Способ переработки органических радиоактивных отходов
Реферат
Изобретение относится к способам переработки органических радиоактивных отходов, обеспечивающим обезвреживание органической части отходов до экологически безопасных веществ и перевода радионуклидов в компактную форму. Более конкретно изобретение относится к термическим способам переработки жидких или твердых органических радиоактивных отходов предприятий ядерного цикла, содержащих уран, плутоний и продукты их деления. Переработка органических радиоактивных отходов по заявляемому способу позволяет значительно упростить и удешевить процесс при соблюдении его экологической безопасности. Это достигается за счет снижения температуры и принципиального изменения способа сжигания отходов и обезвреживания отходящих газов. Способ включает сжигание отходов в реакторе с псевдоожиженным слоем гранулированного катализатора, где происходит полное окисление органических веществ при относительно низкой температуре. Отвод избыточного тепла осуществляют с помощью теплообменника, погруженного в слой катализатора. Далее охлажденные газы очищают от мелкодисперсной пыли и кислых газообразных компонентов в циклоне, струйном скруббере, адсорбере-конденсаторе. Заключительная стадия очистки от тонкодисперcной пыли осуществляется на тонковолокнистом аэрозольном фильтре Петрянова. 1 з.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к способам переработки органических радиоактивных отходов, обеспечивающим обезвреживание органической части отходов до экологически безопасных веществ и перевода радионуклидов в компактную форму, удобную для последующего захоронения или переработки известными способами. Более конкретно изобретение относится к термическим способам переработки жидких или твердых радиоактивных отходов предприятий ядерного топливного цикла, содержащих уран, плутоний и продукты их деления.
Известен способ (A. Chrubasik. New incineration and flue-gas treatment system for radioactive wastes. /Incinerat. Conf. Thermal Treatment of Radioact. Hazardous Chem. and Med. Wastes/Knoxville, Tenn., May 13-17, 1991, p. 137-140) переработки радиоактивных отходов путем факельного сжигания с последующей многостадийной очисткой отходящих газов. Состав отходов, мас.%: полиэтилен, полипропилен - 30, полихлорвинил - 5, дерево, бумага, ткань - 55, негорючие отходы - 5. Предварительный нагрев печи осуществляют вспомогательной горелкой. Отходы, спрессованные в брикеты по 25-40 кг, сжигают в нижней части шахтной печи, подача их осуществляется сверху, над отходами вводят паровоздушную смесь, содержащую 16 об.% кислорода, температура в зоне горения не превышает 1173 K. Отходящие из шахтной печи газы, содержащие газообразные горючие продукты сжигания и сажу, направляют в камеру дожигания, где температура составляет 1473 K, а концентрация кислорода составляет 6 об. %. Газы после камеры дожигания охлаждают до 1173 K вспрыскиванием воды. Затем газы охлаждают в скрубберах до 973 K и очищают на силикон-карбидных фильтрах, далее следует 2-стадийная промывка газов в скрубберах, причем в воду добавляют раствор NaOH для удаления кислых примесей. Окончательная очистка газов происходит на фильтрах с активированным углем. Таким образом, известный способ обеспечивает полное сжигание радиоактивных отходов, а мокрая очистка и фильтрация отходящих газов позволяет исключить выбросы в атмосферу радионуклидов, HCl, HF, SOx. Однако для очистки отходящих газов требуется громоздкая схема очистки газов от мелкодисперсных радиоактивных частиц (0,5-2,0) к частиц, генерируемых сжиганием (М.Н.Бернадинер, А.П.Шурыгин. Огневая переработка и обезвреживание промышленных отходов. М., Химия, 1990 г., стр. 195) и дополнительная ступень очистки от оксидов азота, например, путем каталитического восстановления аммиаком, что еще более усложняет процесс очистки. Кроме того, активированный уголь, используемый в процессе обезвреживания газов, загрязняется радионуклидами и периодически заменяются новым, что ведет к существенному удорожанию процесса из-за необходимости дальнейшей переработки угля. Задача, решаемая изобретением, - упрощение и удешевление процесса очистки отходящих газов, экологическая надежность способа. Это достигается за счет снижения температуры и принципиального изменения способа сжигания отходов. Заявляемый способ предусматривает сжигание радиоактивных отходов (жидких или измельченных твердых) в реакторе с псевдоожиженном слоем гранулированного катализатора при 600 - 750oC. Сжигание осуществляется в одну стадию, при этом происходит полное окисление органических веществ без образования заметных количеств оксидов азота. Одновременно с основным процессом протекает процесс поглощения катализатором (А.Г. Амелин, А.Н. Кабанов. Осаждение аэрозолей в слое катализатора/Коллоидный журнал. 1976, N 5, стр. 955) мелкодисперсной составляющей частиц твердой фазы, образующейся, например, при термическом разложении растворенных в экстрагентах в виде сольватов неорганических солей, содержащих радионуклиды. Таким образом катализатор практически полностью (70-90%) улавливает радионуклиды в процессе сжигания, а остающаяся в газовом потоке часть радионуклидов, обнаруживаемая в газовом потоке после слоя катализатора, представлена в основном (>99%) средне- и крупнодисперсными частицами (3-160 m), не уловленными катализатором, или образовавшимися в процессе истирания катализатора. Такие частицы эффективно улавливаются в циклоне и скрубберах. Это оказывает существенное влияние на упрощение и удешевление последующей схемы количественной очистки отходящих газов от радионуклидов. При необходимости накопленные радионуклиды можно извлекать из отработанного катализатора, например, путем растворения катализатора в азотной кислоте с последующей экстракцией радионуклидов (тория, урана, плутония) из полученного раствора раствором ТБФ в керосине. Заявляемый способ осуществляют следующим образом. Схема опытной установки по сжиганию радиоактивных отходов приведена на чертеже. Сжигаемые отходы насосом 7 подают из емкости 9 в реактор 1 с псевдоожиженным слоем катализатора через форсунки, расположенные в нижней части реактора. Сжатый воздух в количестве 120-300% от теоретически необходимого подают газодувкой 11 в слой катализатора, обеспечивая псевдоожижение слоя и практически полное окисление отходов при 600-750oC. Для запуска реактора предусмотрен электронагреватель 10 для предварительного нагрева катализатора до температуры зажигания (300-400oC). Отходящие из реактора газы содержат продукты сжигания: CO2 и H2O, небольшие количества CO (10-50 мг/м3), NOx (5-20 мг/м3), SO2 (0-500 мг/м3), P2O5 и HCl (при сжигании фосфор- и хлорорганических отходов), а также пыль, образующуюся из мехпримесей отходов и в результате истирания катализатора - в количестве 50-165 мг/м3. Температура газов на выходе из реактора снижается до 250-300oC с помощью теплообменника 2, погруженного в слой катализатора и специальной насадки 13, разделяющей псевдоожиженный слой по высоте на две зоны: нижнюю, зону тепловыделения, с температурой 600-750oC, и верхнюю, зону теплосъема, с температурой 250-300oC. Насадка проницаема для катализатора, но оказывает определенное сопротивление продольному перемешиванию катализатора. В результате она регулирует продольный перенос теплоты в слое и устанавливает необходимый перепад температур по высоте псевдоожиженного слоя. Из реактора отходящие газы поступают в циклон 3, где из них выделяется крупнодисперсная фракция твердой фазы (>30 мкм, а температура снижается до 200-230oC). Затем газы поступают в пенный аппарат 4, играющий роль пылегазоуловителя и регенеративного теплообменника. Здесь в высокотурбулизированном пенном слое с постоянно обновляющейся поверхностью происходит количественная очистка газов от среднедисперсной пыли (>5 мкм) и подавляющей части кислых газообразных компонентов, таких как SO2, P2O5, HCl. В пенном слое безнасадочного аппарата - струйного скруббера 4 - происходит интенсивный теплообмен между горячим газом и орошающей жидкостью, и тепло газов используется на разогрев и испарение орошающей жидкости, которая с отходящими газами попадает в абсорбер-конденсатор 5 и конденсируется там. Конденсация паров орошающей жидкости в абсорбере-конденсаторе 5 происходит на неуловленных в пенном аппарате твердых частицах (<5 мкм) аэрозолей, что позволяет укрупнять их и эффективно улавливать, поскольку эффективность улавливания твердых частиц аэрозолей находится в прямой зависимости от их размеров. Одновременно с улавливанием твердых частиц аэрозолей в абсорбере-конденсаторе происходит доочистка от кислых газов. Подогретые газы проходят финишную очистку от субмикронных частиц на фильтре 6 и выбрасываются в атмосферу. Баки газоочистных аппаратов расположены на разных высотах с возможностью перетока орошающей жидкости из бака абсорбера-конденсатора 5 в бак струйного скруббера 4. С целью исключения зарастания пенного аппарата отложениями солей в качестве пенного аппарата используют безнасадочный скруббер со струйной решеткой для пенообразования, что важно при работе с радиоактивными материалами. Для эффективного использования тепла, выделяющегося в процессе переработки жидких радиоактивных отходов, охлаждающий кожух абсорбера-конденсатора 5, змеевик каталитического реактора 2 и теплообменник аэрозольного фильтра 12 последовательно соединены. Подача охлаждающей воды и газов происходит противотоком. Для иллюстрации заявляемого способа приведены чертеж, таблица и примеры его конкретного осуществления. Пример 1. Отходы, представляющие собой масло XA-30 подают в количестве 0,8 кг/час в каталитический реактор диаметром 120 мм. В реактор подают воздух с расходом 20 нм3/час. Температура слоя катализатора 750oC. Продукты сгорания после каталитического реактора имеют температуру 240oC и содержат CO - 45 мг/м3, NO - 12 мг/м3, SO2 - 179 мг/м3 и пыль в количестве 60 мг/м3. После циклонирования содержание пыли в газе уменьшается до 13 мг/м3, температура уменьшается до 220oC. В пенном струйном скруббере происходит дальнейшая очистка газа от пыли и улавливание кислых газов, температура газа при этом снижается до 35oC. Состав примесей в газе после пенного скруббера: CO - 44 мг/м3, NO - 12 мг/м3, SO2 - 8 мг/м3, пыль - 3 мг/м3. Дальнейшая очистка газа происходит в абсорбере-конденсаторе: состав газов после абсорбционно-конденсационной очистки: CO - 44 мг/м3, NO - 12 мг/м3, SO2 - менее 1 мг/м3, пыль - менее 1 мг/м3. Окончательная очистка газов от возможных примесей осуществляется на аэрозольном фильтре. Пример 2. Отходы, представляющие собой индустриальное масло И-50А с предварительно измельченным и затем диспергированным в нем ультразвуком дигидратом вольфрамата натрия (в другом эксперименте - индустриальное масло И-40 с добавкой тетрагидрата нитрата тория) с концентрацией 200 мг/л (40 мг/л) подают в количестве 0,7 кг/час в каталитический реактор диаметром 120 мм. В реактор подают воздух с избытком = 2,19 (2,01). Температура слоя катализатора 730oC. В процессе работы основная часть неорганических добавок соединений тяжелых металлов накапливается в гранулах катализатора. В случае W - из 7,8 г поданных в реактор 6,9 г - т.е. 88%, поглощается катализатором, в случае Th из 0,7 г Th 0,42 г (70%) задерживается катализатором. Размеры частиц твердой фазы и распределение вольфрама (тория), уловленных из газовой фазы после слоя катализатора по аппаратам газоочистки, приведены в таблице. Доля вольфрама, задержанного в циклоне, достигает 14% (9%) от поступившего в систему газоочистки. В пенном струйном скруббере происходит улавливание основного количества вольфрама (тория) 86% (91%). Доочистка газа происходит в абсорбере-конденсаторе, где концентрируется менее 1% вольфрама (тория). Таким образом, основное количество вольфрама (тория), поступившего в систему очистки газов, было извлечено из газового потока с частицами катализатора, сконцентрированными в скрубберных водах и в приемной емкости циклона, что свидетельствует о поглощении образовавшихся в процессе термического распада микронных и субмикронных частиц окислов вольфрама (тория) наружной поверхностью гранул катализатора и последующим истиранием последних в процессе работы с генерацией частиц с размером большим, чем исходные. Продукты сгорания на выходе из установки имеют температуру 35oC и содержат CO - 48 (8) мг/м3, NO - 10 (17) мг/м3, NO2 - 0 (0) мг/м3, SO2 - 11 (2) мг/м3. Пример 3. Аналогичен примеру 2. В реактор подавали модельные отходы, представляющие собой смесь 15% трибутилфосфата (ТБФ) и 85% керосина, содержащего растворенный уран с концентрацией 10,6 г/л. Производили сжигание 5 л отходов в течение 7 часов. Продукты сгорания на выходе из установки CO - 50 мг/м3, NO - 15 мг/м3, NO2 - 1 мг/м3, SO2 - 2 мг/м3. Основная часть урана (73%) задерживается катализатором. После сжигания отходов пробу катализатора растворили в азотной кислоте. Раствор довели до концентрации кислоты 6 мол/л. Производили экстракцию урана из кислого раствора экстрагентом 15% ТБФ в керосине. Степень извлечения урана из раствора 99%. Таким образом, примеры конкретного выполнения показывают, что переработка радиоактивных отходов по заявляемому способу позволяет значительно упростить и удешевить процесс очистки при соблюдении его экологической безопасности.Формула изобретения
1. Способ переработки органических радиоактивных отходов путем сжигания с последующей очисткой отходящих газов, пылеулавливанием и фильтрацией, отличающийся тем, что отходы сжигают в псевдоожиженном слое катализатора при 600 - 750oC в реакторе с перепадом температур по высоте псевдоожиженного слоя, подачу отходов в реактор осуществляют через форсунки снизу, горячие газообразные продукты реакции охлаждают путем прохождения их через водяной теплообменник, погруженный в слой катализатора до 250 - 300oC, далее очищают в циклоне, струйном скруббере и абсорбере-конденсаторе, окончательную очистку газов от тонкодисперсной пыли осуществляют на тонковолокнистом аэрозольном фильтре. 2. Способ по п.1, отличающийся тем, что отработанный катализатор отправляют на переработку для извлечения ценных уловленных компонентов.РИСУНКИ
Рисунок 1, Рисунок 2