Искусственная древесная мука, способ и устройство для ее получения, плита, полученная на основе искусственной древесной муки, способ и устройство экструзионного формования такой плиты (варианты)

Реферат

 

Изобретение относится к деревообрабатывающей промышленности. Искусственную древесную муку термопластичного полимерного материала в количестве 25 - 80 вес. % получают смешиванием с измельченным целлюлозным материалом в количестве 20 - 70 вес.% с влагосодержанием в пределах до 15 вес.% и средним диаметром частиц не более 0,84 мм, затем смешанный материал подвергают пластикации с переводом в гелеобразное состояние. После этого пластицированный материал охлаждают и измельчают с последующим регулированием размеров частиц до их диаметра не более 10 мм. Далее искусственную древесную муку в качестве измельченного целлюлозного материала смешивают в количестве 20 - 75 вес.% с полимерным материалом. Смешанный материал пластицируют с нагреванием и выдавливают шнеком или шнеками через экструзионную головку. Когда экструдируемый материал проходит по поверхности внутренней стенки экструзионной головки, которая плакирована имеющимся на ней фторполимерным листовым материалом, измельченный целлюлозный материал, входящий в состав экструдируемого материала, экструдируется равномерно, не испытывая серьезного усилия сопротивления. Предложенные технические решения позволяют получать однородную древесную плиту с высокой плотностью. 9 с. и 20 з.п. ф-лы, 16 ил., 6 табл.

Изобретение относится к искусственной древесной муке, включающей сюда целлюлозный измельченный материал в качестве основного формуемого материала, способ ее получения и устройство для его осуществления и плиты, которые формуют из искусственной древесной муки, а также способ переработки муки экструзионным формованием и устройство для осуществления этого способа. Более конкретно изобретение относится к искусственной древесной муке, которую соответствующим образом применяют для смешения целлюлозного измельченного материала с термопластичным полимерным материалом (в дальнейшем упрощенно называемым полимерным материалом) в экструдере с получением в головке экструдера профилированного материала заданной толщины; к способу ее получения и устройству для его осуществления, а также к плите из искусственной древесины, отформованной с помощью вышеуказанного экструдера, к способу переработки зкструзионным формованием и устройству для осуществления этого способа.

Что касается вышеупомянутых измельченного целлюлозного материала и полимерных материалов, то сейчас в виде повседневной посуды и прочей утвари в очень больших количествах применяют и выбрасывают в отходы материалы самых различных типов и самого различного назначения. Такие отходы термопластичных формованных продуктов утилизируют как полимерные материалы с применением такого способа, как предлагаемый в описании к американскому патенту N 5323971, и тому подобных. Объектом настоящего изобретения является создание древесной муки, в которой эти отходы используют совместно с измельченными вышеупомянутыми целлюлозными материалами для изготовления строительных материалов или материалов, применяемых в производстве различной пластмассовой формованной продукции, в частности пластмассовых листовых материалов или полимерных пленок, или же в качестве наполнителей или окрашивающего компонента. Другой аспект настоящего изобретения состоит в разработке способа повторного применения отходов в форме просто искусственных деревянных плит или искусственных деревянных плит, которые сами по себе могут быть изготовлены путем повторного применения отходов или совместно с первичными другими гранулированными пластмассами.

До сих пор с целью повышения водостойкости, улучшения теплоизоляционных свойств и тому подобного были осуществлены различные усовершенствования в области производства формованной полимерной продукции на основе древесной муки такого типа. Особенно большое влияние на совершенствование полимерных материалов, приемлемых для использования в качестве материалов покрытий или пленочных материалов, предназначенных для отделки мебели и повседневной утвари; искусственной древесной муки в составе стройматериалов и плит из искусственной древесины, отформованных с применением искусственной древесной муки, для придания поверхностных свойств, идентичных свойствам натуральной древесины, оказали современные требования, в частности необходимость сохранения лесных ресурсов как часть глобального сохранения окружающей среды, необходимость учитывать растушую стоимость пиломатериалов и необходимость считаться с серьезными требованиями, которые глубоко укоренились в значении продукции из дерева.

Однако в обычном процессе экструзионного формования такой плиты из искусственной древесины, когда ее формуют путем смешения измельченного целлюлозного материала, в частности древесной муки и тому подобного, изготовленной измельчением древесины, соломы, багассы, мелкой стружки или целлюлозной массы, определенно существенное влияние на экструзионное формование оказывают свойства этого измельченного целлюлозного материала, например свойства древесной муки, в частности свойства подвижности или диспергируемости древесной муки и полимерного материала.

То есть при истечении измельченный целлюлозный материал, в частности древесная мука и тому подобное, оказывают большое сопротивление процессу за счет трения, поэтому измельченный целлюлозный материал и полимерный материал плохо соответствуют друг другу, вследствие чего распределение древесной муки в формованной плите из искусственного дерева оказывается неравномерным, что вызывает неравномерность плотности. Кроме того, после подачи в экструдер древесной муки и полимерного материала при нагревании из находящейся в смеси древесной муки выделяются большие количества водяного пара иди газообразного древесного уксуса, что вызывает коррозию поверхности стенок экструдера и износ пресс-формы или формы, или же огрубление поверхности, появление пузырьков или полостей в отформованной плите из искусственной древесины. Таким образом, в процессе экструзионного формования возникают различные проблемы.

В таких измельченных целлюлозных материалах, как древесная мука, полученная измельчением древесных материалов, в частности вышеупомянутых строительных отходов, древесных материалов, в частности вышеупомянутых строительных отходов, древесных опилок, которые образуются в процессах резки пиломатериалов или профилированной продукции из дерева, или других лесоматериалов, с помощью мельницы, в работе которой используются усилия удара, сдвига или трения, в частности ножевой дробилки или шаровой мельницы, частицы могут подвергаться распушиванию и часто содержат удлиненные и волокнистые включения. Кроме того, такая древесная мука при смешении с полимерными материалами, растворителем или раствором проявляет исключительно слабые свойства диспергируемости. Во время хранения древесной муки эта последняя может легко коагулироваться, причем она проявляет особенно заметный дефект коагулирования в процессе формования искусственных деревянных плит. По этим причинам волокна с шероховатыми кромками, выступающими участками и ворсистые волокна в древесной муке подвергают обработке измельчением с использованием сил трения шаров в мельнице с целью изменить их форму и придать конфигурацию сферических или квазисферических частиц, что позволяет при формовании использовать древесную муку с улучшенными свойствами подвижности и диспергируемости частиц. Однако по свойствам подвижности древесная мука отличается от полимерных материалов, даже если иметь в распоряжении такую улучшенную древесную муку, поэтому полностью избежать влияния древесной муки на условия протекания процесса формовки невозможно. Таким образом, для соответствия влиянию древесной муки на условия протекания процесса формования важным фактором, который в настоящее время принимают во внимание, является выбор метода формования.

В дополнение к тому усовершенствованию свойств самой древесной муки в отношении ее подвижности и способности диспергироваться, о которых сказано выше, искусственные древесные плиты формуют таким образом, чтобы при этом обеспечивалось хорошее соответствие древесной муки и полимерного материала, которое сохраняет необходимое пластицированное состояние. Это также является важным фактором для формования искусственной древесной плиты, обладающей однородной и высокой плотностью благодаря снижению коэффициента трения древесной муки относительно полимерного материала, фрикционное сопротивление которого ниже фрикционного сопротивления частиц древесной муки. Однако в обычной технике улучшение такого соответствия между древесной мукой и полимерным материалом так и осталось неразрешенной проблемой.

При осуществлении известных способов формования искусственной древесной плиты прибегают к таким обычным методам, как каландрирование, экструзионное формование и горячее прессование.

Способ каландрирования для искусственной древесной плиты, например такой, как представленный в японской патентной публикации KOKOKU N H4 (1992)-7283 (фиг. 15), включает в себя нижеследуюшие стадии: порошок или гранулы древесной муки и полимерного материала, диаметр частиц которых находится в интервале от 80 до 300 меш (0,177-0,050 мм), направляют непосредственно в бункер экструдера; древесную муку смешивают с термопластичным полимерным материалом и оба эти материала нагревают и перемешивают в экструдере открытого типа или же древесную муку и полимерный материал, диаметр частиц которых находится в интервале от 80 до 300 меш (0,177-0,050 мм), подают в смеситель, в котором их в достаточной мере перемешивают между собой; затем смешанный материал пластицируют в замесочной машине, в частности в машине для перемешивания под давлением или в смесителе Бенбери; этот пластицированный материал через бункер направляют в экструдер и экструдируют с помощью шнека 51 в направлении пары нагревательных валков 52, как это представлено на фиг. 15, и экструдированный материал нагревают и формуют его вальцеванием до заданной толщины с помощью нагревательных валков 52. У экструдера открытого типа предусмотрено наличие простого экструзионного отверстия 54 без формующей головки и направляющего приспособления 55, которое соединяет отверстие 54 и нагревательные валки 52 и которое включает в себя приемную нижнюю плиту и боковые плиты, причем каждый из этих элементов снабжен нагревательным средством, в частности электронагревателем 56 или тому подобным, и инфракрасный нагреватель 57, установленный в его верхней части.

Экструдируемый материал поддерживают в горячем состоянии до нагревательных валков 52, что позволяет избежать таких деформаций, как коробление и искривления. Эти деформации происходят в тех случаях, когда экструдируемый материал находится в состоянии, в котором он не аккумулировал достаточного количества тепла, из-за чего кромки экструдируемой ленты быстро охлаждаются и лишь ее средняя часть проталкивается в виде большой массы к нагревательным валкам 52, вследствие чего в формуемом материале возникают складки. Кроме того, состав отформованного изделия оказывается при этом неоднородным, что может также вызвать коробление и искривление.

Экструдируемый материал подвергают достаточному вальцеванию и подают далее с помощью нагревательных валков 52 в форме плиты, после чего неоднородности плотности и состава, которые вызваны вальцеванием, изменяют с помощью коррекционного валка 53, что позволяет предотвратить возникновение у формуемого изделия короблений, а затем корректирование с целью избежать возникновение короблений и искривлений формуемого изделия достигается с помощью множества валков (не показаны), которые поочередно сдавливают верхнюю и нижнюю поверхности с выдержкой соответствующего зазора.

Кроме того, можно применять как одночервячный, так и двухчервячный экструдеры.

Следующий известный способ экструдирования для формования искусственной древесной плиты, предлагаемый, например, в японской патентной публикации KOKOKU N H3 (1991)-59804, включает в себя нижеследующие стадии: древесную муку смешивают с полимерным материалом; смешанный материал нагревают и перемешивают в экструдере, с помощью которого смешанный материал экструдируют в форме трубы через оформляющую головку 61, смонтированную в выпускном отверстии зкструдера, как это представлено на фиг.16(a), отформованное изделие режут режущим инструментом 62, в частности резаком или тому подобным, в направлении экструдирования и это отформованное изделие, разрезанное режущим инструментом 62, разгибают, получая разогнутое отформованное изделие 63 в виде плиты, как это показано на фиг.16(b). Затем, после ввода разогнутого отформованного изделия 63 между нагревательными валками 64, 64 для его прессования покоробленные участки разогнутого отформованного изделия, образование которых обусловлено напряжениями в результате стремления принять первоначальную трубоподобную форму, ликвидируют коррекционным валком 65, за которым покоробленные и искривленные участки отформованного изделия устраняют с помощью нескольких валков 66, которые поочередно сдавливают верхнюю и нижнюю стороны отформованного изделия, благодаря соответствующему зазору. Как следует из указанного выше, соответствие древесной муки полимерному материалу все еще остается проблемой.

Более того, когда порошок или гранулы древесной муки и полимерного материала направляют непосредственно в бункер экструдера или когда древесную муку и полимерный материал смешивают в замесочной машине, в частности в смесителе, машине для перемешивания под давлением или в смесителе Бенбери, с цепью подачи смешанного материала через бункер в экструдер, используют древесную муку, которую предварительно измельчают до тонкодисперсного порошка с диаметром частиц от 80 до 300 меш (0,177-0,050 мм). Фрикционное сопротивление древесной муки оказывает определенный нежелательный эффект, например такой, как обугливание и склеивание экструдируемого материала, из-за чего продукт характеризуется неоднородностью состава или образуются деформированные участки, в частности коробление и искривления, вследствие чего использование древесной муки с более крупными частицами становится невозможным. Все это сопряжено с возникновением дополнительных проблем, поскольку измельчение древесной муки до тонкодисперсного порошка отнимает много времени, а измельчение древесной муки до более тонкодисперсного порошка, чем это необходимо, вызывает неудовлетворительное соответствие древесной муки полимерному материалу.

Как указано выше, в известной технологии возникают нижеследуюшие проблемы.

(1) Что касается проблемы в процессе формования, которая вызвана большим фрикционным сопротивлением при перемещении древесной муки полимерному материалу, то для соединения отверстия 54 с нагревательными валками 52 без оформляющей головки предусмотрено направляющее приспособление 55, а горячее состояние экструдируемого материала в процессе истечения поддерживают подогревом, что позволяет снизить фрикционное сопротивление древесной муки. Далее экструдируемый материал вальцуют с помощью нагревательных валков 52, 52, благодаря чему материал, экструдируемый экструдером, может проходить между нагревательными валками 52, 52 с коротким интервалом, то есть расстояние поверхностей валков 52, 52, входящих в контакт с экструдируемым материалом, может быть уменьшено. В результате фрикционный эффект между древесной мукой и нагревательными валками сведен к минимальному, благодаря чему устраняется возможность неоднородности состава формуемой искусственной древесной плиты. Однако в том, что касается способа каландрирования, искусственная древесная плита не формуется приложением усилия давления на экструдируемый материал, этот экструдируемый материал выталкивается только за счет истечения в соответствии с направлением вращения нагревательных валков.

Таким образом, возможность формования искусственной древесной плиты высокой плотности ограничена.

(2) При осуществлении способа с направляющим приспособлением, соединяющим экструдер с нагревательными валками, как предлагается в описании к японской патентной публикации KOKOKU N H4 (1992)-7283, такое соединение осуществляют с использованием одночервячного экструдера 51 или двухчервячного экструдера, вследствие чего ширина направляющего приспособления имеет предел. Таким образом, в таком варианте проблема состоит в том, что изготовление широкой искусственной древесной плиты оказывается невозможным.

(3) У формуемого изделия, которое вальцуют с помощью нагревательных валков 52 и направляют далее, неоднородность состава, возникающая в процессе вальцевания, устраняют посредством коррекционного валка 53, что позволяет избежать формования изделия с участками коробления, после чего покоробленные или искривленные участки формуемого изделия корректируют множеством коррекционных валков, которые поочередно оказывают давление на верхнюю и нижнюю стороны за счет соответствующего зазора. Однако в действительности корректировка покоробленных и искривленных участков формуемого изделия в достаточной мере невозможна, из-за чего в отформованном изделии возникают внутренние и остаточные напряжения. Из-за этих внутренних и остаточных напряжений возникают искривления, в частности происходит коробление или скручивание отформованного изделия, которое сопровождается усадкой при старении или расширением и сжатием при изменении температуры, что происходит с изделием после его формования. Это проявляется в особой степени, когда изделие подвергают вторичной переработке, например в случае, когда переработку проводят с горячим прессованием. При этом внутренние и остаточные напряжения вызывают в большей мере, чем ожидалось, искривление отформованного изделия.

(4) Процесс каландрирования необходимо сочетать с серьезной заботой о связанных с ним устройствах, отличных от других литьевых машин, из-за чего возникает проблема, обусловленная тем, что стоимость оборудования резко возрастает в сравнении со стоимостью производственного оборудования для экструзионного формования.

Ниже приведен перечень проблем, которые необходимо разрешить, при осуществлении другого известного способа с использованием оформляющей головки.

(1) Обычно полагают, что прямое формование изделий, включающих в себя большое количество древесной муки с высоким фрикционным сопротивлением, посредством оформляющей головки, предусмотренной у экструдера, сопряжено с затруднениями технологического порядка. С другой стороны, при осуществлении способа экструзионного формования, который предлагается в описании к японской патентной публикации KOKOKU N H3 (1991)-59804, оформляющая головка формует материал в виде трубы, причем форма выпускного отверстия этой оформляющей головки является круглой, а переход от ее выпускного отверстия до выпускного отверстия экструдера относительно короток, благодаря чему в процессе экструзионного формования максимально возможно уменьшается фрикционное сопротивление, что позволяет обеспечить равномерность и быстроту прохождения оформляющей головки при экструзионном формовании полимерного материала. Однако при экструдировании искусственной древесной плиты с помощью Т-образной оформляющей головки для прямого формования широкого профилированного изделия, фрикционное сопротивление древесной муки оказывается высоким, что в значительной мере затрудняет равномерное истечение экструдируемого материала на относительно большом расстоянии внутри оформляющей головки, ширина которой в начале велика, а к концу становится слишком малой.

(2) Поскольку при осуществлении способа экструзионного формования, который предлагается в описании к японской патентной публикации KOKOKU N H3 (1991)-59804, после ввода разогнутого отформованного изделия между нагревательными валками для его обжима участки коробления этого разогнутого отформованного изделия под действием напряжений стремятся вновь принять форму трубы, такие участки коробления необходимо устранить с помощью коррекционного валка, вследствие чего корректирование участков коробления у этого формуемого изделия в достаточной мере, как это происходит в вышеописанном случае каландрирования, на практике оказывается невозможным, что приводит к возникновению в отформованном изделии внутренних и остаточных напряжений. Более того, внутренние и остаточные напряжения вызывают искривление, в частности коробление и скручивание, которое сопровождает изменения при старении и, кроме того, искривление отформованного изделия в большей степени, чем ожидалось, когда это отформованное изделие подвергают переработке прессованием с применением метода горячего прессования.

(3) При осуществлении способа экструзионного формования, предлагаемого в описании к японской патентной публикации KOKOKU N H3 (1991)-59804, предусмотрена необходимость устранения участков коробления, которые обусловлены возникновением усилий, направленных на принятие формуемым изделием своей первоначальной, трубоподобной формы, не путем соответствующей модификации способа экструзионного формования, а с помощью коррекционного валка, как это упомянуто в разделе (2), что приводит к резкому удорожанию оборудования в сравнении со стоимостью обычного технологического оборудования для экструзионного формования.

(4) Способ экструзионного формования, предлагаемый в описании к японской патентной публикации KOKOKU N H3 (1991)-59804, предусмотрен для применения при формовании искусственной древесной плиты, отличной от обычной полимерной пленки и тому подобного. При его осуществлении экструдируемому материалу сообщают форму трубы, после чего трубоподобный материал раскрывают, придавая ему конфигурацию плиты, из-за чего формование изделия в виде толстой плиты сопряжено со значительными затруднениями технологического порядка.

(5) Кроме того, при экструдировании искусственной древесной плиты 12-миллиметровой толщины или тому подобного изделия с применением Т-образной оформляющей головки условия истечения формуемого материала в такой оформляющей головке ухудшаются, из-за чего плотность формуемой плиты оказывается неоднородной, и в конечном счете поверхность формуемой плиты может стать волнистой или же ее форма может изменяться и она может приобрести неопределенную конфигурацию, вследствие чего свойственная такой технологии проблема состоит в том, что у продукции отсутствует товарный вид.

(6) Более того, при экструдировании искусственной древесной плиты с применением Т-образной оформляющей головки из-за обугливания древесной муки в формуемом материале под действием нагревателей оформляющей головки формуемый материал загрязняется коричневыми включениями, вследствие чего проблема данной технологии состоит и во внешнем виде продукции, и в ухудшении ударопрочности материала и тому подобных свойств.

Для разрешения вышеупомянутых проблем целями настоящего изобретения являются создание искусственной древесной муки, которая характеризуется своей улучшенной способностью диспергироваться при ее смешении в растворителе или растворе, в частности в красочном растворе или растворе для нанесения покрытий, которая не выпадает в осадок и не коагулируется в красочном растворе, которая способна устойчиво удерживать полимерный материал в фиксированном термо- и химически стабильном состоянии на своих частицах; искусственной древесной муки с улучшенной подвижностью, благодаря которой сохраняется постоянство свойств смешения и диспергирования этой искусственной древесной муки и полимерного материала; разработка способа и создание устройства для получения этой искусственной древесной муки; и, кроме того, искусственной древесной плиты, включающей в себя вышеупомянутую искусственную древесную муку, поддерживающей в себе необходимое соответствие между древесной мукой и полимером и предотвращающей образование пузырьков и полостей вокруг частиц этой древесной муки, причем толщину этой плиты можно варьировать в широком интервале от тонкой плиты до толстой плиты, сохраняя равномерную и высокую плотность между гранулами древесной муки; а также разработка способа экструзионного формования искусственной древесной плиты.

Особыми целями настоящего изобретения являются создание искусственной древесной плиты, толщина которой составляет 10 мм и более, а также разработка способа экструзионного формования и создание экструдера для его осуществления.

Еще одной целью настоящего изобретения является разработка способа экструзионного формования для изготовления формованием широкой искусственной древесной плиты с небольшими внутренними и остаточными напряжениями, а также создание экструдера для осуществления такого способа.

Для достижения вышеуказанных целей в соответствии с настоящим изобретением получают искусственную древесную муку, влагосодержание которой поддерживают в пределах до 15 вес.%, после чего от 25 до 80 вес.% первого исходного материала, представляющего собой полимерный материал, смешивают с 20-65 вес. % измельченного целлюлозного материала, средний размер частиц которого составляет 20 меш (0,84 мм) или менее, этот смешанный материал подвергают перемешиванию или пластикации до образования геля, пластицированный материал охлаждают, измельчают и подвергают классификации до диаметра частиц 10 мм или менее.

Далее способ получения искусственной древесной муки включает в себя стадии смешения сырого материала с применением смесительных и ударных лопастей, пластикации до образования геля за счет теплоты трения, охлаждения и измельчения пластицированного материала и регулирования размеров частиц измельченного материала в диапазоне до 10 мм или менее.

Более того, устройство для получения искусственной древесной муки включает в себя средства смешения и пластикации в технологическом потоке, снабженные перемешивающими и ударными лопастями для смешения первого исходного материала и пластикации смешанного материала до образования геля за счет теплоты трения, гранулирующие средства с охлаждением, снабженные перемешивающими и измельчающими лопастями для гранулирования перемешанного материала, а также входное и выходное отверстия для охлаждающей воды в рубашке и средства регулирования размера для регулирования диаметра частиц измельченной древесной муки в пределах до 10 мм или менее.

В соответствии с другим аспектом настоящего изобретения изготовляют искусственную древесную плиту, входящую в состав которой вышеупомянутую искусственную древесную муку нагревают, измельчают и нагнетают в оформляющую головку с помощью шнека, выдавливаемый из нее материал охлаждают, одновременно прилагая к нему регулирующее давление, противостоящее давлению выдавливаемого материала, что позволяет поддерживать высокую плотность материала.

Первый способ экструзионного формования искусственной древесной плиты включает в себя по меньшей мере стадии, на которых первый исходный материал смешивают с помощью перемешивающих и ударных лопастей, смешанный материал пластицируют до образования геля за счет теплоты трения, пластицированный материал охлаждают и измельчают, размеры частиц измельченного материала регулируют таким образом, что они составляют 10 мм или менее, получая искусственную древесную муку, искусственную древесную муку с отрегулированными размерами частиц нагревают, измельчают и продавливают под высоким давлением в оформляющую головку с помощью шнека, после чего выдавленный материал охлаждают, одновременно прилагая к нему регулирующее давление, противостоящее давлению выдавливаемого материала, что позволяет поддерживать высокую плотность материала.

Затем второй способ экструзионного формования искусственной древесной плиты включает в себя стадии, на которых второй исходный материал готовят смешением измельченного целлюлозного материала, например древесной муки, в количестве 20 - 75 вес.%, предпочтительнее 30 - 70 вес.%, с полимерным материалом; второй исходный материал нагревают, измельчают и продавливают под большим давлением в оформляющую головку 10 с помощью шнека; и выдавленный материал 79 продавливают под большим давлением в формующий участок 21 оформляющей головки 10, снабженный слоем на внутренней стенке, который выполнен в виде плакировки внутренней стенки из полимерного листового материала 24, в частности из полифторэтилена или тому подобного (в данном описании носит название фторполимера), обладающего превосходными свойствами теплостойкости и низким фрикционным сопротивлением, или покрытием на внутренней стенке из фторполимера, отделку которого можно осуществить до заданной толщины, с постепенным охлаждением на формующем участке 21 в процессе экструдирования.

Кроме того, полимерные материалы, используемые в качестве второго исходного материала, представляют собой термопластичные полимерные формуемые материалы, в частности ПВХ (поливинилхлорид), ПЭ (полиэфир) или ПП (полипропилен), и источниками всех таких полимерных материалов являются пластмассы, рекуперированные из полимерных отходов, или рекуперированные пластические материалы, смешанные с первичными пластмассовыми гранулами в соответствующем соотношении, например 1:1. Соотношение в смеси второго исходного материала и измельченного целлюлозного материала является нижеследующим.

(1) В случае ПП полимерного материала.

Измельченный целлюлозный материал может быть смешан в количестве, находящемся в пределах 75 вес.%, а интервал его смешиваемого количества составляет 20 - 75 вес.%, предпочтительнее 30 - 70 вес.%, более предпочтительно 30 - 65 вес.%.

(2) В случае ПЭ полимерного материала.

Измельченный целлюлозный материал может быть смешан в количестве, находящемся в пределах 75 вес.%, а интервал его смешиваемого количества составляет 20 - 60 вес.%, предпочтительнее 35 - 50 вес.%.

(3) В случае ПВХ полимерного материала.

Интервал смешения древесной муки составляет 30 - 60 вес.%, предпочтительнее 25 - 45 вес.%.

В соответствии с другим способом экструзионного формования искусственной древесной плиты в дополнение к тому, что включает в себя второй способ экструзионного формования, в нем предусмотрены стадии, на которых создают регулируемое усилие, противостоящее усилию выдавливания под большим давлением, которое воздействует на формуемое изделие 29 в процессе выдавливания под большим давлением второго исходного материала с помощью тормозящих средств, причем усилие сопротивления выдавливающему усилию через изделие 29 воздействует на экструдируемый материал 79 в камере формования 22 таким образом, что при этом формуемому материалу 79 на участке формования сообщается высокая плотность.

Кроме того, экструдируемый материал 79 можно продавливать под высоким давлением в формующий участок оформляющей головки 10 за счет нагревания на впускном участке 11 оформляющей головки 10.

Экструдер для формования искусственной древесной плиты в соответствии с настоящим изобретением, включающий в себя экструзионную головку 78 экструдера, который продавливает второй исходный материал с помощью шнека или шнеков после нагревания и измельчения этого второго исходного материала, соединен с оформляющей головкой 10, у которой предусмотрены впускной участок 11 для нагревания экструдируемого материала 79, выходящего из экструзионной головки, и оформляющий участок 21, снабженный формующей камерой 22 для формования экструдируемого материала 79, продавливаемого из впускного участка 11, с заданной толщиной. Более того, на поверхности внутренней стенки оформляющего участка 21 имеется слой, который выполнен из фторполимера или тому подобного материала, а в оформляющей головке предусмотрены охлаждающие средства для охлаждения оформляющей камеры 22.

Помимо того, что экструдер для изготовления вышеупомянутой искусственной древесной плиты снабжен устройством для получения вышеупомянутой искусственной древесной муки, экструзионная головка такого экструдера, который продавливает искусственную древесную муку с помощью шнека или шнеков после нагревания и измельчения искусственной древесной муки, соединена с оформляющей головкой, у которой имеются впускной участок для нагревания экструдируемого материала, выходящего из экструзионной головки, и оформляющий участок, снабженный формующей камерой для формования экструдируемого материала, выдавливаемого из впускного участка 11, заданной толщины, причем на поверхности внутренней стенки этого оформляющего участка предусмотрен слой, который выполнен из фторполимера или тому подобного материала; оформляющая головка снабжена также охлаждающими средствами для охлаждения формующей камеры.

Кроме того, 60 - 75 вес.% древесной муки, которую используют в качестве измельченного целлюлозного материала первого исходного материала, предпочтительнее смешивать с 25-40 вес.% полимерного материала, в частности полипропилена или полиэтилена.

Подобным же образом от 60 до 65 вес.% древесной муки, которую используют в качестве измельченного целлюлозного материала, предпочтительнее смешивать с 35-40 вес.% одного или нескольких полимерных материалов, выбираемых из поликарбоната, нейлона и ПВХ.

В качестве фторполимера, помимо прочего, можно использовать политетрафторэтилен (Teflon TFE; TM фирма "Дюпон Лтд."), фторэтиленпропиленовый сополимер (Teflon FEP), политрифторэтиленхлорид (Teflon CTFE), полифторвинилиден (Teflon VdF).

Кроме того, благодаря простоте внесения изменений и простоте в технологическом отношении для нанесения покрытии на поверхность внутренней стенки формующей камеры 22 и поверхность направляющей пластины предпочтительнее применять способ, включающий в себя стадии плакирования листовым материалом 24, который получают нанесением покрытия из фторполимерного слоя на стеклоткань, что позволяет достичь превосходной прочности. Вместо стеклоткани можно применять нетканый текстильный материал из стеклянного волокна.

Далее, хотя внутренний слой на поверхности стенки формующей камеры 22 можно формовать на поверхностях внутренней стенки этой формующей камеры 22, обращенных к верхней и нижней сторонам формуемого изделия, фторполимерным листовым материалом желательно плакировать всю поверхность внутренней стенки формующей камеры 22.

Внутри оформляющей головки 10 в качестве охлаждающих средств для охлаждения формующей камеры 22 предусмотрены, кроме того, охлаждающие трубки 25 для циркуляции в них охлаждающей воды, проходящие вокруг формующей камеры 22, причем в предпочтительном варианте охлаждающие трубки 25 размещены таким образом, чтобы расстояние между этими трубками 25 постепенно уменьшалось в направлении, в котором проходят оформляющий участок 21. Однако рамки настоящего изобретения такой конструкцией не ограничиваются.

Кроме того, для приложения регулируемого усилия, противостоящего усилию выдавливания формуемого изделия, которое выдавливается из оформляющей головки, могут быть предусмотрены тормозящие средства.

Когда в соответствии с настоящим изобретением нагретое состояние экструдируемого материала 79 во впускном участке 11 поддерживают его подогревом с целью сохранить текучесть и его соответствующее пластицированное состояние в том случае, если предусмотрена направляющая пластина 15, эта направляющая пластина 15 предотвращает изменение молекулярной ориентации экструдируемого материала 79, находящегося во впускном участке 11, вызываемое той причиной, что коэффициенты линейного расширения в конечной части и центральной части в направлении движения оказываются разными и зависят от конкретно используемого исходного материала, обеспечивая однородность линейного расширения в сочетании с регулируемой молекулярной ориентацией, поэтому экструдируемый материал 79 равномерно поступает в формующую камеру 22 оформляющего участка 21, благодаря чему плотность экструдируемого материала оказывается однородной. Поверхность внутренней стенки формующей камеры 22 снабжена внутренним слоем, выполненным из фторполимера с небольшим коэффициентом трения, благодаря чему измельченный целлюлозный материал в экструдируемом материале 79 истекает равномерно