алкилокси, -OC(O)Rx, или -OC(O)ORx; один их R6a или R7a является водородом, а другой является гидроксигруппой, защищенной гидроксигруппой, или C1-6-алканоилокси; или R6a и R7a, взятые вместе образуют оксогруппу, при условии, что, по крайней мере, один из R1a, R2a, R3a, R6a или R7a является гидроксигруппой. R1b является гидроксигруппой, защищенной гидроксигруппой, -OCH2CH3, -OC(O)Rx, или -OC(O)ORx; R2' является водородом, R2b является водородом, гидроксигруппой, защищенной гидроксигруппой, -OCH2CH3, -OC(O)Rx, или -OC(O)ORx; R3b является водородом, гидроксигруппой, защищенной гидроксигруппой, C1-6-алкилоксигруппой, -OC(O)Rx, -OCH2SCH3 или -OC(O)ORx; один их R6b и R7b является водородом, а другой гидроксигруппой, защищенной гидроксигруппой, C1-6-алканоилоксигруппой, или -OCH2SCH3; либо R6b и R7b, вместе взятые, образуют оксогруппу; при условии, что по крайней мере один из R1b, R2b, R3b, R6b или R7b является -OCH2SCH3. R1c является гидроксигруппой, защищенной гидроксигруппой, -OCH2OP(O)(ORy)2, -OC(O)Rx или -OC(O)ORx; R2' является водородом, R2c является водородом, гидроксигруппой, защищенной гидроксигруппой -OCH2 OP(O) (ORy)2, -OC(O)Rx, или -OC(O)ORx; R3c является водородом, гидроксигруппой, защищенной гидроксигруппой, C1-6-алкилокси, -OC(O)Rx, -OCH2OP(O)ORy)2, или -OC(O)ORx; один из R6c или R7c является водородом, а другой гидроксигруппой, защищенной гидроксигруппой, C1-6-алканоилокси, или -OCH2OP(O)(ORy)2; при условии, что по крайней мере один из R1c, R2c, R3c, R6c или R7c является -OCH2OP(O)(ORy)2. R1 является гидроксигруппой, -OCH2OP(O)(OH)2, -OC(O)Rx, или -OC(O)ORx; R2''' является водородом. P2''' является водородом, гидроксигруппой, OCH2OP(O)(OH)2, -OC(O)Rx или -OC(O)ORx; R3' является водородом, гидроксигруппой, C1-6-алкилокси, -OC(O)Rx, -OC(O)ORx или -OCH2OP(O)(OH)2; один из R6' и R7' является водородом, а другой гидроксигруппой, C1-6-алканоилокси, или -OCH2OP(O) (OH)2; при условии, что, по крайней мере, один их R1', R2'', R3', R6' или R7' является -OCH2OP(O)(OH)2, R4, R5, Rx и p являются такими, как они были определены выше, а Ry является фосфонозащитной группой.

В первой стадии, свободную гидроксигруппу соединения формулы (1a) превращают в соответствующую метилтиометилоэфирную (-OCH2CH3) группу. Для этого осуществляют одну из двух процедур: 1a (диметилсульфидный метод) и 1b (диметилсульфоксидный метод). Диметилсульфидный метод превращения спиртов в метилтиометиловые эфиры описан Medina и др. (Jet. Lett 1988, стр. 3773-3776; соответствующие части этой работы вводятся в настоящее описание посредством ссылки). Диметилсульфоксидный метод хорошо известен специалистам как реакция Пуммерера.

При этом следует отметить, что реакционная способность гидроксигруппы варьируется в зависимости от ее расположения на исходном соединении таксанового производного формулы (1a). Хотя, обычно, 2-гидроксигруппа является более реактивной, в реакциях ацилирования, чем 7-гидроксигруппа, которая, в свою очередь, является более реактивной, чем 10-гидр