Способ гидроочистки углеводородного сырья (варианты) и катализатор для его осуществления
Реферат
Описывается способ гидроочистки углеводородного сырья путем пропускания потока углеводородного сырья снизу вверх через реакционную зону гидрогенизационного превращения, содержащую по существу уплотненный слой катализатора, отличающийся тем, что катализатор, размещенный в реакционной зоне, включает множество частиц, имеющих средний диаметр, изменяющийся примерно от 35 до 3 меш Тайлера, и такое распределение по размеру, что по меньшей мере примерно 90 вес.% частиц катализатора имеют диаметр в интервале от R1 до R2, при этом R1 имеет значение в интервале примерно 0,04 - 0,63 см; R2 имеет значение примерно 0,04 - 0,63 см; отношение R2/R1 изменяется примерно 1,0 - 1,4; размерное отношение L/D меньше, чем примерно 2,0. Описывается также катализатор для осуществления вышеуказанного способа. Технический результат - дополнительный контроль потока через слой катализатора. 4 с. и 17 з.п.ф-лы, 11 ил.
1. Область изобретения Настоящее изобретение относится к катализатору и к замене катализатора, работающего в процессе гидроочистки потока углеводородного сырья. В частности, это изобретение относится к катализатору, способу и устройству для экономного использования пространства внутри аппарата гидроочистки в широком интервале скоростей переработки, без существенной флюидизации или "вскипания" уплотненного слоя катализатора при высоких скоростях противотока углеводородного сырья и водородсодержащего газа через уплотненный слой при подержании непрерывной или периодической замены катализатора из аппарата при "поршневом" обтекании слоя.
2. Описание уровня техники Гидроочистка или гидрогенизационная обработка с целью удаления из потоков углеводородного сырья нежелательных компонентов представляет собой хорошо известный способ каталитической обработки таких тяжелых углеводородов для повышения их коммерческой стоимости. "Тяжелые" фракции жидких углеводородов и, в частности, отбензиненных сырых нефтей, нефтяных остатков, битуминозных песков, сланцевого масла или ожиженного угля, или регенерированного масла, обычно содержат примесные продукты, такие как сернистые и/или азотсодержащие соединения, металлы и металлоорганические соединения, которые приводят к дезактивации частиц катализатора при контакте с этими сырьевыми фракциями и водородом в условиях гидроочистки. Обычно такими условиями гидроочистки являются: температура в интервале от 212 до 1200oF (от 100 до 650oC) и давление от 20 до 300 атмосфер. Обычно такую гидроочистку осуществляют в присутствии катализатора, содержащего металлы VI или VIII группы, такие как платина, молибден, вольфрам, никель, кобальт и др., в сочетании с различными другими металлическими элементами, частицами оксида алюминия, диоксида кремния, оксида магния и т.п., которые имеют высокое отношение поверхности к объему. Более конкретно, катализаторы, используемые для гидрогенизационного удаления металлов, гидрообессеривания, гидродеазотирования, гидрокрекинга и др. тяжелых нефтей и т.п., обычно произведены на основе носителя или базового материала, такого как оксид алюминия, диоксид кремния, алюмосиликат или возможно кристаллический алюмосиликат, с одним или несколькими промотором (промоторами) или каталитически активным металлом (металлами) (или веществами) с добавкой следовых материалов. Типичные используемые каталитически активные металлы включают кобальт, никель и вольфрам; однако могут быть выбраны другие металлы или вещества в зависимости от применения. В патенте США N 5076908, выданном Стангеланду и др., предложена система, в которой поршневой поток через слой катализатора поддерживается в широком интервале скоростей противопотока углеводородного сырья и водородсодержащего газа через объем существенно уплотненного слоя катализатора. При таком потоке через уплотненный слой катализатора поддерживается существенно максимальный объем и плотность катализатора в пределах заданного расчетного объема аппарата путем регулирования размера, формы и плотности катализатора таким образом, чтобы слой существенно не расширялся при расчетной скорости жидкого потока через этот слой. Соответствующие размеры, форма и плотность частиц определяются путем подбора коэффициентов, полученных в ходе обширного экспериментального изучения расширения слоя в большой пилотной установке с углеводородами, водородом и катализатором при расчетных значениях давления и скоростей потока, как конкретно описано ниже. С целью дополнительного контроля такого потока через слой катализатора его уровень внутри реактора непрерывно измеряют, например по поглощению гамма-излучения, для того чтобы удостовериться в том, что происходит незначительное вскипание катализатора. Такому регулированию дополнительно способствует равномерное распределение как водорода, так и жидкого сырья по всей длине слоя за счет концентричного распределения компонентов - водородсодержащего газа и жидкого углеводородного сырья в других концентрических кольцевых проходах поперек полного горизонтального поперечного сечения реактора в месте их входа в слой катализатора. Кроме того, желательно, чтобы водород вновь равномерно распределялся и в случае необходимости прибавлялся через систему закаливания на одном или нескольких промежуточных уровнях вдоль длины слоя катализатора. Выравнивание потоков водорода и жидкости поперек полного горизонтального сечения по длине слоя, заполненного частицами, предотвращает локальную турбулентность и нежелательное вертикальное разделение более легких частиц от более тяжелых частиц, проходящих через реактор поршневым потоком. Изложение сущности изобретения В предпочтительном варианте настоящего изобретения желаемые цели достигаются за счет предоставления катализатора, включающего множество частиц, имеющих средний диаметр, изменяющийся примерно от 35 до 3 единиц Тайлера (от 0,42 до 6,68 мм); и такое распределение по размеру, что по меньшей мере примерно 90 вес. % частиц катализатора имеют диаметр в интервале от R1 до R2, при этом: 1) R1 имеет значение в интервале примерно от 1/64 до 1/4 дюйма, (от 0,04 до 0,63 см) 2) R2 имеет значение в интервале примерно от 1/64 до 1/4 дюйма, (от 0,04 до 0,63 см), и 3) величина отношения R1/R2 изменяется примерно от 1,0 до 1,4; и размерное отношение (L/D) меньше, чем примерно 2,0. Этот катализатор может использоваться в любом процессе гидрирования. Предпочтительно катализатор предназначается для получения существенно уплотненного слоя катализатора в реакторе поршневого потока в процессе гидроочистки при контактировании существенно уплотненного слоя катализатора с восходящим потоком углеводородного сырья. Более конкретно, когда частицы катализатора располагаются в зоне превращения углеводорода, образуется существенно уплотненный слой катализатора гидроочистки; причем при прохождении потока углеводородного сырья снизу вверх через существенно уплотненный слой катализатора, когда объем каталитических частиц выводится со дна зоны превращения углеводорода. Используемый здесь термин "катализатор" включает другие частицы, которые взаимодействуют с потоком углеводородного сырья, такие как сорбенты или другие твердые вещества для контакта с жидкостью. Катализатор располагается в реакционной зоне и поток углеводородного сырья проходит снизу вверх через катализатор для гидроочистки этого потока. Частицы катализатора имеют такое распределение по размеру, что максимум примерно 2,0 вес.% частиц катализатора имеют диаметр меньше, чем R1. Кроме того, эти частицы катализатора имеют такое распределение по размеру, что максимум примерно 0,4 вес.% частиц катализатора имеют диаметр меньше, чем R3, причем R3 меньше R1 и величина отношения R1/R3 составляет примерно 1,4. Частицы катализатора имеют максимальную истираемость около 1% от веса частиц катализатора, имеющих диаметр в интервале значений R1; и частицы катализатора имеют максимальную истираемость около 0,4% от веса частиц катализатора, имеющих диаметр в интервале значений R3, где R3 меньше, чем R1 и значение отношения R1/R3 составляет около 1,4. В одном варианте воплощения катализатора он включает множество частиц, имеющих средний диаметр, изменяющийся примерно от 6 до 8 единиц Тайлера (от 2,36 до 3,33 мм); и такое распределение по размеру, что по меньшей мере примерно 97 вес.% частиц катализатора имеют диаметр в интервале от R1 до R2, при этом: 1) R1 имеет значение примерно 0,093 дюйма (0,27 см), 2) R2 имеет значение примерно 0,131 дюйма (0,33 см); и величина размерного отношения составляет примерно 1,0; частицы катализатора имеют максимальное содержание пыли примерно до 1% от веса частиц, проходящих через сито 8 единиц Тайлера (2,36 мм) и до 0,2% от веса частиц, проходящих через сито 10 единиц Тайлера (1,65 мм). В другом варианте воплощения изобретения катализатор включает множество частиц, имеющих средний диаметр, изменяющийся примерно от 10 до 12 единиц Тайлера (до 1,65 мм); и такое распределение по размеру, что по меньшей мере примерно 90 вес.% частиц катализатора имеют диаметр в интервале от R1 до R2, при этом: 1) R1 имеет значение в интервале примерно 0,065 дюйма (0,17 см), 2) R2 имеет значение в интервале примерно от 0,078 дюйма (0,20 см); и размерное отношение (L/D) меньше, чем примерно 2,0; и в котором частицы катализатора имеют такое распределение по размеру, что максимум примерно 2,0 вес.% частиц катализатора имеют диаметр меньше, чем R1, и максимум примерно 0,4 вес.% частиц катализатора имеют диаметр меньше, чем R3, причем R3 меньше R1 и величина отношения R1/R3 составляет примерно 1,4. В еще одном варианте воплощения изобретения катализатор для гидроочистки потока углеводородного сырья, которое проходит снизу вверх через реакционную зону гидрогенизационного превращения, содержащую существенно уплотненный слой катализатора, включает множество частиц катализатора, имеющих средний диаметр, изменяющийся примерно от 6 до 8 единиц Тайлера (от 2,36 до 3,33 мм); и такое распределение по размеру, что по меньшей мере примерно 90 вес.% частиц катализатора имеют диаметр в интервале от R1 до R2, при этом: 1) R1 имеет значение примерно 0,093 дюйма (0,24 см), 2) R2 имеет значение примерно 0,131 дюйма (0,33 см); и размерное отношение (L/D) меньше, чем примерно 2,0; и в котором частицы катализатора имеют такое распределение по размеру, что максимум примерно 2,0 вес.% частиц катализатора имеют диаметр меньше, чем R1, и максимум примерно 0,4 вес.% частиц катализатора имеют диаметр меньше, чем R3, причем R3 меньше R1 и величина отношения R1/R3 составляет примерно 1,4. В другом аспекте изобретения поставленные цели также достигаются за счет широкого представления способа получения существенно уплотненного слоя катализатора гидроочистки, двигающегося сверху вниз в поршневом режиме, внутри реакционной зоны гидрогенизационного превращения, причем этот способ включает стадии: а) образование множества кольцевых зон смешения в реакционной зоне гидрогенизационного превращения, содержащей существенно уплотненный слой катализатора гидроочистки, который описан выше, причем каждая кольцевая зона смешения содержит поток углеводородного сырья, включающий жидкий компонент и водородсодержащий газовый компонент, и в котором кольцевые зоны смешения являются концентрическими в отношении друг друга и соосными в отношении реакционной зоны гидрогенизационного превращения; b) выведение потока углеводородного сырья из каждой кольцевой зоны смешения стадии (a) в существенно уплотненный слой катализатора гидроочистки для того, чтобы поток углеводородного сырья поднимался вверх из каждой кольцевой зоны смешения сквозь существенно уплотненный слой катализатора; c) выведение объема частиц катализатора из реакционной зоны гидрогенизационного превращения для того, чтобы получить движущийся вниз поршневым потоком существенно уплотненный слой катализатора гидроочистки внутри реакционной зоны гидрогенизационного превращения. Этот способ может дополнительно включать впрыскивание закалочного средства (например, закалочной жидкости) в существенно уплотненный слой катализатора гидроочистки. Это впрыскивание включает пропускание закалочного вещества через первую проходную зону, имеющую первый проходной диаметр; пропускание закалочного вещества из первой проходной зоны во вторую проходную зону, имеющую второй проходной диаметр, который больше диаметра первого проходной зоны; пропускание закалочного вещества из второй проходной зоны в третью проходную зону, имеющую третий проходной диаметр, который меньше диаметра второй проходной зоны; пропускание закалочного вещества из третьей проходной зоны в слой катализатора, расположенного в реакционной зоне гидрогенизационного превращения, через которую проходит поток углеводородного сырья. Существенно уплотненный слой катализатора гидроочистки располагается в реакционной зоне внутри объема реактора таким образом, что существенно уплотненный слой катализатора гидроочистки занимает максимум пространства реактора. Этот существенно уплотненный слой катализатора занимает по меньшей мере около 50% объема реактора; предпочтительно по меньшей мере около 60% объема; и более предпочтительно по меньшей мере приблизительно от 65 до 70% объема реактора. Из сказанного выше становится очевидным, что на достижение желаемых целей настоящего изобретения непосредственно влияют несколько значительных факторов, которые также вносят вклад в эффективное использование объема реактора данного процесса, чтобы обеспечить поршневое течение частиц катализатора в реакторе, без вскипания, и в то же время сохраняя контакт с противоточным потоком углеводородного сырья, включающего газ и жидкость, при максимальной объемной скорости. Такими значительными факторами являются следующие: i) характеристики размера, объема и плотности таких частиц катализатора при заранее выбранных скоростях потоков и давлении потока углеводородного сырья; ii) контроль вскипания и/или витания слоя катализатора при движении жидкого потока углеводородного сырья и водорода; iii) ламинарное течение частиц катализатора при поступлении в (и из) движущийся слой катализатора для замены (или регенерации, или обновления) без вскипания или витания слоя; iv) концентрическая равномерная кольцевая подача чередующихся колец газообразных и жидких компонентов углеводородного сырья в полностью движущийся слой катализатора, который способен быстро восстанавливаться от падения или изменения давления в реакционном сосуде, для того, чтобы возобновить подачу чередующихся колец газообразных и жидких компонентов в течение всей продолжительности пробега (например, в течение нескольких тысяч часов); и v) повторное распределение газообразных компонентов по длине оси движущегося слоя. Краткое описание чертежей Фиг. 1 является частичным видом поперечного разреза, представляющим слой катализатора с множеством налагающихся друг на друга слоев до начала поршневого течения; Фиг. 2 является частичным видом поперечного разреза, представляющим слой катализатора, который движется вниз в режиме поршневого течения; Фиг. 3 является видом снизу на концентрические и радиальные средства поддерживания слоя катализатора для усеченного конического или пирамидального сетчатого фильтра; Фиг. 3А является частичным видом поперечного разреза реактора и частичной перспективой другого варианта воплощения средства поддержки катализатора; Фиг. 4 является частичным видом поперечного разреза реактора и средства поддержки катализатора фиг. 3А, которые включают множество кольцевых зон смешения под существенно уплотненным слоем катализатора гидроочистки, причем каждая кольцевая зона смешения содержит жидкий углеводородный компонент и компонент водородсодержащего газа и в которых кольцевые зоны смешения являются концентрическими в отношении друг друга и соосными в отношении реактора и существенно уплотненного слоя катализатора гидроочистки; Фиг. 5 является частичным видом поперечного разреза реактора и средства поддержки фиг. 4 с инертными таблетками и показывает ребра или спицы, прикрепленные к неперфорированной центральной пластине и поддерживающие множество сегментированных пластин; Фиг. 6 является частичным видом поперечного разреза реактора и средства поддержки фиг. 5 с инертными таблетками, вокруг которых проходит жидкий углеводородный компонент и компонент водородсодержащего газа, прежде чем войти в кольцевые зоны смешения; Фиг. 7 является горизонтальным видом поперечного разреза емкости гидроочистки или реактора, представляющим в верхнем плоскостном виде систему(ы) закалки или устройства для распределения закаливающего вещества (например, закалочной жидкости или газа) в слой катализатора на желаемом уровне слоя; Фиг. 8 является видом частичного вертикального разреза, сделанным в направлении стрелок и вдоль плоскости линии 8-8 на фиг. 7; Фиг. 8А является видом частичного поперечного разреза сопла, смонтированного на боковой поверхности трубопровода для закалки; Фиг. 9 является видом частичного вертикального разреза, сделанным в направлении стрелок и вдоль плоскости линии 9-9 на фиг. 7. Подробное описание изобретения, включая предпочтительные варианты осуществления изобретения Рассмотрим теперь подробно чертежи, сначала более конкретно фиг. 1, на которой показана система гидроочистки, воплощающая способ настоящего изобретения для существенного увеличения как продолжительности каталитической активности всего объема или слоя катализатора 10, так и эффективности использования отдельного реактора заданного реакционного объема, такого как реактор 11. Реактор 11, как показано толщиной его боковых цилиндрических стенок 12 и куполообразных крышек корпуса или торцов 13 и 14, предназначен для взаимодействия с водородсодержащим газом, смешанным с жидким потоком углеводорода, при давлении примерно до 300 атмосфер и температуре примерно до 650oC. Такой поток реагирующего газа и поток жидкого углеводородного сырья предпочтительно смешиваются и вводятся как один поток через донную крышку 13 по линии 16. Для обеспечения максимальной выгоды от каталитической гидроочистки потока углеводородного сырья и водородсодержащего газа существенно, чтобы реактор 11 содержал как можно больше катализатора внутри расчетного объема емкости 11. Соответственно, как указано, средство 17 для поддержания слоя катализатора 10 размещается в реакторе 11 как можно ниже, в то же время обеспечивается полное и соответствующее диспергирование водородной фазы внутри потока жидкого углеводорода. В то же самое время верхняя граница слоя 10 находится вблизи от верхней куполообразной крышки 14, тогда как обеспечивается соответствующее пространство 21 для разделения увлеченного катализатора от полученных продуктов, которые выводятся из центральной трубы 18. Для обеспечения того, чтобы катализатор не вовлекался в жидкие продукты, выходящие из центральной трубы 18, в пространство 21 может быть вмонтирован сетчатый фильтр выше поверхности слоя 20, которая определяет вершину слоя катализатора 10. Затем на поверхность слоя 20 добавляют свежий катализатор через трубку 19, проходящую сквозь фильтр 15. Желательно, чтобы верхний уровень или верх слоя катализатора 10, обозначенный как поверхность слоя 20, предпочтительно непрерывно контролировался методом измерения поглощения гамма-излучения, что возможно путем размещения источника и детектора гамма-излучения (на чертежах не показаны) в непосредственной близости от поверхности слоя 20 катализатора. Такой источник гамма-излучения может быть в виде радиоактивных изотопов, таких как цезий-137, расположенных внутри реактора в карманах специальной конструкции. Альтернативно этот источник может быть электрически регулируемым источником, таким как генератор гамма-излучения, активируемый тепловыми нейтронами. Детекторы могут иметь форму ионизационной трубки, счетчика Гейгера-Мюллера или сцинцилляционного детектора. Подходящие источники и детекторы производятся фирмой Ронан Инжиниринг Ко., Тексас Ньюклеар и другими поставщиками. Путем определения уровня поверхности 20 в соответствии с изобретением можно обеспечить поддержание каталитического материала на оптимальном уровне так, чтобы реактор никогда не переполнялся. Переполнение реактора увеличивает риск того, что частицы катализатора будут раздавливаться в запорных задвижках транспортирующих линий, когда они будут закрываться по окончании каждого перемещения частиц катализатора. Кроме того, контроль уровня слоя необходим для того, чтобы убедиться в минимизации вскипания слоя и в том, что для выбранного катализатора исключены нежелательные отклонения от проектной скорости потока для водорода и углеводородного сырья, поступающего снизу вверх через слой 10. С этой целью размер, форму и плотность частиц катализатора, подаваемых в слой, выбирают в соответствии с проектной максимальной скоростью потока сырьевых потоков для того, чтобы предотвратить такое вскипание. Такой контроль гарантирует, что слой 10 последовательно передвигается вниз внутри реактора в режиме поршневого потока. Поршневое течение слоя катализатора 10 проиллюстрировано на фиг. 1 и 2 и оно может быть лучше всего описано таким образом, что когда удаляется самый нижний объемный слой A, следующий объемный слой B вытекает вниз, чтобы занять самую нижнюю объемную часть B. Удаленный самый нижний объемный слой A заменяется верхним объемным слоем J. Эта процедура повторяется снова (как лучше всего показано пунктирными линиями на фиг. 2) путем удаления самого нижнего объемного слоя B, что приводит к тому, что следующий объемный слой C вытекает вниз в поршневом режиме, чтобы занять самую нижнюю объемную часть B. Удаленный самый нижний объемный слой B заменяется верхним объемным слоем K. Эта процедура может непрерывно повторяться, чтобы определить поршневое перемещение слоя катализатора 10 вниз в направлении стрелки W на фиг. 2. Методикой для определения того, является ли течение слоя катализатора 10 поршневым, может быть любая подходящая методика. Например, в предпочтительном варианте воплощения настоящего изобретения, в котором из потока углеводородного сырья удаляются металлы (например, ванадий), слой катализатора 10 перемещается как поршень, если при анализе образца катализатора (например, 15 частиц катализатора) из выведенного потока обнаруживается, что по данным элементного анализа этот образец имеет однородно высокое содержание металла, предпочтительно по меньшей мере в 1,5 раза больше, чем среднее содержание металла в слое катализатора 10, и более предпочтительно по меньшей мере в 2,0 раза больше, чем среднее содержание металла в слое катализатора 10. Специалисты обычного уровня в этой области техники смогут определить среднее количество катализатора в слое 10 из данных общего содержания металлов, удаленных из потока углеводородного сырья, веса слоя катализатора 10 и др. Следует понимать, что при использовании или упоминании в описании или формуле изобретения любого типа перемещения катализатора или слоя катализатора 10 (например, "удаление, перемещение, подача, замена, передача, поток, течение, перенос, перенесение, добавка, добавление, смешивание" и др.) для любого типа или смеси катализатора без утверждения или упоминания основы, основной для такого перемещения катализатора или слоя катализатора может быть любой тип способа, такой как "прерываемым образом", "периодическим образом", непрерывным образом, полунепрерывным образом и др. Таким образом, только в качестве примера удаление самых нижних объемов слоев и добавление верхних объемных слоев может быть сделано периодическим образом, непрерывным образом или даже единовременным образом, причем во всех случаях не воздействуя на сущность и объем настоящего изобретения. Также следует понимать, что удаление или выведение катализатора и добавление или замена катализатора взаимно исключают друг друга и могут быть осуществлены одновременно или в разное время, не воздействуя на сущность и объем настоящего изобретения. Предпочтительно добавление или замена катализатора осуществляется после удаления или выведения катализатора и после движения слоя катализатора 10 вниз в неподвижное состояние или неподвижное положение. Для дополнительной гарантии того, что поршневой поток распространяется по всей длине слоя и особенно в донной части, средство поддержания слоя 17 специально характеризуется конфигурацией усеченного многогранника или конуса. Как показано в предпочтительных вариантах воплощения изобретения на фиг. 3-6, носитель 17 включает ряд кольцевых многогранников, по форме приближающихся к кольцам, которые образуются из множества сегментных пластин 27 (см. фиг. 3) между радиальными ребрами или спицами 26, простирающимися от неперфорированной центральной пластины 25 к боковой стенке 12 реактора 11. Как показано на фиг. 3 и 5, спицы 26 могут иметь любую подходящую геометрическую форму, такую как типа прутка (см. фиг. 5) или практически плоской пластины (см. фиг. 3), которые разбивают периферию реактора на многие сегменты (в этом случае восемь) и аналогично поддерживают концы внешнего октаэдрического кольца 23 поддерживающего средства 17, образованного кольцевыми или периферическими пластинами 27. В каждом случае радиальные ребра или спицы 26 и кольцевые сегментные пластины 27 образуют множество концентрических колец или кольцевых многогранников, которые поддерживают коническую или пирамидальную перфорированную пластину или фильтр 28. Таким образом, фильтр 28 проницаем как для газа, так и для жидкости, которые поднимаются из нижней части сосуда 11. В одном предпочтительном варианте изобретения конкретного замысла концентрических кольцевых многогранников, которые показаны на фиг. 3, взаимосвязанные пластины 27 образуют множество кольцеподобных структур, обычно выступающих аксиально, параллельно боковой стенке 12, причем радиальные ребра или спицы 26 радиально выступают по направлению к боковой стенке 12 реактора 11. Смесь потока углеводородного сырья и водородсодержащего газа, которая будет входить в слой катализатора 10, разделяется под действием силы тяжести на радиально чередующиеся кольца жидкости и газа, составленные из смежных сегментов между каждой парой радиальных спиц 26. Таким образом, обе фазы текут наверх через чередующиеся концентрические кольцевые проходы под фильтром 28. Предпочтительное отделение газа от жидкости в каждом кольце включает верхний сегмент газа, перекрывающий смежный нижний кольцевой сегмент, заполненный жидкостью. Поэтому оба потока имеют равный (и со смежным углом) доступ к слою через фильтр 28. Множество чередующихся колец водородсодержащего газа и углеводородной жидкости обеспечивают равномерное и равное поступление обеих фаз по всему поперечному сечению фильтра 28 в слой 10. Среди прочих факторов мы конкретно обнаружили, что эта конфигурация обеспечивает равномерное и равное распределение по всему поперечному сечению слоя катализатора. Такое равномерное распределение по всему диаметру слоя 10 обеспечивает сектор спокойного течения, образующийся непосредственно выше центральной пластины 25, которая усекает коническое средство 17 поддержания слоя. Это существенно снижает возможное локальное вскипание или турбулентные потоки, которые могут быть вызваны в слое катализатора в месте удаления катализатора через вход 30 обращенной J-образной трубки 29, чтобы обеспечить локализованный ламинарный поток катализатора и жидкости внутрь (и из) слоя 10. Равномерная подача смеси потока углеводородного сырья и водорода конкретно облегчается на входной стороне пластин 27 поддерживающего средства 17 через входную камеру повышенного давления 33, расположенную между носителем 17 и круглым пластинчатым элементом 31, который выступает поперек полного поперечного сечения реактора 11. Этот круглый пластинчатый элемент 31 определяет решетчатую структуру, поддерживающую проницаемый фильтр 6, имеющий одно или несколько отверстий, как лучше всего показано на фиг. 4, 5 и 6. Как дополнительно показано на фиг. 4, 5 и 6, проницаемый фильтр 6 поддерживает слой 3 из множества инертных таблеток 4 (например таблетки оксида алюминия), которые имеют такой размер, чтобы не проходить через отверстия в проницаемом фильтре 6 для, того чтобы предотвратить турбулентные потоки в камере повышенного давления 33 и чтобы сохранить пузырьки водородсодержащего газа, продиффундировавшего внутрь потока углеводородного сырья. Пластина 31 включает множество аналогичных труб больших диаметров 32, образующих отверстия в пластине 31. Каждая труба имеет диаметр несколько дюймов и проходит аксиально на аналогичную глубину порядка 4-6 дюймов (10-15 см), ниже пластины 31. Труба 32 обеспечивает равный доступ смеси водорода и углеводородного сырья в камеру повышенного давления 33. Равномерному распределению входящего потока сырья внутрь нижней крышки 35 из сырьевой линии 16 также может способствовать отражающая пластина 34 (см. фиг. 1 и 2), чтобы обеспечить равномерное распределение чрезмерно больших пузырей водорода, которые могут содержаться в сырьевом потоке, по зоне поперечного сечения пластины 31 и равномерное распределение к каждой трубе 32 для потока в камеру повышенного давления 33. Длина труб 32 может быть подобрана таким образом, чтобы под пластиной 31 образовалась подходящая газовая подушка для подавления волнений в сырьевых потоках, поступающих в коллектор 35. Как отмечалось выше, вертикальная поперечная ширина или осевая длина пластин 27, которые определяют каждый индивидуальный кольцевой и радиальный сегменты, обеспечивает равный доступ для водорода и жидкого сырья в слой катализатора 10 и проходит под фильтром 28 таким образом, что они эффективно образуют кольца газообразного и углеводородного сырья, которые поочередно пересекают полный диаметр на входной стороне слоя катализатора 10. Таким образом, ни одна отдельная зона входа в слой катализатора 10 не становится выделенной или предпочтительной для потока либо жидкости, либо газа. Кроме того, если возмущения давления приведут к полному смачиванию фильтра 28 жидкой фазой, выделение газового потока облегчается шириной площади каждого сегмента между пластинами 27 и радиальными пластинами 26. В другом предпочтительном варианте воплощения конкретного замысла концентрических кольцевых многогранников, который проиллюстрирован на фиг. 3-6, виден жидкий углеводородный компонент LH и компонент водородсодержащего газа HG (пузырьки водородсодержащего газа), входящие как смесь LH-HG в камеру повышенного давления 33 из труб 32. Смесь LH-HG вводится в камеру повышенного давления. В этом предпочтительном варианте воплощения настоящего изобретения кольцевые или периферические пластины 27 прикреплены к и поддерживаются радиальными ребрами или спицами 26, каждая из которых имеет вертикальную или поперечную ширину, которая практически равна вертикальной или поперечной ширине кольцевых или периферийных пластин 27. Радиальные ребра или спицы 26 также действуют как средство уменьшения размера пузырьков водородсодержащего газа, особенно очень больших пузырьков водородсодержащего газа из газового компонента HG. Специалисты в этой области техники легко согласятся, что число используемых радиальных ребер или спиц 26 будет зависеть от ряда факторов, таких как ожидаемое число очень больших пузырей водородсодержащего газа в потоке углеводородного сырья, текущего снизу вверх, веса слоя катализатора 10 и др. Взаимосвязанные пластины 27 и радиальные ребра или спицы 26 образуют сеть или сетчатую структуру, определяющую множество кольцевых зон смешения, в общем обозначенных на фиг. 3-6 как MZ. Эти кольцевые зоны смешения MZ являются практически непрерывными или обычно бесконечными зонами MZ и могут содержать или могут быть подразделены на любое разумное желаемое число зон смешения (или зон предварительного смешения), таких как MZ1, MZ2, MZ3, MZ4, MZ5 и MZ6 на фиг. 4 и 5. Каждая из индивидуальных зон смешения MZ1, MZ2, MZ3, MZ4, MZ5 и MZ6, предназначенная для всех практических целей, является кольцевой непрерывной или бесконечной зоной смешения однородной толщины, за исключением периодического прерывания радиальными ребрами 26, которые представляют собой относительно узкие противоположно расположенные ребра, распределенные между любой парой смежных ребер 26-26. Как очевидно из фиг. 3-6, неперфорированная пластина 25, которая предпочтительно расположена в стороне от пластины 31 и фильтра 6 таким образом, чтобы инертные таблетки 4 могли опираться на фильтр 6 и пластину 31, сразу же под неперфорированной центральной пластиной 25. Зона смешения MZ1 является существенно цилиндрической зоной смешения с открытым верхом и границами, определенными пространством между множеством взаимно зацепленных и спаренных пластин 27 и периметром неперфорированной центральной пластины 25. Множество кольцевых зон смешения MZ (или кольцевых непрерывных или бесконечных зон смешения MZ2, MZ3, MZ4, MZ5 и MZ6) под слоем катализатора 10 являются концентрическими по отношению друг к другу и соосными по отношению к емкости реактора 11 и слоя катализатора 10. Пластины 27 могут быть расположены радиально от каждой другой пластины на любом подходящем расстоянии (предпочтительно на одинаковом расстоянии), чтобы способствовать достижению поставленных целей настоящего изобретения. Однако предпочтительно пластины 27 расположены радиально от каждой другой пластины обычно на одинаковой толщине или расстоянии, которое изменяется примерно от 1 дюйма (2,54 см) до 4 футов (122 см), более предпочтительно примерно от 6 дюймов (15 см) до 3 футов (91 см), наиболее предпочтительно примерно от 1 (30,48 см) до 2 футов (61 см). Расположенная радиально взаимосвязь между и среди пластин 27 обычно определяет равномерную толщину для каждой кольцевой зоны смешения (то есть MZ2, MZ3 и др.). Следует понимать, что хотя множество кольцевых зон смешения MZ представлено на фиг. 3-6 как множество зон некруглой геометрической формы (например, восьмиугольной на фиг. 3), в замысел и объем настоящего изобретения входит то, что множество кольцевых зон смешения MZ может состоять из зон любой геометрической формы, включающей не только зоны восьмиугольной формы, но также множество концентрических круговых зон смешения и т.п., которые все могут быть также концентрическими по отношению друг к другу и соосными по отношению к реактору 11 и/или слою катализатора 10 (или реакционной зоне гидрогенизационного превращения). Следовательно пластины 27 обеспечивают образование полос, обычно одинаковой толщины и существенно концентрически круглых, углеводородного сырья, которые также коаксиальны по отношению к слою катализатора 10. Только с целью примера, как лучше всего видно из фиг. 3-6, кольцевые зоны смешения MZ2, которые ограничены восемью взаимно зацепленными или спаренными пластинами 271 и восемью взаимно зацепленными или спаренными пластинами 272. Каждые из этих восьми пластин 271 и восьми пластин 272 образуют кольцевую границу для существенно круглой полосы потока углеводородного сырья в зоне смешения MZ2. Так как пространство или расстояние между пластинами 271 и 272 обычно является однородным по периферии, толщина или размер существенно круглой полосы потока углеводородного сырья в зоне смешения MZ2 является существенно однородной в поперечном сечении и/или равной в поперечном или горизонтальном сечении. Аналогично, зона смешения MZ6 восемью взаимно зацепленными или спаренными пластинами 275 и восемью взаимно зацепленными или спаренными пластинами 276, которые в сочетании образуют кольцевые границы для существенно круглых полос потока углеводородного сырья в зоне смешения MZ6. Как было аналогично указано ранее для пластин 271 и 272, так как пространство или расстояние между пластинами 275 и 276 обычно является однородным по периферии, толщина или размер существенно круглой полосы потока углеводородного сырья в зоне смешения MZ6 является существенно однородной в поперечном сечении и/или равной в поперечном или горизонтальном сечении. Пластины 272, 273 274 и 275 аналогично функционально взаимно зацеплены или спарены между собой, чтобы определить кольцевые границы для зон смешения MZ3, MZ4 и MZ5. Как лучше всего показано на фиг. 1, ребра 26 простираются радиально от неперфорированной центральной пластины 25 и