Фазовый светодальномер
Реферат
Светодальномер используется в геодезии, строительстве, топографии. Передающая система состоит из источника излучения в виде лазера, коллиматора лазерного излучения, поворотного зеркала и поворотной призмы. Приемная система состоит из приемного объектива, фотоприемника в виде лавинного фотодиода, гетеродинного генератора, смесителя, фазоизмерительного устройства и автоматического регулятора уровня принимаемого сигнала, выполненного в виде последовательно соединенных усилителя, амплитудного детектора и управляемого высоковольтного источника, который соединен с катодом лавинного фотодиода. Второй вход катода соединен с выходом гетеродинного генератора. Приемный объектив выполнен с центральным отверстием, в котором установлена поворотная отражательная призма, отражательная грань которой расположена под углом 45o к оптической оси объектива. Повышена точность, увеличен диапазон измеряемых расстояний, расширены функциональные возможности светодальномера за счет улучшения соотношения сигнал/шум, минимизации влияния паралакса и строго определенного взаимного расположения оптической оси источника излучения и корпуса прибора. 1 ил.
Изобретение относится к области геодезического приборостроения, в частности к приборам для измерения расстояний с помощью источников света, и может быть использовано для точного измерения расстояния до объектов в геодезии, строительстве, топографии, маркшейдерском деле.
Известен электрооптический дальномер, содержащий источник света, модулятор и демодулятор света, приемопередающую оптическую систему, анализатор и приемник света, приемопередающая система снабжена объективом с внецентренным отверстием для пропускания выходящего из модулятора светового потока. Недостатком данного дальномера является наличие параллакса оптической системы, который возникает по причине несовпадения передающей и приемной оптической оси. Из-за наличия параллакса сужается диапазон измеряемых расстояний, особенно при работе на диффузно-отражающую цель. Наиболее близким по технической сущности к заявляемому является фазовый светодальномер, принятый за прототип. Фазовый светодальномер содержит корпус, установленные в нем приемную и передающую оптические системы, источник излучения, фотоприемное устройство в виде лавинного фотодиода, фазометр, отражатель. Недостатком данного устройства является наличие радиочастотного тракта в приемной цепи, т.е. на участке фотодиод - гетеродин имеются радиочастотные цепи, которые очень подвержены наводкам в радиочастотном диапазоне, что снижает точность и достоверность измерений. Вторым недостатком является громоздкая система регулировки амплитуды принимаемого сигнала: обычное АРУ совместно с оптическим аттеньюатером. Существенным недостатком является также то, что источник излучения используется только в измерительном режиме. Кроме того, он невидимый для невооруженного глаза, т.к. используется лазер инфракрасного диапазона. Если обеспечить визирный режим, расположить оптическую ось источника излучения (полупроводникового лазера) симметрично продольной и поперечной осям корпуса прибора, то возможно значительно расширить функциональные возможности прибора. Задача, решаемая настоящим изобретением, состоит в повышении точности, увеличении диапазона измеряемых расстояний и расширении функциональных возможностей светодальномера за счет значительного улучшения соотношения сигнал/шум, минимизации влияния паралакса и строго определенного взаимного расположения оптической оси источника излучения и корпуса прибора. Улучшение соотношения сигнал/шум достигается за счет уменьшения полосы пропускания входного тракта светодальномера. Улучшение соотношения сигнал/шум за счет уменьшения дисперсии фазы принимаемого сигнала приводит к повышению точности определения расстояний, а также дальности действия прибора. Увеличение диапазона действия прибора в сторону малых расстояний возможно при устранении влияния паралакса. При наличии паралакса в ближней зоне действия прибора (меньше 20 фокусных расстояний приемного объектива) происходит сильное искажение хода лучей света, что требует перестройки положения фотоприемника или введения дополнительных оптических приспособлений (например, клиньев), а также введения поправок, компенсирующих нелинейность на этом участке. Использование коаксиальной совмещенной оптической системы за счет совпадения осей передающей и принимающей оптических систем принципиально устраняет паралакс. Для решения задачи в устройство введен автоматический регулятор уровня принимаемого сигнала, выполненный в виде последовательно соединенных усилителя, амплитудного детектора и управляемого высоковольтного источника, соединенного с катодом лавинного фотодиода, второй вход катода соединен с выходом гетеродинного генератора, объектив приемной оптической системы выполнен с центральным отверстием, в котором через светоизолятор установлена поворотная отражательная призма передающей оптической системы, при этом отражательная грань призмы расположена под углом 45o к оптической оси объектива. На чертеже приведена функциональная схема дальномера. Устройство содержит корпус 1, жестко установленные в нем передающий блок, состоящий из источника излучения в виде полупроводникового лазера 2, коллиматора лазерного излучения 3, поворотного зеркала 4, поворотной призмы 5, и приемный блок, состоящий из приемного объектива 6, фотоприемника 7, выполненного в виде лавинного фотодиода, усилителя 8, амплитудного детектора 9, высоковольтного источника 10, гетеродинного генератора 11, смесителя 12 и фазоизмерительного устройства 13, в передающем блоке лазерное излучение модулируется масштабным генератором 14. Для уменьшения влияния паралакса в ближней зоне измеряемых расстояний оптические оси приемного и передающего блока совмещены путем жесткого закрепления в центральном отверстии линзы приемного объектива 5 поворотной отражательной призмы 4 передающего блока, причем отражающая грань призмы расположена под углом 45o к оптической оси линзы. Для исключения фоновых засветок призма установлена в линзе через светоизолятор. Кроме измерений расстояний и передачи высоты с помощью заявляемого дальномера можно передавать строительные оси с одного горизонта на другой, выполнять нивелирование, т.е. производить установку конструкций по высоте. Фактически функции дальномера совмещены с функциями лазерного брускового уровня. В результате подобного объединения создается электронный измерительный датчик, являющийся основой измерительного конструктора для строительных работ. Использование электронной регулировки амплитуды принимаемого сигнала по величине напряжения смещения лавинного фотодиода вместо механической в прототипе позволяет быстро и с высокой точностью выставлять необходимый уровень принимаемого сигнала. Устройство работает следующим образом. Модулированное излучение полупроводникового лазера 2, сколлимированное объективом 3, поступает на поворотное зеркало 4, затем на поворотную призму 5 и далее на исследуемый объект. Излучение лазера - видимого диапазона, что одновременно позволяет и маркировать цель. Диффузно отраженное от объекта излучение собирается приемным объективом 6 и фокусируется на площадке лавинного фотодиода 7. На катод лавинного фотодиода 7 поступает напряжение смещения с высоковольтного источника 10 и высокочастотный сигнал с выхода гетеродинного генератора 11. При наличии на оптическом входе лавинного фотодиода 7 оптического модулированного сигнала, на его выходе будет присутствовать сигнал разностной частоты (масштабная минус гетеродинная). Таким образом, лавинный фотодиод 7 используется не только для преобразования светового сигнала в электрический, но и для гетеродинирования, т.е. понижения частоты информационно-несущего сигнала. Преобразование частоты непосредственно на фотодиоде дает лучшее соотношение сигнал/шум, чем классическим способом, когда смеситель устанавливается после фотодиода. Сигнал с фотодиода 7 поступает на усилитель 8, а с выхода усилителя на информационный вход фазометра 13. На опорный вход фазометра 13 поступает сигнал со смесителя 12. На смесителе 12 смешением частот масштабного 14 и гетеродинного 11 генераторов получается сигнал разностной частоты, который и используется в качестве опорного. Таким образом, кроме функции преобразования сигнала лавинный фотодиод 7 используется в качестве регулирующего элемента системы автоматической регулировки уровня принимаемого сигнала. Эта система состоит из последовательно соединенных лавинного фотодиода 7, усилителя 8, амплитудного детектора 9, управляемого высоковольтного источника 10. Возникающая в системе отрицательная обратная связь поддерживает постоянный уровень электрического сигнала разностной частоты на выходе лавинного фотодиода. Автоматическое поддержание уровня электрического сигнала устраняет амплитудно-фазовую зависимость. Совмещение оптических осей приемного и передающего блоков позволяет совершенно симметрично расположить визирный лазерный луч относительно корпуса 1 прибора. Данное конструктивное решение дает возможность использовать прибор в качестве различных визирных приспособлений: лазерного уровня, прибора вертикального проектирования и т.п. Юстируемое поворотное зеркало 4 позволяет проводить геодезические юстировки визирного лазерного луча относительно корпуса 1.Формула изобретения
Фазовый светодальномер, содержащий корпус, установленные в нем приемную и передающую оптические системы, источник излучения, фотоприемное устройство в виде лавинного фотодиода и фазометр, отличающийся тем, что введен автоматический регулятор уровня принимаемого сигнала, выполненный в виде последовательно соединенных усилителя, амплитудного детектора и управляемого высоковольтного источника, соединенного с катодом лавинного фотодиода, второй вход катода соединен с выходом гетеродинного генератора, объектив приемной оптической системы выполнен с центральным отверстием, в котором через светоизолятор установлена поворотная отражательная призма передающей оптической системы, при этом отражательная грань призмы расположена под углом 45o к оптической оси объектива.РИСУНКИ
Рисунок 1