Фрагмент днк (варианты), слитый фрагмент днк для экспрессии в растениях и способ получения трансгенного растения и его потомков

Реферат

 

Фрагменты ДНК последовательностей 1-8, получаемые из генов, кодирующих растительные белки, обеспечивают индукцию регулирования экспрессии указанных белков в присутствии ряда химических соединений. Для получения трансгенного растения конструируют рекомбинантную плазмиду с использованием фрагментов ДНК и структурного гена, трансформируют растительный материал этой плазмидой, отбирают трансформированные клетки, которые затем обрабатывают химическим индуктором, и выращивают из клеток регенеранты. 10 с.п.ф-лы и 16 з.п. ф-лы, 38 ил., 2 табл.

Изобретение относится к фрагментам ДНК, содержащим химически регулируемый район гена, слитому гену и способу получения трансгенных растений и его потомков. Главным образом, изобретение относится к некодирующим ДНК-последовательностям, которые, в присутствии химических регуляторов, регулируют транскрипцию других ДНК-последовательностей в растениях.

Предпосылки создания изобретения Достижения в области технологии рекомбинантной ДНК совместно с успехами в области трансформации растений и технологии регенерации позволяют вводить новый генетический материал в клетки растений, растения 20 или их ткани, в результате чего реализуется новый признак, например, фенотипы, повышающий ценность растения или ткани растения. Недавняя демонстрация подвергнутых методам генной инженерии растений, устойчивых к действию патогенов (EP-A 240332 и EP-A 223452), или насекомых [Vaeck М. et al., Nature 328, 33 (1987)] , а также создание растений, устойчивых к действию гербицидов [DeBlock М. et al., EMBO J. 6, 2513 (1987)], показывает потенциальные возможности для повышения урожая. Число таких культур достаточно широко: от деревьев и кустарников до декоративных цветов и полевых культур. Термин "культура" охватывает культуру растительной ткани, выращенной в биореакторе в качестве источника аналогичного природного продукта.

В некоторых случаях желательно контролировать время и/или степень экспрессии введенного генетического материала в растениях, растительных клетках или тканях. Идеальным условием является регуляция экспрессии желаемого признака, созданного методами генной инженерии, с помощью регулирующего промежуточного вещества, который может легко применяться на полевых культурах, декоративных кустарниках, в биореакторах и тому подобное.

В настоящее время такая ситуация может быть реализована с помощью настоящего изобретения, которое, помимо прочего, относится к химически регулируемой системе экспрессии химерного гена, включающей химически регулируемую, некодирующую ДНК-последовательность, соединенную, например, с геном, кодирующим фенотипический признак, в результате чего экспрессия такого признака контролируется регулятором, например, так, что экспрессия регулируемого гена определяется наличием или отсутствием химического регулятора. Такая система служит первой демонстрацией концепции химической регуляции экспрессии химерного гена в растениях или растительных тканях. Такая система позволяет создавать трансгенные растения или ткань растения и регулировать экспрессию с помощью химического регулятора.

A. Общий обзор технологии трансформации растений Известны различные методы реализации генетической трансформации растений и растительных тканей (например, стабильное введение в растения посторонней ДНК). Такие методы включают трансформацию с помощью разновидности Agrobacterium и трансформацию путем прямого переноса гена.

1. Трансформации с помощью Agrobacterium A. tumefaciens представляет собой этиологический агент корончатого галла, заболевания которому подвержено большое число двудольных и голосеменных растений, в результате которого происходит образование опухолей или галлов в растительных тканях на участке инфицирования. Agrobacterium, обычно инфицирующий растение на раневых участках, является носителем крупного экстрахромосомного элемента, называемого Ti (индуцирующая опухоль) плазмиды.

Ti плазмиды содержат два участка, ответственных за возникновение новообразований. Одним участком является Т-ДНК (трансферриционная ДНК), представляющая собой ДНК-последовательность, которая в устойчивом состоянии переносится в растительную геномную ДНК. Другой участок, ответственный за появление новообразований, представляет собой vir (вирулентный) участок, принимающий участие в механизме переноса. Хотя vir участок абсолютно необходим для стабильной трансформации, vir ДНК в действительности не переносится в инфицированное растение. Трансформация растительных клеток под действием инфицирования разновидностью Agrobacterium tumefaciens и последующий перенос Т-ДНК описаны в литературе. См., например, работу Bevan M.W. и Chilton M.-D., Int. Rev. Genet. 16, 367 (1982).

После ряда лет интенсивных поисков во многих лабораториях была разработана Agrobacterium система, позволяющая осуществлять рутинную трансформацию ряда растительных тканей. Примерами тканей, трансформированных таким методом, могут служить табак, помидоры, подсолнечник, хлопок, редька, картофель, соя и polplar. Хотя для Ti плазмидной трансформации с использованием в качестве инфицирующего агента A. tumefaciens могут использоваться самые разнообразные хозяева, лучшим из них является табак, поскольку с ним легко манипулировать.

В качестве вектора для трансформации растений используется также Agrobacterium rhizogenes. Эта бактерия, возбуждающая образование волосяного корня у многих разновидностей двудольных растений, несет крупный экстрахромосомный элемент, называемый Ri (корень-индуцирующей) плазмиды, которая выполняет функции, аналогичные функциям Ti плазмиды A. tumefaciens. Трансформация с использованием A. rhizogenes была разработана аналогично трансформации с применением A. tumefaciens и с успехом осуществлена для трансформации, например, люцерны, Solanum nigrum L.. и polplar.

2. Прямой перенос гена.

Некоторые методики так называемого прямого переноса гена были разработаны для трансформации растений и растительных тканей без использования промежуточного хозяина Agrobacterium. При прямой трансформации протопластов внедрение в него экзогенного генетического материала может быть усилено при использовании химического агента или электрического поля. Затем экзогенный материал может встраиваться в ядерный геном. Ранее работа была проведена на двудольном табаке и было показано, что посторонняя ДНК вводится и передается потомству растений, см., например, работу Paszkowski J. et al., EMBO J. 3, 2717 (1984); и Potrykus I. et al., Mol. Gen. Genet. 199, 169 (1985).

По этой методике была также осуществлена трансформация однодольных протопластов, например, Triticum monococcum, Lolium multiflorum (итальянский плевед), маиса и черной мексиканской сладкой кукурузы.

Экзогенная ДНК может также вводиться в клетки или протопласты путем микроинъекции. В этом случае раствор плазмидной ДНК вводят непосредственно в клетку с помощью хорошо вытянутой стеклянной иглы. Этим способом протопласты люцерны были трансформированы большим числом плазмид, см., например, работу Reich T/J/ et al., Bio/Technology 4, 1001 (1986).

Позже разработанная методика прямого переноса гена включает бомбардировку клеток микроснарядами несущими ДНК, см. работу Klein T.M. et al., Nature 327, 70 (1987). По этой методике вольфрамовые частицы, покрытые экзогенной ДНК, ускоряются в направлении целевых клеток, в результате чего имеет место по крайней мере временная экспрессия, например, как в приведенном примере (лук).

B. Регенерация трансформированной растительной ткани.

Существует большое число методов трансформации растительных тканей, как и большое число методов регенерации растений из растительных тканей. Конкретный метод регенерации будет зависеть от исходной растительной ткани и конкретной разновидности растения, подвергаемого регенерации. В последние годы появилась возможность регенерации многих разновидностей растений из каллюсовой ткани эксплантатов растений. Растения, которые могут быть регенерированы из каллюса, включают такие однодольные, как пшеница, рис, ячмень, кукуруза и рожь, а также такие двудольные, как подсолнечник, соя, хлопок, редька и табак.

Регенерация растений из ткани трансформированной A. tumefaciens была продемонстрирована для нескольких разновидностей растений. Эти растения включают подсолнечник, помидоры, белый клевер, редьку, хлопок, табак и polplar. Была также продемонстрирована регенерация люцерны из ткани трансформированной с помощью A. rhizogenes. Особенно полезной технологией является регенерация растения из протопластов, см. работу Evans, D.A. et al., в: Handbook of Plant Cell Culture, том 1, MacMillan Publ. Co., 1983, стр.124. В том случае, когда разновидности растений могут быть регенерированы из протопластов, можно использовать методы прямого переноса гена и трансформация не зависит от использования A. tumefaciens. Регенерация растений из протопластов была продемонстрирована для риса, табака, редьки, картофеля, баклажанов, огурцов, porplar и кукурузы.

Технологические успехи в области трансформации растений и в их регенерации создают возможность улучшения культур методами генной инженерии. Имеются сообщения о созданных методами генной инженерии растениях табака и помидор, обладающих устойчивостью к заражению, например, мозаичным вирусом табака (TMV), и устойчивых в отношении различных классов гербицидов. Методами генной инженерии были созданы растения табака и помидор, обладающие устойчивостью к действию насекомых.

C. Клеточные культуры.

Объекты, подходящие для генной инженерии, не ограничиваются полевыми культурами, а включают декоративные растения, фуражные культуры и деревья. Менее очевидной задачей растительной биотехнологии, включающей использование методов генной инженерии и тканевой культуры, является расширенное производство большого числа химических соединений растительного происхождения, включающих отдушки, ароматизирующие добавки, пигменты, природные вкусовые агенты, промышленное сырье, антимикробные агенты и фармацевтические агенты. В большинстве случаев такие соединения принадлежат к достаточно широкой метаболической группе, которую обычно обозначают как вторичные продукты. Растения могут продуцировать такие вторичные продукты, предназначенные для отпугивания хищников, привлечения опылителей или борьбы с инфекционными заболеваниями.

Растительные клеточные культуры могут быть получены из большого числа разновидностей растений и они могут быть размножены в биореакторе. Типичные растительные разновидности включают большинство таких разновидностей, которые продуцируют вторичные продукты, представляющие коммерческий интерес. Было убедительно показано на ряде культурных растений, важных с сельскохозяйственной точки зрения, что устойчивые генетические варианты, возникающие из клеточной культуры растительных соматических клеток (сомаклональная вариация), могут быть индуцированы и подвергнуты селекции. Из продуцирования тканевой культуры вторичных метаболитов вытекают многочисленные преимущества. Они включают: (1) возможность достижения повышенной чистоты получаемых продуктов, (2) превращение дешевых предшественников в дорогостоящие конечные продукты в результате биотрансформации, и (3) возможность использования субстрата аналогичного культуре с целью создания новых соединений.

D. Преимущества регулируемой экспрессии генов.

Хотя целью генной инженерии растений являются полевая культура, декоративный кустарник, цветы, деревья и тканевые культуры, предназначенные для использования в биореакторе, реализация принципиального преимущества состоит в регулировании экспрессии химерного гена таким образом, чтобы он экспрессировал за соответствующее время и в соответствующей степени и, в некоторых случаях, в конкретных частях растения. Так, например, для достижения желаемого фенотипа химерный ген должен экспрессировать до уровней порядка 1% от общего содержания протеина или выше. Это особенно касается случаев фунгицидной устойчивости за счет экспрессии химерной хитиназы или устойчивости к действию насекомых за счет усиленной экспрессии ингибитора протеинкиназы. В таких случаях энергия, затрачиваемая на продуцирование высоких уровней протеина, может оказывать вредное воздействие на растения, тогда как при экспрессии гена только в тех случаях, когда это желательно, например, при примерно одинаковой инвазии грибками и насекомыми, потребление энергии и, следовательно, выход могут быть уменьшены.

С другой стороны, фенотип, экспрессированный химерным геном, может оказывать вредное влияние на растение, если его экспрессия происходит в несоответствующие времена на стадии развития. Так, например, если химерный генный продукт представлял собой растительный гормон, индуцирующий опадание стручков, ранняя экспрессия может вызвать опадение плодов с растения до созревания семени, в результате чего уменьшится урожай. В этом случае значительно полезнее индуцировать экспрессию гена такого типа в то время, когда опадание стручков является предпочтительным или по крайней мере вредным для растения.

Для ткани в культуре или в биореакторе преждевременное продуцирование вторичного продукта может приводить к понижению скорости роста культуры, в результате чего может уменьшаться урожай продукта. Поэтому выгодно дать культуре расти без экспрессии вторичного продукта и затем индуцировать химерный ген в надлежащее время с тем, чтобы реализовать оптимальную экспрессию желаемого продукта.

На основании высказанных выше соображений, а также и по другим причинам, совершенно очевидно, что контроль времени, степени и/или участка экспрессии химерного гена в растениях или растительных тканях весьма желателен. Особенно коммерчески ценным будет контроль, который можно легко осуществлять в полевых условиях, в теплице или в биореакторе.

E. Известные системы регулируемой экспрессии гена в растениях.

Известно, что некоторые растительные гены могут быть индуцированы различными внутренними и внешними факторами, включающими растительные гормоны, тепловой шок, химические агенты, патогены, отсутствие кислорода и света. Хотя лишь некоторые из таких систем описаны детально, для наиболее изученных известно, что повышенная аккумуляция и РНК приводит к повышению содержания специфического протеинового продукта. В качестве примера регуляции гена под действием растительного гормона, можно привести индукцию с помощью абсцизной кислоты (АБК), и РНК хлопка, присутствующих на стадии позднего эмбриогенеза, (см. , работу Galau G.A. et al., Plant Mol. Biol. 7, 155, 1986). Другим примером такого действия является индукция под действием гиббереллиновой кислоты (GA3) транскрипции синтазы яблочной кислоты в семенах касторового масла, а также изозимов альфа-амилазы в слоях алейрона ячменя, см., работу Rodriguez D. et al., Plant Mol. Biol. 9, 277 (1987); Nolan R.C. et al., Plant Mol. Biol. 8, 13 (1987).

Детально изучена регуляция протеиновых генов сои под действием теплового шока. Обработка растений в течение нескольких часов при 40oC приводит к de novo синтезу нескольких так называемых тепло-шоковых протеинов [Key J. et al. , Proc. Natl. Acad. Sci. USA, 78, 3526 (1981)]. Некоторые из таких генов были выделены и их регуляция была подробно изучена. Экспрессия таких генов контролируется главным образом на уровне транскрипции. Промотор hsp70 гена был лигирован с неомицин-фосфотрансферазным II (NptII) геном и было показано, что химерный ген индуцируется под действием теплового шока [Spena A. et al., EMBO J. 4, 2736 (1985)], причем на более низком уровне в сравнении с эндогенными тепло-шоковыми генами.

Другой класс индуцируемых генов в растениях включает легкие регулируемые гены, в большинстве случаев находящийся в ядерном ДНК закодированный ген мелкой субъединицы рибулоза-1,5-бифосфаткарбоксилазы (RUBISCO). Morelli G. et al (Nature 315, 200 (1985)) и Hererra-Estrella L. et al (Nature 310, 115 (1984)) показали, что 5'-фланкирующие последовательности горохового RUBISCO гена могут придавать гену-репортеру способность к индукции на свету при слиянии. Эти наблюдения относятся и к другим свето-индуцируемым генам, например, к хлорофилл a/b связывающему протеину.

Гены спиртовой дегидрогеназы (adh) кукурузы были подвергнуты тщательному изучению. Был выделен adhl-ген кукурузы и было показано, что часть 5'-последовательности ДНК способна индуцировать экспрессию химерного гена-репортера (например, хлорамфеникол-ацетилтрансфераза, CAT), в том случае, когда временно трансформированную ткань помещают в анаэробные условия (Howard E. et al., Planta 170, 535 (1987)).

Была разработана группа химических веществ, известных как защитные агенты с целью защиты "охраняемых" культур от потенциально вредного воздействия гербицидов. Хотя общий механизм действия таких соединений полностью не выяснен, одним из возможных механизмов является регуляция под действием таких веществ природно регулируемых генов. Недавно было сообщено, что более высокие уровни содержания глютатион-s-трансферазы (GST) индуцируются в кукурузе, обработанной таким охраняющим агентом, как бензиловый эфир 2-хлор-4-(трифторметил)-5-метилтиазолкарбоновой кислоты, см. работу Wiegand R.C. et al. , Plant Mol. Biol. 7, 235 (1986). Хотя в ходе такой обработки повышается уровень содержания иРНК GST, о механизме, приводящем к такому повышению, ничего не сообщается.

Многие растения с гиперчувствительной реакцией на различные патогены стимулируются к продуцированию группы экстрагируемых кислотой патогенез-родственных (PR) протеинов низкого молекулярного веса (Van Loon L.C., Plant Mol. Biol. 4, 111 (1985)). Однако наибольший интерес вызывает наблюдение того факта, что такие же PR-протеины аккумулируются в высоких количествах в растениях, обработанных такими химическими агентами, как полиакриловая кислота и ацетилсалициловая кислота (Gianinazzi S. et al., J. Gen. Virol. 23, 1 (1974); White R.F., Virology 99, 410 (1979)). Присутствие PR-протеинов коррелирует с индукцией как местной, так и системной устойчивости к действию большого числа патогенов. Было показано, что межвидовой табачный гибрид, устойчивый к действию мозаичного вируса табака (TMV), в существенной степени экспрессирует PR-протеины (Ahl P. et al., Plant Sci. Lett. 26, 173 (198-2)). Кроме того, иммуноосаждение продуктов in vitro трансляции с использованием иРНК инфицированного TMV или химически обработанного табака (Cornelissen B. J. C. et al., EMBO J. 5, 37 (1986); Carr J.P. et al., Proc. Natl. Acad. Sci. USA 82, 7999 (1985)) показало, что повышенное содержание PR-протеина является результатом аккумуляции РНК. Поэтому индукция PR- протеиновых генов под действием химических агентов или патогенов представляет собой метод, имеющий отношение к проблеме химической регуляции генной экспрессии в растениях и растительной ткани.

Описание изобретения.

Согласно настоящему изобретению предлагается фрагмент ДНК, представляющий собой регуляторную область химически регулируемого гена, получаемого из гена PR-1a табака, имеющего последовательность 1 (см. в конце описания).

Изобретение относится также к фрагменту ДНК, представляющему собой регуляторную область химически регулируемого гена, получаемого из гена PR-1 табака, который имеет нуклеотидную последовательность 2 (см. в конце описания). Объектом изобретения является также фрагмент ДНК, представляющий собой регуляторную область химически регулируемого гена, получаемого из гена PR хитиназы огурца, нуклеотидную последовательность 3 ( см. в конце описания).

Изобретение относится к фрагменту ДНК, представляющему собой регуляторную область химически регулируемого гена, проявляющему регуляторную область химически регулируемого гена, получаемого из основной формы гена PR-R, кДНК которого, кодирующая основной белок PR-R, имеющему нуклеотидную последовательность 4 (см. в конце описания).

Объектом изобретения является фрагмент ДНК, представляющий собой регуляторную область химически регулируемого гена, получаемого из гена основной бета-1,3-глюканазы табака, содержащегося в клоне pBS Glue 39.1. имеющего нуклеотидную последовательность 5 (см. в конце описания).

Изобретение также относится к фрагменту ДНК, представляющему собой регуляторную область химически регулируемого гена, получаемого из гена основной бета-1,3-глюканазы табака, включенный в клон pBS Glue 39.3, имеющего нуклеотидную последовательность 6 (см. в конце описания).

Объектом изобретения является фрагмент ДНК, представляющий собой регуляторную область химически регулируемого гена, получаемого из гена PR-Q табака, кДНК которого, кодирует белок PR-Q, имеющий нуклеотидную последовательность 7 (см. в конце описания).

К данному изобретению также относится фрагмент ДНК, представляющий собой регуляторную область химически регулируемого гена, получаемого из гена кислотной формы бета-1,3-глюканазы, кДНК которого, кодирует бета-1,3-глюканазу, имеющий нуклеотидную последовательность 8 (см. в конце описания).

Предпочтителен слитый фрагмент ДНК для экспрессии в растениях, содержащий любой из вышеуказанных функционально связанный со структурным геном и способный транскрибироваться в растении или ткани растения, в частности, слитый фрагмент ДНК функционально связанный со структурным геном, представляющим собой кодирующую последовательность, обусловливающую фенотипический признак.

При этом предпочтителен слитый фрагмент ДНК, в котором ген кодирует бета-1,3-глюкуронидазу (GUS), ацетогидрокислотную синтазу (AHAS) и эндотоксин Bacillus thuringiensis (B.T.), в частности, кодирует сигнальный пептид, который преимущественно имеет последовательность сигнального пептида белка PR, и предпочтительно имеет следующую нуклеотидную последовательность.

Желательно, чтобы предпочтительный слитый фрагмент ДНК был функционально связан со структурным геном, содержащим 2 области, при этом одна область кодирует сигнальный пептид, который преимущественно имеет последовательность сигнального пептида белка PR, а вторая область кодирует фенотипический признак.

Объектом изобретения также является способ получения трансгенного растения и его потомков, предусматривающий выделение ДНК-последовательности регуляторной области, конструирование рекомбинантной плазмиды, содержащий указанную ДНК-последовательность и структурный ген, трансформацию растений или растительного материала плазмидой, отбор трансформированных клеток и получение трансформированных регенерантов. Отличием предлагаемого способа является выделение одного из вышеуказанных фрагментов ДНК, представляющих регуляторную область, конструируют рекомбинантную плазмидную ДНК, содержащую указанный фрагмент, функционально связанный со структурным геном, и необязательно генетический маркер, трансформированные клетки обрабатывают химическим индуктором, и дополнительно отбирают клетки, экспрессирующие фенотипический признак, кодируемый структурным геном.

Преимущественно используют индуктор, который представляет собой бензойную кислоту, или салициловую кислоту, или бензо-1,2,3-тиадиазол-7-карбоновую кислоту, или бензо-1,2,3-тиадиазол-7- тиокарбоновую кислоту, или бензо-1,2,3-тиадиазол-7-тиабензолкарбоновую кислоту, или бензо-1,2,3-тиадиазолкарбоновую кислоту, или метил-бензо-1,2,3-тиадиазол-7-карбоксилат, или н-пропил-бензо-1,2,3-тиадиазол- 7-карбоксилат, или бензил-бензо-1,2,3-тиадиазол-7-карбоксилат, или 2,6-дихлоризоникотиновую кислоту, или 2,6-дихлоризоникотинат, или метил-бензо-1,2,3-тиадиазол-7-карбоксилат.

Регуляторную область получают как правило из регуляторной области генов, кодирующих PR-1a или PR-1', или PR-Q, или PR-R табака, или хитиназу огурца, или основную или кислотную бета-1,3-глюканазу табака.

Указанная регуляторная область, как правило, содержит от 600 до 1000 п. о., примыкающих к сайту начала транскрипции.

Предпочтительно регуляторная область является 5'-фланкирующим районом гена PR-1a табака и содержит 300 п.о., примыкающих к сайту начала транскрипции.

Как правило, плазмиду выбирают из группы, которая включает pBS-PR-1013Cla, депонированную под номером ATCC 40426, pBS-PR 1019, депонированную под номером ATCC 40427, pBS-Gluc 39.1, депонированную под номером ATCC 40526, pBS-Gluc 39.3, депонированную под номером ATCC 40527, pBS Gucchi/chitinase, депонированную под номером ATCC 40528, pBS-GL6e, депонированную под номером ATCC 40535.

При этом растения, подлежащие трансформации, преимущественно выбирают из группы, включающей табак, морковь, подсолнечник, томаты, хлопок, сорго, Petunia и Glycine, или выбирают из группы, включающей Zea mays, Dactylis и Lolium.

Краткое описание чертежей.

Фиг.1. Частичная рестриктная карта лямбда tobchrPR1013. Геном рекомбинантного фага размером 49 kb изображен слева и справа от указанного фага. Вставка из генома табака размером 19 kb в увеличенном виде показана снизу физической карты фага лямбда. Указано положение PR-1a гена (заштрихованный блок) и направление транскрипции (стрелка). P=Pst, H=HindIII, C=ClaI, R=EcoRI.

Фиг.2. Показана конструкция pBS-PR1013Cla из лямбда tobchrPR1013. Фрагмент ДНК размером 19 kb между двумя ClaI сайтами субклонировали в плазмиду bluescript, C=ClaI, LGT агароза = агароза с низкой температурой стеклования.

Фиг. 3. Изображена конструкция pBS-PR1013Eco из лямбда tobchrPR1013. Фрагмент EcoRI размером 3,6 kb, содержащий PR-1A ген из лямбда tobchrPR1013, субклонировали в bluescript. R=EcoRI, LGT агароза = агароза с низкой температурой стеклования.

Фиг. 4. Показана конструкция pBS-PR1013Eco из pBS-PR1013Cla. Фрагмент EcoRI размером 3,6 kb, содержащий PR-1A ген, субклонировали в EcoRI сайт плазмиды bluescript. C=ClaI, R= EcoRI, LGT = агароза с низкой температурой стеклования.

Фиг.5. Показана конструкция pBS-PR1013EcoPst из pBS-PR1013Eco. Фрагмент PstI размером 600 bp выделен из pBS-PR1013Eco. P=PstI, R=EcoRI, X=XhoI, S= SalI, LGT агароза = агароза с низкой температурой желатинирования.

Фиг. 6. Показана конструкция pBS-PR1013EcoPstXho из pBS-PR1013EcoPst. Фрагмент XhoI размером 2 kb выделен из плазмиды pBS-PR1013EcoPst.R = EcoRI, P=PstI, X=XhoI, S=SalI, LGT агароза = агароза с низкой температурой желатинирования.

Фиг.7. Показана конструкция pCIB270 из pBI101.3 и pBS-PR1013E- coPstXho.. Фрагмент PstI-Xhol, содержащий часть PR-1a гена и 5'-фланкированной последовательности субклонировали в pBI101.3 расщепленную SalI-BamHI. Сайты XhoI и SalI совместимы и при лигировании разрушают оба рестрикционных сайта. PstI сайт адаптирован к BamHI сайту с использованием молекулярного адаптера. X=XhoI, P=PstI, (X/S) = сайт слияния XhoI и SalI. В результате этого никакой энзим не способен расщеплять такой (X/S) сайт. LB = левая граница Т-ДНК, RB = правая граница Т-ДНК. Направление транскрипции из PR-1a индуцируемого участка показано стрелкой в направлении pCIB270. Заштрихованная площадь на pCIB270 обозначает 3'-процессионный сайт NOS-гена. Закрашенная область pCIB270 обозначает бета-глюкуронидазный ген. Площадь pCIB270, отмеченная пунктиром, представляет собой неомицин фосфотрансферазный II ген. Площадь pCIB270, отмеченная полосками, представляет собой NOS промотор.

Фиг. 8. Показана конструкция Фрагмент PstI-Asp718, содержащий часть PR-1a кодирующей последовательности и 5'-фланкированной последовательности, субклонировали из pBS-PR1013EcoPstXho в Asp718-PstI расщепленную M13mp18 или 19. R=EcoRI, H= HindIII, P= PstI, K= KpnI (Asp718 представляет собой изошизомер KpnI), LGT агароза = агароза с низкой температурой желатинирования.

Фиг.9. Схема, изображающая конверсию ATG кодона PR-1a в NcoI сайт. Однонитевая ДНК M13mp18-PR1013EcoPstXho показана сплошной линией. Последовательность TCATGG превращается в CCATGG в результате сайт-специфического мутагенеза. K=KpnI, X=XhoI, B=BstEII, P=PstI.

Фиг.10. Показана конструкция pCIB268. Фрагмент BstEII-PstI является производным репликативной формы M13mp18-PR1013EcoPstXho.Nco субклонировали в BstEII-PstI расщепленную, pBS-PR1013EcoPstXho c образованием pCIB268. X= XhoI, B=BstEII, N=NcoI, P=PstI.

Фиг.11. Показана конструкция pCIB269 из pBS-GUS1.2 и pCIB268. X=XhoI, N= NcoI, P=PstI. Заштрихованный блок pCIB269 обозначает последовательности GUS гена, а затемненный блок обозначает последовательности, являющиеся производными PR-1a гена.

Фиг. 12. Показана конструкция pBS-GUS1.2, полученная путем лигирования трех фрагментов, являющихся производными pRAJ265, pBI1221.1 и pBluescript. S=SalI, R=EcoRI, N=NcoI.

Фиг. 13. Показана конструкция pCIB271 из pCIB2269 и pCIB200. X=XhoI, N= NcoI, R= EcoRI, S=SalI, (S/X) = слияние сайтов SalI и XhoI, LGT = агароза с низкой температурой желатинирования.

Фиг. 14. Рестриктная карта pCIB219. Эту плазмиду конструировали путем добавления EcoRI/XhoI адаптера к pCIB269 XhoI/EcoRI фрагменту, содержащему PR-1 и GUS ген и лигирования их с SalI, расщепленной pCIB712.

Фиг. 15. Рестриктная карта pCIB272. Эту плазмиду конструировали лигированием Asp718I/BamHI фрагмента из pCIB272, содержащей PR-1/GUS ген (от -833 до +1 PR-1a) с фрагментом Asp718I/BamHI плазмиды pCIB200.

Фиг. 16. Рестриктная карта pCIB273. Эту плазмиду конструировали лигированием Asp718I/BamHI фрагмента из pCIB283, содержащей PR-1/GUS ген (от -603 до +1 PR-1a) с Asp718I/BamHI фрагментом плазмиды pCIB200.

Фиг. 17. Рестриктная карта pCIB1004. Эту плазмиду конструировали лигированием XhoI/NcoI фрагмента из pCIB269 (содержащего PR-1a промотор) с BT геном, полученным из pCIB10/35Bt (607) как NcoI/BamHI фрагмент и SalI/BamHI фрагмент плазмиды pCIB710.

Фиг.18. Рестриктная карта pCIB200/PR1-BT. Эту плазмиду конструировали из pCIB1004 и pCIB200.

Фиг.19. Рестриктная карта pCIB1207. Фрагмент XbaI размером 5,8 kb из геномного клона фага , содержащего Arabidopsis AHAS ген, клонировали в XbaI расщепленную bluescript.

Фиг. 20. Рестриктная карта pCIB1216. Фрагмент NcoI/XbaI размером 3,3 kb из pCIB1207 клонировали в pCIB269, которую расщепляли с помощью NcoI и XbaI с целью удаления GUS гена.

Фиг. 21. Рестриктная карта pCIB1233. Фрагмент KpnI/XbaI размером 4,2 kb выделяли из pCIB216 и лигировали с pCIB200, которую расщепляли с помощью KpnI и XbaI.

Фиг.22. Рестриктная карта pBSGluc39.1/GUS. Фрагмент pBSGluc39.1 размером 1462 bp клонировали в pBS-GUS1.2, которую расщепляли с помощью NcoI и KpnI.

Фиг. 23. Рестриктная карта pCIB200/Gluc39.1-GUS. Фрагмент KpnI/XbaI, содержащий - глюканазный промотор и GUS ген, выделяли из pBSGluc39.1/GUS и лигировали с pCIB200, обработанной KpnI и XbaI.

Фиг. 24. Рестриктная карта pCIB200/Gluc39.1-BT. KpnI/NcoI фрагмент из pCIB1004, содержащей BT ген, KpnI/NcoI фрагмент из pBSGluc39.1/GUS и pCIB200 обработанную KpnI, обрабатывали щелочной фосфатазой телячьего тимуса и лигировали.

Фиг. 25. Рестриктная карта pBSGluc39.1/AHAS, которая сконструирована из NcoI/XbaI фрагмента pBSGluc39.1/GUS и фрагмента NcoI/XbaI размером 3,3 kb из pCIB1207, содержащего AHAS ген.

Фиг.26. Рестриктная карта pCIB200/Gluc39.1-AHAS. KpnI/XbaI фрагмент, содержащий - глюканазный промотор и AHAS ген, выделяли из pBSGluc39.1/AHAS и лигировали с pCIB200, расщепленной KpnI и XbaI.

Фиг.27. Рестриктная карта pBSGluc39.3/GUS. Фрагмент pBSGluc39.3 размером 1677 bp клонировали в pBS-GUS1.2, которая была расщеплена NcoI и KpnI.

Фиг. 28. Рестриктная карта pCIB200/Gluc39.3-GUS. KpnI/XbaI фрагмент, содержащий - глюканазный промотор и GUS ген, выделяли из pBSGluc39.3/GUS и лигировали с pCIB200, расщепленной KpnI и XbaI.

Фиг. 29. Рестриктная карта pCIB200/Gluc39.3-BT. KpnI/NcoI фрагмент pCIB1004, содержащий BT ген, KpnI/NcoI фрагмент pBSGluc39.3/GUS и pCIB200, расщепленную с помощью KpnI обрабатывали щелочной фосфатазой телячьего тимуса и лигировали.

Фиг. 30. Рестриктная карта pBSGluc39.3/AHAS, сконструированная из NcoI/XbaI фрагмента pBSGluc39.3/GUS и фрагмента NcoI/XbaI размером 3,3 kb из pCIB1207, содержащей AHAS ген.

Фиг. 31. Рестриктная карта pCIB200/Gluc39.3-AHAS. KpnI/XbaI фрагмент, содержащий - глюканазный промотор и AHAS ген, выделяли из pBSGluc39.3/AHAS и лигировали с pCIB200, расщепленной с помощью KpnI и XbaI.

Фиг. 32. Рестриктная карта pCIB1208. Фрагмент XbaI размером 5,8 kb геномного клона фага , содержащий мутированный Arabidopsis AHAS ген, клонировали в обработанную XbaI Bluescript.

Фиг. 33. Рестриктная карта pCIB1230. Фрагмент NcoI/XbaI размером 3,3 kb из pCIB1208 клонировали в pCIB269, которую расщепляли с помощью NcoI и XbaI с целью удаления GUS гена.

Фиг. 34. Рестриктная карта pCIB1232. Фрагмент KpnI/XbaI размером 4,2 kb выделяли из pCIB1230 и лигировали с pCIB200, которую расщепляли с помощью KpnI и XbaI.

Фиг. 35. Рестриктная карта pBSGluc39.1/AHAS-SuR, сконструированная из NcoI/XbaI фрагмента pBSGluc39.1/GUS и NcoI/XbaI фрагмента размером 3,3 kb, pCIB1208, содержащего AHAS ген.

Фиг.36. Рестриктная карта pCIB200/Gluc39.1-AHAS-SuR. KpnI/XbaI фрагмент, содержащий - глюканазный промотор и AHAS ген, выделяли из pBSGluc39.1/AHAS-SuR и лигировали с pCIB200, расщепленной с помощью KpnI и XbaI.

Фиг. 37. Рестриктная карта pBSGluc39.3/AHAS-SuR, сконструированная из фрагмента NcoI/XbaI pBSGluc39.3/GUS и NcoI/XbaI фрагмента из pCIB1208, размером 3,3 kb, содержащего AHAS ген.

Фиг.38. Рестриктная карта pCIB200/Gluc39.3-AHAS-SuR. KpnI/XbaI фрагмент, содержащий - глюканазный промотор и AHAS ген, выделяли из pBSGluc39.3/AHAS-SuR и лигировали с pCIB200, расщепленной с помощью KpnI и XbaI.

Краткое описание последовательностей.

Последовательность 1 показывает последовательность геномной ДНК фрагмента размером 2 kb, расположенного между XhoI и BglII сайтами табачного PR-1a гена. Стрелка на нуклеотиде 903 показывает сайт начала транскрипции, а вертикальные стрелки, указывающие на 207 и 313, идентифицируют окончания двух независимых кДНК клонов. Приведена также полипептидная последовательность, закодированная кодирующим участком гена.

Последовательность 2 показывает последовательность геномной ДНК табачного PR-1' гена и аминокислотную последовательность полипептида, которая закодирована кодирующим участком гена.

Последовательность 3 показывает кДНК последовательность RP хитиназы огурцов и аминокислотную последовательность полипептида, которая закодирована кодирующим участком гена.

Последовательность 4 показывает кДНК последовательность основной формы табачного PR-R гена и (4a) раскрывает как последовательность (4), так и аминокислотную последовательность полипептида, который закодирован кодирующим участком гена.

Последовательность 5 раскрывает последовательность геномной ДНК табачного основного -1,3- глюканазного гена, содержащегося в клоне pBSGluc39.1.

Последовательность 6 раскрывает последовательность геномной ДНК табачного основного -1,3- глюканазного гена, содержащегося в клоне pBSHluc39.3.

Последовательность 7 раскрывает кДНК последовательность табачного PR-Q, содержащегося в плазмидной pBScht15.

Последовательность 8 раскрывает ДНК последовательность выделенной кДНК, содержащейся в плазмидной pBSGL6e. Такая кДНК кодирует кислотную форму -1,3- глюканазы.

Подробное описание изобретения.

В настоящем изобретении описывается выделение, клонирование и идентификация ДНК-последовательностей, которые способны к регуляции транскрипции в растительной ткани, ассоциированной с ними ДНК-последовательности, когда регуляция зависит от химического регулятора. Такие ДНК-последовательности могут использоваться для конструирования химерных генов, в которых экспрессия генов может регулироваться такими регуляторами. Способность к регуляции экспрессии химерного гена в трансгенном растении химическим методом полезна для получения надлежащей экспрессии фенотипического признака при минимальном вредном влиянии на рост и развитие растения. Такая регуляция важна для продуцирования вторичных продуктов или других клонированных продуктов в растительных тканях, в культуре или в биореакторах. Регулирование клонированной последовательности также важно для регуляции других генных продуктов по антисмысловому механизму.

Экспрессия данной кодирующей последовательности в любое конкретное время может регулироваться путем использования химического регулятора применяемого обычно в растительной ткани. Гены, ответственные за контроль действительных переходных стадий развития, могут также регулироваться путем ассоциации химически регулируемой ДНК-последовательности с соответствующей кодирующей ДНК-последовательностью. Таким методом развитие растения может останавливаться на конкретной стадии или ускоряться с конкретной скоростью в результате увеличения или уменьшения уровня содержания химического регулятора.

Химически регулируемые ДНК-последовательности могут использоваться для реализации экспрессии посторонних генов, которые, например, придают гербицидную устойчивость или толерантность (например, толерантность сои к действию атразина), придают устойчивость к действию насекомых (например, кристаллический протеин хлопка Bacillus thuringiensis) или в том случае, когда требуется селективная экспрессия (как, например, в случае стерильности мужских и женских особей). Химически регулируемые ДНК-последовательности могут также использоваться для реализации тран