Иммуногенная полипептидная композиция, способ получения композиции, способ продуцирования и способ обнаружения антител, набор

Реферат

 

Изобретение относится к биотехнологии, иммунологии и вирусологии и может быть использовано для получения иммуногенных полипептидных композиций, перекрестно-реактивных со многими изолятами вируса гепатита C (HCV). Композиция содержит полипептиды, происходящие из разных изолятов HCV и имеющие по крайней мере один эпитоп в вариабельном домене полипептида оболочки HCV Е2/NS1 c аминокислотной последовательностью 384 - 414 и/или эпитоп в вариабельном домене Е 1 с аминокислотной последовательностью 215 - 255. Иммуногенную композицию используют для получения антител против HCV, для обнаружения антител в биологической пробе. Изобретение позволяет создать новые диагностикумы и вакцины. 5 с. и 5 з.п. ф-лы, 9 ил., 6 табл.

Область техники Изобретение относится в общем к иммунореактивным полипептидным композициями, способам использования композиций в иммунологических применениях, материалам и способам получения композиций.

Предпосылки изобретения Вирус гепатита C был недавно идентифицирован как основная причина посттрансфузионного гепатита ни-A - ни-B (NANBH), а также гепатита NANBH, распространяющегося другими путями. Материалы и методы получения вирусных геномных последовательностей известны. См., например, публикации PCT N W089/04669, W090/11089 и W090/14436.

Молекулярная характеристика генома вируса гепатита C(HCV) указывает, что это РНК молекула с положительной полярностью, содержащая приблизительно 10000 нуклеотидов, которые кодируют полипротеин из примерно 3011 аминокислот. Некоторые линии данных дают основания предположить, что HCV имеет схожую генетическую организацию с вирусами семейства Flaviviridae, которое включает флави- и пестивирусы. Как и его родственные пести- и флавивирусные формы HCV кодирует большой полибелковый предшественник, от которого образуются отдельные вирусные белки (как структурные, так и неструктурные).

Содержащие РНК вирусы могут обладать относительно высокими скоростями спонтанной мутации, т.е. порядка 10-3 - 10-4 на включенный нуклеотид. Поэтому, так как гетерогенность и изменчивость генотипа присущи вирусам с РНК, может существовать множество вирусных изолятов, которые вирулентны и авирулентны в пределах видов HCV.

Ряд различных изолятов HCV сейчас были идентифицированы. Последовательности этих изолятов демонстрируют ограниченную гетерогенную характеристику РНК вирусов.

Изолят HCV JI.I описан у Kubo, J. и др. (1989), Japan Nucl. Acids Res. 17: 10367-10372; Takeuchi K. и др. (1990), J. Gen. Virol. 71:3027-33; Takeuchi и др. (1990), Nucl. Acids Res. 18:4626.

Полные кодирующие последовательности плюс 5'- и 3'-концевые последовательности двух независимых изолятов, "HCV-J" и "BK" описаны Kato и др. и Takamizawa и др. соответственно. (Kato и др. (1990), Proc. Natl. Acad. Sci. USA 87:9524-9528; Takamizawa и др. (1991), J. Virol. 65:1105-13).

HCV изоляты также описываются в следующих публикациях: "HCV-I": Choo и др. (1990), Brit. Med. Bull. 46: 423-41; Choo и др. (1990), Proc. Natl. Acad. Sci. 88:2451-55; Han и др. (1991), Proc. Natl. Acad. Sci. 88:1711-15; Европейской патентной публикации N 318216.

"HC-J1" и "HC-J4": Ocamoto и др. (1991) Japan I. Exp. Med. 60:167-77.

"HCT 18", "HCT 23", "Th", "HCт 27", "EC1" и "EC10": Weiner и др. (1991), Virol. 180:842-848.

"Pt-1", "HCV-K1" и "HCV-K2": Enomoto и др. В Японии существуют два основных типа вируса гепатита C. Отделение гастроэнтерологии, Департамент внутренних болезней, Медицинский университет Каназавы, Япония.

Клоны "A", "C", "D" и "E": Tsukiyama - Kohara и др. Вторая группа вируса гепатита, в Uirus Genes.

Типичный подход к созданию диагностикумов и вакцин - сосредоточить внимание на консервативных вирусных доменах. Однако этот подход страдает недостатком иннорирования важных эпитопов, которые могут находиться в вариабельных доменах.

Цель настоящего изобретения - получение полипептидных композиций, которые иммунологически перекрестно-реактивны с многими изолятами HCV, особенно относительно гетерогенных доменов вируса.

Содержание изобретения Было выявлено ряд важных эпитопов HCV различается в различных вирусных изолятах и что эти эпитопы могут быть картированы в отдельных доменах. Это открытие позволяет выработать стратегию получения иммунологически перекрестно-реактивных полипептидных композиций, которые фокусируются на вариабельных (а не консервативных) доменах.

Соответственно одним вариантом настоящего изобретения является иммунореактивная композиция, содержащая полипептиды, в которой полипептиды включают аминокислотную последовательность эпитопа внутри первого вариабельного домена HCV, и в композиции присутствуют по меньше мере две гетерогенные аминокислотные последовательности из первого вариабельного домена различных HCV изолятов.

Другим вариантом изобретения является иммунореактивная композиция, содержащая множество антигенных совокупностей, в которой (a) каждая антигенная совокупность состоит из множества по сути идентичных полипептидов, включающих аминокислотную последовательность эпитопа внутри первого варабельного дюмена изолята HCV, и (b) аминокислотная последовательность эпитопа одной совокупности гетерогенна по отношению к аминокислотной последовательности аналогичной последовательности по меньшей мере одной из других совокупностей.

Следующий вариант изобретения - это иммунореактивная композиция, содержащая множество полипептидов, в которой каждый полипептид имеет формулу Rr - (SVn) - R'r', где R и R' - аминокислотные последовательности с 1 - 2000 аминокислотами и являются одинаковыми или разными; r и r' - 0 или 1 и одинаковые или разные; V - аминокислотная последовательность, включающая последовательность изменчивого домена HCV, в которой изменчивый домен содержит по меньшей мере один эпитоп; S - целое число 1, представляющее выбранный изменчивый домен; и n - целое число 1, представляющее выбранный изолят HCV, гетерогенный на данной SY по отношению по меньшей мере к одному другому изоляту с другой величиной для n, причем выбирается независимо для каждой x; x - целое число 1; и с оговоркой, что аминокислотные последовательности присутствуют в композиции, представляющей комбинацию, выбранную из группы, состоящей из (i), 1V1; и 1V2, (ii) 1V1 и 2V2, и (iii) 1V1 и 2V1.

Следующий вариант изобретения - это способ приготовления иммуногенной фармацевтической композиции HCV, включающий: (a) получение иммунореактивной композиции, как описано выше; (b) обеспечение подходящего наполнителя; и (c) смешивание иммунореактивной композиции (a) с наполнителем (b) в пропорции, обеспечивающей иммуногенную реакцию при назначении млекопитающему.

Следующий вариант изобретения представляет собой способ получения антител против HCV, включающий назначение млекопитающему эффективного количества иммунореактивной композиции, как описано выше.

Следующий вариант изобретения представляет собой способ обнаружения антител к HCV в биологической пробе, включающий: (a) взятие биологической пробы, которая, как предполагается, содержит антитела к HCV; (b) обеспечение наличия иммунореактивной композиции, описанной выше; (c) реакцию биологической пробы (a) с иммунореактивной композицией (b) при условиях, которые позволяют образование комплексов антиген-антитело; и (d) обнаружение образования комплексов антиген-антитело, сформированных между иммунореактивной композицией (a) и антителами биологической пробы (b) при наличии таковых.

И еще один вариант изобретения представляет собой лабораторный комплект для обнаружения антител к HCV в биологическом образце, включающий иммунореактивную композицию, описанную выше, упакованную в подходящий контейнер.

Краткое описание чертежей На фиг. 1 схематически показана генетическая организация генома HCV.

На фиг. 2 показано сравнение выведенных аминокислотных последовательностей E1 белка, закодированного изолятами HCV группы I и группы II.

На фиг. 3 показаны в сравнении аминокислотные последовательности предполагаемого E2/NS 1 участка изолятов HCV.

На фиг. 4 (A и B) даются графики, показывающие антигенные профили для амино-концевой области предполагаемого белка E2/NS 1 HCV (аминокислоты 384-420), и гипервариабельный участок gp 120 V3 HIV-1.

На фиг. 5 показана серия графиков, на которой представлена процентная вероятность выявления данного остатка от аминоконцевой области белка E2/NS 1 HCV (аминокислоты 384-420) во вторичной структуре альфа-спирали, бета-пласта или бета-витка.

На фиг. 6 представлены вертикальные графики, демонстрирующие реактивность антител в плазме от HCV 18 (панели A-C) или Th (панели D-F) с перекрыванием биотинилированных 8mer пептидов, произведенных от аминокислот 384-415 или 416 изолятов HCT 18 HCV (A, D), Th (B, E) и HCV J1 (C, F) соответственно.

На фиг. 7 показаны выведенные аминокислотные последовательности двух участков E2/NS 1 полипептида, аминокислоты 384-414 и 547-647, данные для изолятов Q1 и Q3.

На фиг. 8-1 показаны выведенные аминокислотные последовательности изолятов HCV J1.1 и J1.2 от аминокислот 384 - 647. На фиг. 8-2 показаны выведенные аминокислотные последовательности изолятов HCT27 и HCVEI от аминокислот 384 - 651.

На фиг. 9 показана вся полипротеиновая последовательность изолята HCV-1.

Способ реализации изобретения Практика настоящего изобретения использует, если не оговорено иначе, традиционную технику молекулярной биологии, микробиологии, рекомбинантной ДНК и иммунологии, которая применяется в данной области. Такие технические приемы полностью описаны в литературе. См., например, Maniatis, Fitsh & Sambrook, Molecular Cloning; a Laboratory Manual. (2-е изд. 1989). DHA Cloning, т. 1 и 2 (D. N. Glover изд. 1985). Oligonucleotide Synthesis (M. J. Gate, изд. 1984; Nucleic Acid Hibridization (B. D. Hames & S.J. Higgins, eds. 1984); Transcribtion and Translation (B.D. Hames & S.J. Higgins, eds. 1984); Animal Cell Culture (R.I. Freshney, ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, a Practical Guide to Molecular Cloning (1984); the series, Methods in Enzymology (Academic Press, Inc.); Gene Transfer Vectors for Mammalian Cells. (J. H. Miller and M.P. Cabos eds. 1987, Cold Spring Harbor Laboratory); Methods in Enzymology, vol. 154 и 155 (Wu and Grossman, and Wu eds.), Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular biology (Academic Press, London), Scopes (1987). Protein Purification Principles and Practice, Sec. Ed. (Springer-Verlag), Handbook on Experimental Immunology, v. 1 - 4 (Weis and Blackwell ed. 1986); Immunoassay; A Practical Guide (D.W. Chan ed., 1987).

Все патенты, патентные заявки и публикации, упомянутые здесь, выше и далее, включены сюда ссылкой.

HCV-новый член семейства Flaviviridae, которое включает пестивирусы (вирус холеры свиней и вирус диареи крупного рогатого скота) и флавивирусы, примерами которых являются вирусы денге и желтой лихорадки. Схема генетической организации HCV показаны на фиг. 1. Подобно флави- и пестивирусам, HCV кодирует основной полипептидный домен ("C") на N-конце вирусного полипротеина с последующими двумя доменами гликопротеида ("E1", "E2/NS1") выше от неструктурных генов NS2 - NS5. Аминокислотные координаты предполагаемых доменов белка показаны в таблице 1 (см. табл.1 - 6 в конце описания).

Как указывалось выше, был идентифицирован ряд изолятов HCV. Сравнительный анализ полной и частичной последовательностей HCV указывает, что, основываясь на гомологии на уровнях нуклеотида и аминокислоты, изоляты HCV можно широко подразделить по меньшей мере на три основные группы (таблица 2). См. - Houghton и др. (1991) Hepathology 14; 381 - 388. Однако для изолятов в группе III имеется только частичная последовательность. Поэтому когда последовательности этих изолятов определяются более конкретно, один или несколько этих изолятов следует выделить в другую группу, включающую потенциальную четвертную группу. В таблице 3 показаны гомологи последовательности между индивидуальными вирусными белками разных изолятов HCV, выведенные из их нуклеотидных последовательностей. Здесь видно, что белки той же самой вирусной группы демонстрируют большую схожесть в последовательности, чем те же белки, закодированные различными вирусными группами (таблица 3). Одним исключением из этого является белок нуклеокапсида, который высоко консервативен среди всех последовательностей вирусных изолятов группы I и II. (В таблице 3 обозначение N/A означает, что сравнить последовательности не представлялось возможным). Поэтому для целей настоящего изобретения изоляты группы I можно определить как изоляты, имеющие на аминокислотном уровне около 90% или больше гомологичных вирусных белков, в частности белков E1 и E2/NS1 в сравнении с изолятами, классифицированными как группы I. Группа II определяется аналогичным образом. Будущие группы можно таким же образом определить с точки зрения гомологичности вирусного белка относительно изолята прототипа. Подгруппы можно также определить гомологией в предельных белках, таких как белки E1, E2/NS1 или NS2, или по более высоким уровням гомологии.

Надо сказать, что предполагаемые белки вирусной оболочки, закодированные генами E1 и E2/NS 1 показывают значительную вариацию аминокислотной последовательности между группами I и II. Только NS 2 демонстрирует большую степень гетерогенности, в то время как белки C, NS 3, NS 4 и NS 5 все показывают большую консервативность между группами. Вариация последовательности, наблюдаемая в предполагаемых белках оболочки вириона между группами I и II, отражает характерное расщепление аминокислот между двумя группами. Пример этого показан на фиг. 2, где последовательность продукта гена E1 сравнивается между вирусами групп I и II. Показаны аминокислотные последовательности E1, выведенные из нуклеотидных последовательностей групп II и II HCV. На фиг. горизонтальные строки указывают идентичность последовательности с HCV-1. Звездочками указано расщепление аминокислот в специфических группах. Остатки в специфических группах можно четко идентифицировать. Последовательности в группе I - HCV-1, HCT 18, HCT 23, HCT 27 и HC-J1. последовательности группы II - HC-J4, HCV-I, HCV J1.1 и BK. Такое специфическое для группы расщепление аминокислот также имеет место в продуктах других генов, включающих gp72, закодированный геном E2/NS1. На фиг. 3 показана сравнительная последовательность аминокислот предполагаемого E2/NS1 участка изолятов HCV, которые расщепляют как группа I и группа II. последний белок также содержит N-концевой гипервариабельный участок ( "HV") с около 30 аминокислотами, которые показывают большую вариацию почти между всеми изолятами. См. Weiner и др. (1991), supra. Этот участок находится между аминокислотами 384 - 414, если использовать систему нумерации аминокислот HCV-1.

Предполагаемый гликопротеид E2/NS1 оболочки HCV может соответствовать полипептиду оболочки gp 53 (BVDV)/gp55 (Вируса холеры свиней) пестивирусов и NS1 флавивирусов, оба из которых дают защитный иммунитет реципиентам, вакцинированным этими полипептидами.

Поразительное сходство между гипервариабельным участком ("HV") и доменами gp 120 V3HIV-1 относительно степени вариации последовательности, предсказанное действие аминокислотных изменений на предполагаемое связывание антитела в дополнение к отсутствию определенной вторичной структуры предполагают, что домен HV кодирует нейтрализующие антитела.

Иммуногенность домена показана экспериментами в составлении карты эпитопа антитела, описанными в примерах. Результаты этих исследований предполагают, что в дополнение к трем основным группам HCV, HV специфические подгруппы также существуют.

Анализ биологических выборок от людей с HCV, вызванным NANBH, показывает, что реципиенты могут нести два или несколько вариантов HCV одновременно. В плазме одного человека было найдено два сосуществующих варианта, J1. Кроме того, частичное секвенирование гена лица с хроническим NANBH с перемежающимися вспышками гепатита выявило, что лицо, Q, заражено двумя вариантами HCV (Q1 или Q3). Каждый вариант был связан только с одним эпизодом заболевания. ELISA (энзим-связанный иммуно-сорбентный анализ), использующий Q1 или Q3 специфический пептид (аминокислоты 396 - 407) показал, что Q вырабатывал антитело на Q1 пептид, но не на соответствующий Q3 пептид, делая вывод, что рецидивы заболевания Q были обязаны появлению HV варианта. Наличие антител на Q1 пептид, но отсутствие гуморальной иммунной реакции на Q3 пептид во время второго эпизода заболевания предполагают, что вариация в домене HV может быть следствием давления иммунного отбора. Полагают, что аминокислоты 296 - 407 подвергаются большему селективному давлению в домене HV. Эти находки подкрепляют тезис, что частота вспышек при заболевании может быть отнесена на счет неадекватной иммунологической реакции реципиента на заражение HCV и/или эффективные вирусные механизмы иммунологического уклонения. Более того, они указывают на участок E2/NSIHV как на генетический участок, захваченный вирусным механизмом избавления и/или механизмом (ами) неадекватной иммунологической реакции.

Как указывалось выше, существует несколько вариантных участков внутри генома HCV. Один или несколько таких участков, как можно предположить с большой вероятностью, - вовлечены в механизм вирусного избавления и/или механизм неадекватной иммунологической реакции. Поэтому желательно включить в изобретение композиции HCV полипептидов для лечения, которые индуцируют иммуногенную реакцию на эти варианты.

Поскольку участки E1 и E2/NS1 генома кодируют предполагаемые полипептиды типа оболочечных, эти участки представляют особый интерес в отношении иммуногенности. Итак, эти участки находятся среди тех, по отношению к которым наиболее желательно индуцировать и/или повысить иммунную реакцию для защиты от заражения HCV, и воспрепятствовать хроническим обострениям заболевания у зараженных индивидов. Кроме того, эти участки будут среди тех, от которых желательно обнаружить варианты HCV, возникающие в ходе заражения, а также параллельное заражение двумя или несколькими вариантами.

Настоящее изобретение описывает композиции и методы лечения индивидов для профилактики инфекций HCV и, в частности, заражений хроническим HCV. Кроме того, оно описывает композиции и методы обнаружения наличия анти-HCV антител в биологических пробах. Этот последний метод особенно полезен в идентификации анти-HCV антител, выработанных в ответ на иммунологически отчетливые эпитопы HCV. Этот метод можно также использовать для изучения эволюции множественных вариантов HCV внутри зараженного индивида. В описании изобретения используются следующие определения.

Термин "полипептид" относится к полимеру аминокислот и не относится к специфической длине продукта; таким образом, пептиды, олигопептиды и белки включены в определение полипептида. Этот термин также не относится или исключает пост-экспрессивные модификации полипептида, например гликозилирование, ацетилирование, фосфорилирование и другие. В определение включены, например, полипептиды, содержащие один или несколько аналогов аминокислоты (включающие, например, неприродные аминокислоты и пр.), полипептиды с замещенными звеньями, а также другие модификации, известные в данной области, как природные, так и неприродные.

Здесь A считается "достаточно изолированным" от B, если масса A составляет по меньшей мере 70%, лучше 80%, а еще лучше 90% от комбинированной массы A и B. Полипептидные композиции настоящего изобретения предпочтительно практически свободны от ткани человека или другого примата (включая кровь, сыворотку, клеточного лизата, клеточных органелл, клеточных белков и пр.) и среды клеточной культуры.

"Рекомбинантный полинуклеотид" предполагает полинуклеотид геномного, кДНК, полусинтетического или синтетического происхождения, который вследствие его происхождения или манипуляции (1) не ассоциируется со всем или частью полинуклеотида, с которым он ассоциируется в природе, (2) связан с другим полинуклеотидом, а не с тем, с которым он связан в природе, или (3) которого нет в природе.

"Полинуклеотид" - полимерная форма нуклеотидов любой длины, либо рибонуклеотидов, либо деоксирибонуклеотидов. Этот термин относится только к первичной структуре молекулы. Таким образом, этот термин включает дву- и одноцепочечные ДНК и РНК. Он также включает известные типы модификаций, например метки, которые известны в данной области, метилирование, "шапки" ("capb"), замещение одного или нескольких природных нуклеотидов аналогами, межнуклеотидные модификации, такие как, например, модификации с незагруженными звеньями (например, фосфоротиоатами, фосфородитиоатами и пр.), содержащие незаконченные половины, такие как, например, белки (включающие нуклеазы, токсины, антитела, сигнальные пептиды, поли-L-лизин и пр.), модификации и интеркаляторами (например, акридином, псораленом и пр.), модификации, содержащие хелаторы (например, металлы, радиоактивные металлы и пр.), содержащие алкиляторы, модификации с модифицированными звеньями (например, альфа аномерные нуклеиновые кислоты и пр.), а также немодифицированные формы полинуклеотида.

"Рекомбинантные клетки реципиента", "клетки реципиента", "клетки", "клеточные линии", "клеточные культуры" и другие такие термины, обозначающие микроорганизмы или другие эукариотные клеточные линии, культивируемые как одноклеточные структуры, относятся к клеткам, которые могут быть или были использованы как реципиенты для рекомбинантного вектора или другого полинуклеотида переноса, и включают потомство первоначальной клетки, которая была трансфецирована. Следует понимать, что потомство одной родительской клетки не обязательно может быть полностью идентично по морфологии или геномному или общему комплементу ДНК первоначальной родительской клетке из-за естественной, случайной или намеренной мутации.

"Репликон" - является любым генетическим элементом, например плазмидой, хромосомой, вирусом, космидой и пр. , который ведет себя как автономная единица полинуклеотидной репликации внутри клетки, т.е. способен ауторепродуцироваться под своим собственным контролем.

"Вектор" является репликоном, далее включающим последовательности, обеспечивающие репликацию и/или экспрессию открытой рамки считывания.

"Контрольная последовательность" относится к полинуклеотидным последовательностям, которые необходимы, чтобы осуществить экспрессию кодирующих последовательностей, к которым они лигируются. Характер таких контрольных последовательностей различен в зависимости от организма реципиента; в прокариотах такие контрольные последовательности включают промотор, рибосомный связующий участок и терминатор; в эукариотах такие контрольные последовательности, как правило, включают промоторы, терминаторы и в некоторых случаях усилители. Термин "контрольные последовательности" предназначен включать как минимум все компоненты, присутствие которые необходимо для экспрессии, и может также включать дополнительные компоненты, присутствие которых дает преимущество, например лидерные последовательности, которые регулируют секрецию.

"Промотор" представляет собой нуклеотидную последовательность, которая состоит из согласованных последовательностей, позволяющих связывание полимеразы РНК с матрицей ДНК таким образом, что продуцирование мРНК инициируется на нормальном сайте инициации транскрипции для соседнего структурного гена.

"Операбельно связанный" предполагает сопоставление, в котором компоненты находятся в связи, позволяющей им функционировать своим предполагаемым образом. Контрольная последовательность, "операбельно связанная" с кодирующей последовательностью, лигируется таким образом, что экспрессия кодирующей последовательности достигается при условиях, совместимых с контрольными последовательностями.

"Открытая рамка считывания" (OPF) является участком полинуклеотидной последовательности, которая кодирует полипептид; этот участок может представлять часть кодирующей последовательности или всю кодирующую последовательность.

"Кодирующая последовательность" - это полинуклеотидная последовательность, которая транскрибируется в мРНК и/или транслируется в полипептид, когда помещается под контроль соответствующих регуляторных последовательностей. Границы кодирующей последовательности определяются инициирующим кодоном трансляции на 5'-конце и терминирующим кодоном на 3'-конце. Кодирующая последовательность может включать, но не ограничиваться до мРНК, ДНК (включая кДНК), и рекомбинантных полинуклеотидных последовательностей.

Здесь "эпитоп" или "антигенный детерминант" означает аминокислотную последовательность, которая иммунореактивна. Обычно эпитоп состоит по меньшей мере из 3-5 аминокислот, а чаще из 8, или даже 10 аминокислот. Здесь эпитоп обозначенного полипептида означает эпитопы с той же аминокислотной последовательностью, что и эпитоп в обозначенном полипептиде, и его иммунологические эквиваленты.

"Антиген" - это полипептид, содержащий один или несколько эпитопов.

"Иммуногенный" означает способность формировать клеточную и/или гуморальную иммунную реакцию. Иммуногенная реакция может быть сформирована только одними иммунореактивными полипептидами или может потребовать наличия носителя в присутствие или отсутствие адъюванта.

"Иммунореактивный" относится к (1) способности иммунологического связывания с антителом и/или антигенным рецептором лимфоцита или (2) способности быть иммуногенным.

"Антитело" представляет собой иммуноглобулин, включающий антитела и их фрагменты, которые связывают специфический эпитоп. Термин охватывает поликлональные, моноклональные и химерные антитела. Примеры химерных антител обсуждаются в патентах США N 4816398 и 4816567.

"Антигенный набор" определяется как композиция, состоящая из множества фактически идентичных полипептидов, в которой полипептиды состоят из аминокислотной последовательности одного определенного эпитопа.

"Фактически идентичные полипептиды" означают полипептиды, которые идентичны, за исключением вариации, ограниченной до типичного диапазона последовательности или вариации размера, отнесенной на счет способа получения полипептиды; например, рекомбинантная экспрессия, химический синтез, тканевая культура и т. п. Эта вариация не меняет желаемое функциональное свойство композиции фактически идентичных полипептидов; иммунологически ее поведение как у композиции фактически идентичных полипептидов. Вариации могут иметь место благодаря изменениям, происходящим в результате секреторного процесса во время переноса полипептида, со снижением эффективности до менее 100% в химическом синтезе и пр.

"Здесь "изменчивый или вариабельный домен" или "V" вирусного белка представляет собой домен, который демонстрирует постоянную модель аминокислотной вариации между по меньшей мере двумя изолятами HCV или субпопуляциями. Предпочтительно домен содержит по меньшей мере один эпитоп. Вариабельные домены могут отличаться от изолята к изоляту всего лишь на 1 изменение аминокислоты. Эти изоляты могут быть из одних и тех же или разных групп или подгрупп HCV. Вариабельные домены можно легко идентифицировать композицией последовательности среди изолятов, и примеры этой технологии описаны ниже. Для целей описания настоящего изобретения вариабельные домены будут определяться относительно аминокислотного количества полибелка, закодированного геномом HCV-1, как показано на фиг. 9 с метионином инициатора, указанным в позиции 1. Соответствующий вариабельный домен в другом изоляте HCV определяется выравниванием последовательностей двух изолятов, так что консервативные домены за любым вариабельным доменом максимально выравниваются. Это можно сделать с помощью одной из множества компьютерных программ, таких как AL/GN 1,0 из Университета Вирджинии, Отдела биохимии (Обращаться к Д-ру Вильяму Р. Персону. ) См. Pearson и др. (1988) Proc. Natl. Acad. Sci. USA 85: 2444 - 2448. Следует сказать, что номера аминокислот, данные для определенного вариабельного домена, в какой-то степени субъективны, и это вопрос выбора. Таким образом, следует понимать, что начало и конец вариабельных доменов приблизительны и включают перекрывающие домены или субдомены, если не указано иначе.

Эпитоп представляет собой "иммунологический эквивалент" другого эпитопа в обозначенном полипептиде, когда он перекрестно реагирует с антителами, которые иммунологически связываются с эпитопом в обозначенном полипептиде.

На карте эпитопы обычно включают по меньшей мере около пяти аминокислот, иногда около 8 аминокислот и даже около 10 или больше аминокислот.

Аминокислотная последовательность, включающая эпитоп HCV, может быть соединена с другим полипептидом (например, белком носителя) либо ковалентной связью, либо экспрессированием слитого полинуклеотида, чтобы сформировать белок слияния. При желании можно вставить или присоединить множественные повторы эпитопа и/или включить множество эпитопов. Белок носителя можно произвести из любого источника, но обычно это относительно крупный иммуногенный белок, такой как BSA, KLH или другой. При желании можно использовать в качестве носителя белок HCV с полной длиной, умножая число иммуногенных эпитопов. Аминокислотная последовательность от эпитопа HCV может быть также связана на аминоконце и/или карбокси-конце с не-HCV аминокислотной последовательностью. Таким образом, полипептид будет "полипептидом слияния". Аналогичные типы полипептидов можно построить с использованием эпитопов из других обозначенных вирусных белков.

"Вариант" обозначенного полипептида относится к полипептиду, в котором аминокислотная последовательность обозначенного полипептида была изменена делецией, замещением, добавлением или перестановкой одной или нескольких аминокислот в последовательности. Методы, с помощью которых получают варианты (например, рекомбинацией) или мутагенезом, направленным на сайт, известны.

"Трансформация" относится к вставке экзогенного полинуклеотида в клетку реципиента, независимо от метода, используемого для вставки, например прямого поглощения, трансдукции (включая вирусную инфекцию), f-скрещивания или электропорации. Экзогенный полинуклеотид может сохраняться как неинтегрированный вектор, например плазмида или вирусный геном, или может интегрироваться в геном реципиента.

"Индивид" относится к позвоночному, в частности, члену семейства млекопитающих, и включает (но не ограничивается грызунами, например мышами, крысами, морскими свинками, хомяками) кроликов, коз, свиней, рогатый скот, овец и приматов (например, шимпанзе, африканских зеленых обезьян, бабуинов, орангутангов и людей).

Здесь "лечение" относится к (i) к профилактике заражения или повторного заражения, как в традиционной вакцине, (ii) уменьшению или избавлению от симптомов, и (iii) значительному или полному уничтожению вируса. Лечение может проводиться профилактически или терапевтически (после инфицирования).

Термин "эффективное количество" относится к количеству полипептида, несущего эпитоп, достаточному, чтобы индуцировать иммуногенную реакцию в индивиде, которому оно назначается, или другим заметным образом иммуно-реагировать в его соответствующей системе (например, иммуноанализ). Эффективное количество должно быть достаточным для лечения. Точное количество, необходимое для лечения, будет различным в зависимости от применения. В применениях вакцины или в выработке поликлональных антисыворотки/антител, например, эффективное количество может меняться в зависимости от видов, возраста и общего состояния индивида, серьезности заболевания, конкретного выбранного полипептида, его режима назначения и т.п. Считается также, что эффективное количество должно иметь широкий некритический диапазон. Нужное эффективное количество можно определить, используя только экспериментальную процедуру.

Используемая здесь "биологическая проба или выборка" относится к пробе ткани или жидкости, изолированной из индивида, включающая, но не ограниченная до, например, плазмы, сыворотки, спинальной жидкости, лимфы, наружных срезов кожи, респираторного, кишечного и мочеполового трактов, слез, слюны, молока, кровяных клеток, опухолей, органов, биопсий, а также образцов составляющих клеточных культур ин витро (включающих, но не ограниченных до обусловленной среды, являющейся результатом роста клеток в среде клеточной культуры, например клеток миеломы, вырабатывающих Мав (Моноклональные антитела), рекомбинантных клеток и клеточных компонентов).

Композиции иммунореактивного полипептида настоящего изобретения включают смесь эпитопов специфической группы или специфического изолята по меньшей мере от одного VD HCV. Таким образом, в наличии будут по меньшей мере две гетерогенные аминокислотные последовательности, каждая из которых определяет эпитоп, выявленный в различных HCV изолятах, расположенных в том же или фактически в том же физическом участке в белке HCV, т.е. каждая последовательность находится на том же участке внутри генома/полипептида HCV. Поскольку последовательности гетерогенны, участок именуется вариабельным доменом (VD).

Чтобы лучше понять изобретение, вначале будут рассмотрены индивидуальные аминокислотные последовательности, которые составляют композиции изобретения. Затем будет рассмотрено множество таких последовательностей, которые выявлены в композициях настоящего изобретения.

Аминокислотная последовательность, которая характеризует полипептиды настоящего изобретения, имеет следующую основную структуру: Ly - Z - L'y', (1) где Z представляет аминокислотную последовательность от участка белка от выбранного изолята HCV, где участок включает по меньшей мере один вариабельный домен и вариабельный домен включает по меньшей мере один эпитоп. L и L' - не-HCV аминокислотные последовательности или HCV аминокислотные последовательности, которые не содержат вариабельного домена, и которые могут быть одинаковыми или разными. y и y' - 0 или 1 и могут быть одинаковыми или разными. Таким образом, формула I представляет аминокислотную последовательность, включающую последовательность VD HCV, в которой VD содержит эпитоп.

Как говорилось выше, эпитоп (ы) в Z будут обычно содержать минимум около 5 аминокислот, как правило, около 8 и даже минимум около 10 аминокислот.

Вариабельный домен Z может включать более одного эпитопа. Вариабельный домен Z имеет по меньшей мере такую величину, как комбинированные последовательности присутствующих эпитопов, что составляет не менее 5 аминокислот при наличии одного эпитопа. Поскольку эпитопы могут перекрываться, минимальная аминокислотная последовательность для комбинированных эпитопов в вариабельном домене может составить меньше суммы последовательностей индивидуальных эпитопов.

Z - аминокислотная последовательность изолята HCV, включающая вышеописанный VD. Поэтому минимальный размер Z является минимальным размером VD. Z может включать большую аминокислотную последовательность HCV, чем просто VD, и, кроме того, может включать больше одного VD. Максимальный размер Z ее является критичным, но очевидно не может превышать длину всего полибелка HCV. Однако обычно является последовательностью всего белка HCV (в частности, E1, E2/NS1, NS2 NS3, NS4 и NS5) или обычно фрагмента такого белка HCV. Итак, Z будет иметь диапазон минимум от 5 аминокислот (предпочтительнее от 8 или 10 аминокислот минимум) до максимум около 1100 аминокислот (предпочтительнее максимум до 500, лучше до 400, и еще лучше - до 200 аминокислот). Как правило, полипептид формулы I и/или Z, когда их получают химическим синтезом, включает максимум около 50, более типично - 40, а чаще около 30 аминокислот.

Не-HCV аминокислотные последовательности, L и L', если они присутствуют, могут составить любое число типов таких последовательностей. Например, L и L' могут представлять не-HCV последовательности, с которыми сливается Z, чтобы облегчить рекомбинантную экспрессию (например, бета-галактозидаза, супероксид дисмутаза, инвертаза, альфа-фактор, ТРА лидер и пр.), как обсуждается ниже. В другом случае, L и L' могут представлять эпитопы других патогенов, таких как вирус гепатита B. Bordetella pertussis, токсоид тетанус, дифтерия и др., чтобы сделать композиции, которые иммунореактивны к ряду таких других патоненов. L и L' могут быть аминокислотными последовательностями, которые облегчают сцепление с твердыми носителями в синтезе пептида, носителями иммуноанализа, белками носителя вакцины и пр. Фактически L и L' могут даже включать одну или несколько избыточных аминокислот без функционального преимущества. Максимальный размер L или L' не критичен, длина регулируется желаемой функцией. Обычно L и L' каждая будут составлять максимально около 2000, типичнее - около 100 аминокислот. Большая часть последовательностей L и L' с полезными свойствами будет составлять максимум около 500 аминокислот. Конечно желательно выбрать L и L' такими, чтобы не блокировать иммунореактивность Z.

Композиция полипептидов, предложенная в соответствии с настоящим изобретением, характеризуется нали