Устройство для измерения давления
Реферат
Изобретение относится к измерительной технике. Двухпроводный датчик содержит сенсор давления, включающий в себя первое и второе сенсорные средства, каждое из которых имеет импеданс, величина которого изменяется с изменением измеряемого давления и с изменением заданного внешнего условия, например линейного давления или температуры. Предусмотрен корректирующий постоянный импеданс, величина которого остается практически неизменной под действием установленных внешних условий. Соединительное средство попеременно соединяет постоянный импеданс в рабочую связь с первым и вторым сенсорными средствами для получения первого и второго сигналов, каждый из которых является функцией измеряемого давления и заданного внешнего условия. Средство корректировки импеданса обрабатывает первый и второй сигналы, например, с помощью многочленных рядов или таблицы преобразования и позволяет получить скорректированный сигнал давления. Данное устройство характеризуется повышенной точностью измерения. Высокая надежность работы обеспечивается за счет замены механических средств корректировки выходного сигнала на электрические средства. 8 з.п.ф-лы, 5 ил.
Данное изобретение касается измерения давления и, в частности, передачи сигналов, характеризующих две переменные через один аналого-цифровой преобразователь с минимальной потерей информации и минимальными искажающими погрешностями. Более конкретно, данное изобретение касается корректировки выходного сигнала измерительной схемы на погрешности в сигнале разности давлений, вызванные изменениями линейного давления или температуры на сенсоре разности давлений, и корректировки выходного сигнала на погрешности в сигнале линейного или статического давления, вызванные изменением температуры.
Емкостные сенсоры разности давлений включают в себя, как правило, корпус сенсора, содержащий внутреннюю камеру, разделенную на две полости отклоняемой диафрагмой. Первое давление создается в первой полости, а второе - во второй. Разность между первым и вторым давлениями вынуждает диафрагму отклоняться, причем степень отклонения зависит от величины разности давлений. Диафрагма, как правило, содержит проводящую часть, которая отделена от проводящих частей на внутренних стенках полостей и соосна им, образуя соответственно первый и второй переменные конденсаторы внутри первой и второй полостей. Когда диафрагма отклоняется под действием разности давлений, величины емкости двух переменных конденсаторов изменяются. Сенсор давления подсоединен к измерительной схеме для выработки выходного сигнала, характеризующего величины емкости переменных конденсаторов. Этот выходной сигнал обеспечивает измерение разности давлений. Однако проблема возникает из-за нелинейностей в емкостном сенсоре давления. Например, нелинейности в системе могут быть обусловлены паразитарными емкостями, которые необходимо компенсировать. Кроме того, ошибки могут возникать из-за изменений линейного давления. Линейное давление, также часто называемое статическим давлением, можно определять несколькими способами. Для иллюстрации различных методик определения линейного давления допустим, что первое и второе давления в первой и второй полостях емкостного сенсора давления имеют соответственно величину 2990 фунтов на кв. дюйм (PL) и 3000 фунтов на кв. дюйм (PH), создавая разность давлений величиной 10 фунтов на кв. дюйм (3000 - 2990). По одному способу линейное давление измеряется как средняя величина PH и PL, или в данном примере 2995 фунтов на кв. дюйм. По другому способу линейное давление измеряется просто как отдельно PH или PL. Независимо от вида определения линейного давления, погрешности выходного сигнала сенсора давления могут возникать из-за изменений линейного давления. Влияние изменений линейного давления на емкостной сенсор разности давлений может быть проиллюстрировано следующими примерами. Если PH = 3000 фунтов на кв. дюйм и PL = 2990 фунтов на кв. дюйм, разность давлений составляет 10 фунтов на кв. дюйм, а линейное давление 2995 фунтов на кв. дюйм (при использовании средней величины от PH и PL в качестве меры линейного давления). Однако, если PH = 10 фунтов на кв. дюйм, а PL = 0 фунтов на кв. дюйм, разность давлений все равно будет составлять 10 фунтов на кв. дюйм, но линейное давление будет 5 фунтов на кв. дюйм. Под влиянием определенных напряжений на корпусе сенсора давления выходной сигнал типичного сенсора разности давлений может колебаться в пределах 1% на каждые 1000 фунтов на кв. дюйм изменения линейного давления. Следовательно, из приведенных выше примеров видно, что выходной сигнал разности давлений может существенно меняться при изменении линейного давления. Представляется желательным измерять разность давлений и вырабатывать выходной сигнал, на который не влияют изменения линейного давления. В патенте США N 4370890 на имя Фрика, выданном 1.02.83 и принадлежащем настоящему заявителю, раскрывается конструктивное выполнение емкостного сенсора разности давлений, в котором сделана попытка компенсировать нежелательные механические напряжения на корпусе емкостного сенсора давления, вызванные изменениями линейного давления. Конструктивное выполнение, предложенное Фриком, уменьшает колебания выходного сигнала сенсора разности давлений, вызванные изменением линейного давления. Однако, все еще существует необходимость в способе корректировки колебаний выходного сигнала, вызванных изменениями линейного давления, который можно было бы осуществлять не механическими, а электрическими средствами. Находящаяся на рассмотрении заявка Фрика N 7-667320, поданная 8.03.91 и принадлежащая настоящему заявителю, на которую был выдан патент США N 5163326, опубликованный 17 ноября 1992 г., описывает использование компенсирующих конденсаторов постоянной емкости с переменными конденсаторами сенсора разности давлений таким образом, что токи, протекающие через компенсирующие конденсаторы, вычитаются из токов, протекающих через переменные конденсаторы. Значения емкости компенсирующих конденсаторов выбираются таким образом, чтобы компенсировать выход схемы до нуля и погрешности диапазона, вызванные изменениями линейного давления. Использование компенсирующих конденсаторов постоянной емкости ограничено ожидаемым рабочим диапазоном сенсора и может удовлетворять не все условия. Следовательно, остается необходимость в усовершенствованном способе корректировки. В патенте США N 4791352, авторы - Фрик и др., описан передатчик для выдачи выходного сигнала, отображающего измеренный параметр с использованием идеи генерирования сигналов, содержащих "пакеты заряда". Термин "пакет" относится к дискретной величине электрического заряда, который протекает в емкость или из нее, когда она заряжается от первого потенциала до второго потенциала, отличающегося от первого потенциала. Величина заряда в пакете пропорциональна емкости и разности между первым и вторым потенциалами. Сигнал, содержащий пакеты или заряд, подается на средство измерения в передатчике, которое накапливает пикеты заряда и выдает сигнал измерения в виде функции накопленного заряда. Сигнал измерения подается в средство обратной связи в передатчике и управляет этим средством. Средство обратной связи подает сигналы обратной связи в средство генерирования для управления схемой коммутации с целью генерирования пакетов заряда. Схема коммутации для средства генерирования включает в себя выключатели для приложения отличающихся разностей потенциалов или потенциалов возбуждения к емкости, чтобы изменять размер пакетов независимо от величины емкости. В течение первого интервала времени прикладывается больший потенциал возбуждения чтобы генерировать большие пакеты заряда и таким образом обеспечить грубое измерение величины заряда, накопленного средством измерения. В течение второго интервала времени, отличающегося от первого интервала времени, прикладывается меньший потенциал возбуждения, чтобы генерировать меньшие пакеты заряда и таким образом обеспечить точное измерение величины заряда, накопленного средством измерения. Средство обратной связи подсчитывает количества больших и меньших пакетов заряда и выдает сигнал, отображающий количества больших и меньших пакетов заряда во время работы выходного средства, которое подает выходной сигнал, отображающий параметр, в средство считывания. В одном устройстве, описанном в патенте США N 4791352, этим параметром является давление. Передатчик включает в себя первый и второй конденсаторы переменной емкости, каждый из которых имеет емкость, которая является функцией определяемого давления. Кроме того, передатчик включает в себя первый и второй конденсаторы коррекции линейности, которые компенсируют генерирующее средство на величину паразитных емкостей, связанных с первым и вторым конденсаторами переменной емкости. Первый конденсатор коррекции линейности остается соединенным в оперативной взаимосвязи с первым конденсатором переменной емкости, тогда как второй конденсатор коррекции линейности остается соединенным в оперативной взаимосвязи со вторым конденсатором переменной емкости. Однако, чтобы облегчить приложение большего и меньшего потенциалов возбуждения к конденсаторам для генерирования пакетов заряда, предусмотрены выключатели между каждым конденсатором переменной емкости и связанным с ним конденсатором коррекции линейности. Коммутацией схемы коммутации управляют таким образом, что больший потенциал возбуждения прикладывается одновременно к конденсатору переменной емкости и связанному с ним конденсатору коррекции линейности, а затем меньший потенциал возбуждения прикладывается одновременно к конденсатору переменной емкости и связанному с ним конденсатору коррекции линейности. В патенте США N 4598381, автор - Гуччи, описан сенсор разности давлений, который измеряет разность давлений между опорным давлением и другим давлением для выдачи сигнала сенсора разности, отображающего разность давлений. Сигнал сенсора разности и опорный сигнал, отображающий опорное давление, выдаются в схему корректировки, предпочтительно - цифровую ЭВМ, которая регулирует опорный сигнал и выдает улучшенный выходной сигнал в виде функции сигнала сенсора разности и отрегулированного опорного сигнала. Схема корректировки выполняет программы, реализуемые с помощью программного или аппаратного обеспечения. Эти программы могут содержать функции, такие, как подходящая таблица преобразования или полиномиальная функция для регулировки опорного сигнала как функции опорного сигнала и сигнала температуры и регулировки сигнала сенсора разности как функции опорного сигнала, сигнала температуры и сигнала сенсора разности для выдачи существенно откорректированного выходного сигнала. Функция, реализуемая схемой корректировки, может содержать следующий полиномиальный ряд: Q = а + bx + cx2 + ... В патенте США N 4878012 (авторы - Шулте и др.) описан передатчик, относящийся к типу со сбалансированной по заряду обратной связью, который генерирует пакеты заряда, отображающие измеренный параметр. Между реактивным сопротивлением генерирования пакетов заряда, и интегратором подсоединено сопротивление, чтобы уменьшить влияние шума, вызванного переходными процессами коммутации и шумом заземления, который подается на схему генерирования пакетов заряда паразитной емкостью. Также предусмотрены конденсаторы коррекции линейности, чтобы скомпенсировать паразитную емкость. Другой вид сенсора давления - это пьезорезистивный мостовой сенсор, как правило, использующий мостовую схему из четырех пьезорезистивных элементов, сформированных на одной кремниевой пластине. Эти пьезорезистивные элементы расположены таким образом, что давление, прикладываемое к диафрагме в пластине, разбалансирует значения удельного сопротивления моста. Два давления P1 и P2 влияют на противоположные стороны диафрагмы, создавая разность давлений на пьезорезистивных элементах. Изменения разности давлений изменяют импеданс двух диаметрально противоположных пьезорезистивных элементов моста одним образом и изменяют импеданс двух других диаметрально противоположных пьезорезистивных элементов противоположным образом (например, изменяя импеданс пьезорезистивных элементов R5 и R6 на фигуре 4 положительно, а импеданс пьезорезистивных элементов R7 и R8 отрицательно). Полученный из моста выходной сигнал характеризует разность давлений. В случае использования пьезорезистивного моста для измерения линейного давления (манометрического или абсолютного давления), изменения давления, прикладываемого к пластине, как правило, изменяют импедансы двух противоположных пьезорезистивных элементов положительно, а импедансы двух других противоположных пьезорезистивных элементов отрицательно. Величина изменения импеданса каждого пьезорезистивного элемента характеризует линейное давление. (Специалистам в данной области техники будет понятно, что в качестве пьезорезистивных мостов могут быть использованы полумосты, содержащие только два пьезорезистивных элемента. Пьезорезистивные элементы моста для измерения разности давления будут реагировать на разность давлений, изменяя импеданс одного пьезорезистивного элемента положительно, а импеданс другого пьезорезистивного элемента - отрицательно. Пьезорезистивные элементы моста для измерения линейного давления будут реагировать на линейное давление, изменяя импеданс одного пьезорезистивного элемента положительно, а импеданс другого пьезорезистивного элемента - отрицательно. В большинстве современных пьезорезистивных мостов используется четыре пьезорезистивных элемента из экономических соображений). Пьезорезистивные мосты для измерения разности давлений, реагируют на изменение разности давлений, а также на линейное давление и температуру. Пьезорезистивные мосты для измерения линейного давления реагируют на изменения линейного давления и температуры. Это является результатом нежелательных механических напряжений, влияющих на пьезорезистивные элементы на пластине под действием изменений линейного давления и температуры, а также результатом нежелательных изменений удельного сопротивления пьезорезистивных элементов под действием изменений температуры. Такие напряжения и изменения удельного сопротивления отрицательно сказываются на выходных сигналах моста. Поэтому было принято устанавливать отдельный температурный сенсор для моста для измерения линейного давления и отдельный мост для измерения линейного давления и температурный сенсор для моста для измерения разности давлений. Выходной сигнал моста для измерения разности давлений обрабатывался с выходными сигналами температурного сенсора и моста для измерения линейного давления, чтобы рассчитать скорректированную разность давлений. Выходной сигнал моста для измерения линейного давления обрабатывался с выходным сигналом температурного сенсора, чтобы рассчитать скорректированное линейное давление. Каждый сенсор требовал использования собственного аналого-цифрового преобразователя, так что корректировка показаний моста для измерения линейного давления требовала использования двух преобразователей, а корректировка показаний моста для измерения разности давлений требовала использования трех преобразователей, при этом каждый преобразователь обеспечивал входной сигнал от сенсора в процессор. Чтобы исключить необходимость использования двух или трех преобразователей, иногда использовалась мультиплексирующая (уплотняющая) технология, чтобы переменно подсоединять отдельные выходы сенсора к одному преобразователю, но недостатком мультиплексирования является то, что переменная передача информационных сигналов от нескольких сенсоров к преобразователю ведет к потере информации из-за искажающих погрешностей. Сущность изобретения В данном изобретении сенсор давления содержит первое и второе сенсорные средства, каждое из которых имеет значение импеданса, которое изменяется с изменением давления, а также с изменением другого переменного внешнего условия, на которое необходимо сделать корректировку. Этим другим переменным внешним условием может быть линейное давление (если это сенсор разности давлений), или температура (если это либо сенсор разности давлений, либо сенсор линейного давления). Постоянный импеданс переменно подсоединяется в рабочую связь с первым и вторым сенсорными средствами, чтобы получить первый и второй сигналы, каждый из которых представляет собой разную функцию контролируемой переменной и переменной, в отношении которой делается корректировка. Более конкретно, первый и второй сигналы вырабатываются во время первого и второго циклов корректировки, и основаны на совокупном действительном импедансе первого и второго сенсорных средств и средства с постоянным импедансом в первой и второй конфигурациях схемы. В первой конфигурации схемы средство с постоянным импедансом пропускает сигнал, который изменяет сигналы, пропускаемые первым сенсорным средством, в то время как во второй конфигурации схемы средство с постоянным импедансом пропускает сигнал, который изменяет сигналы, пропускаемые вторым сенсорным средством. Схема корректировки реагирует на первый и второй сигналы для расчета величины контролируемой скорректированной переменной. В предпочтительном варианте изобретения измеряемым давлением является разность давлений и схема корректировки рассчитывает разность давлений, скорректированную с учетом изменений линейного давления. Первый и второй сигналы являются функциями разности давлений и линейного давления. Схема корректировки обрабатывает первый и второй сигналы в соответствии с многочленными рядами или на основании таблицы преобразований, чтобы получить сигнал разности давлений, скорректированный с учетом изменений линейного давления. В предпочтительном варианте изобретения сенсором разности давления является также емкостной сенсор давления, содержащий первое и второе емкостные сенсорные средства, реагирующие на первое и второе давления, чтобы выработать выходной сигнал, характеризующий разность давлений. Средство с постоянным импедансом представляет собой конденсатор постоянной емкости, величина емкости которого не изменяется в ответ на изменения линейного давления. Соединительное средство переменно соединяет этот постоянный конденсатор в рабочую связь соответственно с первым и вторым емкостными сенсорными средствами. Согласно одному из вариантов изобретения, схема корректировки выдает сигнал разности давлений, скорректированный с учетом изменений температуры. В этом варианте средство с постоянным импедансом имеет температурный коэффициент, отличающийся от температурного коэффициента первого и второго емкостных сенсорных средств. Эти первый и второй сигналы являются функциями разности давлений и температуры и обрабатываются схемой корректировки в соответствии с многочисленными рядами или на основании таблицы преобразований, чтобы получить сигнал разности давлений, скорректированный с учетом изменений температуры. Согласно другому варианту изобретения сенсором разности давлений является пьезорезистивный мостовой сенсор, содержащий первый и второй пьезорезистивные элементы, каждый из которых разным образом реагирует на разность давлений, выдавая выходной сигнал моста, характеризующий разность давлений. Средством с постоянным импедансом является постоянное сопротивление, величина сопротивления которого не изменяется в ответ на изменения линейного давления. Предпочтительно, постоянное сопротивление имеет температурный коэффициент, соответствующий температурному коэффициенту первого и второго пьезорезистивных элементов. Согласно следующему варианту изобретения, измеряемым давлением является линейное давление, и схема корректировки рассчитывает линейное давление, скорректированное с учетом изменений температуры. В этом варианте сенсором давления является пьезорезистивный мостовой сенсор, содержащий первый и второй пьезорезистивные элементы, каждый из которых разным образом реагирует на линейное давление, выдавая мостовой выходной сигнал, характеризующий линейное давление. Средством с постоянным импедансом является постоянное сопротивление, имеющее температурный коэффициент, отличающийся от температурного коэффициента первого и второго пьезорезистивных элементов. Первый и второй сигналы являются функциями линейного давления и температуры и обрабатываются схемой корректировки в соответствии с многочисленными рядами или на основании таблицы преобразований, чтобы получить сигнал линейного давления, скорректированный с учетом изменений температуры. Краткое описание чертежей фиг. 1 - схема известного сенсора разности давлений, фиг. 2 - блок-схема сенсора разности давлений с предпочтительным вариантом измерительной схемы, воплощающей технологию корректировки согласно изобретению; фиг. 3 - схема синхронизации для схемы, изображенной на фиг. 2; фиг. 4 - блок-схема пьезорезистивного мостового сенсора и измерительной схемы, предназначенной для измерения разности давлений или линейного давления, вместе с известным температурным сенсором, предназначенным для измерения температуры; и фиг. 5 - блок-схема варианта данного изобретения, изображающая пьезорезистивный мостовой сенсор и измерительную схему, предназначенную для измерения либо разности давлений, либо линейного давления, воплощающая технологию корректировки согласно данному изобретению. Подробное описание предпочтительных вариантов На фиг. 1 изображен обычный емкостный сенсор разности давлений 5, который включает в себя корпус 7 с внутренней камерой 9, заполненной маслом, имеющим диэлектрический коэффициент GR. Внутренняя камера 9 разделена на первую и вторую полости 11 и 13 диафрагмой 15. Диафрагма 15 содержит электропроводящую часть 17, которая, как правило, соосна проводящим участкам 19 и 21 соответственно на внутренних поверхностях полостей 11 и 13, но отделена от них. Проводящие участки 17 и 19 образуют две пластины первого переменного конденсатора C1, разделенные в районе своих центров на расстояние X1, а проводящие участки 17 и 21 образуют две пластины второго переменного конденсатора C2, разделенные в районе своих центров на расстояние X2. Текучая среда под давлением, показанная стрелками P1 и P2, подается с помощью любых подходящих средств 23 и 25 в полости 11 и 13. Предпочтительно, температурный сенсор 227 расположен в корпусе 7 или вблизи него, чтобы определять температуру внутри корпуса сенсора разности давлений. Сенсор 227 вырабатывает аналоговый выходной сигнал на линии 29 для целей, которые будут пояснены ниже. В зависимости от разницы между давлениями P1 и P2 диафрагма 15 внутри камеры 9 отклоняется либо к пластине 19, либо к пластине 21. Это отклонение вызывает изменение величин реактивного импеданса или емкости переменных конденсаторов C1 и C2. Сенсор 5, когда он приводится в действие измерительной схемой, вырабатывает входной сигнал, характеризующий величины емкости переменных конденсаторов C1 и C2 и паразитные емкости сенсора, схематически изображенные как Cs1 и Cs2. Измерительная схема обеспечивает показания разности давлений на основании этого выходного сигнала. Однако изменения линейного давления, приложенного к емкостному сенсору давления 5, создают напряжения на корпусе 7. Например, повышенное напряжение, вызванное увеличением линейного давления, вызывает незначительное расширение корпуса сенсора, увеличивая таким образом расстояние X1 и X2 между пластинами конденсатора и вызывая уменьшение значений емкости переменных конденсаторов C1 и C2. Это вызывает погрешности выходного сигнала емкостного сенсора давления 5. Было обнаружено, что такое влияние линейного давления на выходной сигнал емкостного сенсора разности давлений имеет значительный размер. В таких сенсорах изменение линейного давления вызывает деформацию корпуса сенсора, а также изменение характеристик реакции центральной диафрагмы сенсора на давление. Эти эффекты вызывают изменения соотношения значений реактивного импеданса или емкости переменных конденсаторов C1 и C2. Следовательно, возникают погрешности выходного сигнала. Например, в некоторых сенсорах давления погрешности диапазона вызывают изменение выходного сигнала на приблизительно 1% в диапазоне инструмента на каждые 1000 фунтов на кв. дюйм изменения линейного давления. Аналогичные нулевые погрешности встречаются в выходном сигнале при низкой или нулевой разности давлений, когда изменяется линейное давление. Данное изобретение включает измерительную схему, изображенную на фиг. 2, для корректировки погрешности линейного давления в сигнале разности давлений за счет переменного и последовательного подсоединения компенсирующего импеданса к переменным конденсаторам C1 и C2 сенсора разности давлений. В результате этого получают отдельный сигнал из чисел зарядовых пакетов на основании значений емкости во время каждого последовательного переменного подсоединения. Эти отдельные сигналы имеют разные математические соотношения друг с другом, а также с разностью давлений и линейным давлением. Отдельные сигналы обрабатываются, чтобы получить сигнал разности давлений, скорректированный с учетом изменений линейного давления. Передаточная функция fт, используемая в сенсорах разности давлений, например сенсоре 5, может быть выражена как отношение значений емкости конденсаторов C1 и С2 и прямо пропорциональна разности давлений P . Коэффициент передаточной функции может быть выражен следующим образом Уравн. 1 где K1 и K2 - термины компенсатора линейного давления; K1 компенсирует нулевые погрешности, а К2 компенсирует погрешности диапазона. Далее Уравн. 2 K1 = CL1 - CL2; K2 = CL1 + CL2; где CL1 и CL2 конденсаторы постоянной емкости, которые не изменяются с изменением линейного давления. В упомянутой выше заявке Фрика в США компенсация нулевой погрешности (К1) корректируется за счет регулирования значений емкости CL1 и CL2 как Уравн. 3 где CS1 и CS2 значения паразитной емкости в сенсоре, а C - поправочный коэффициент на статическое или линейное давление. Аналогично осуществляется регулирование компенсации погрешности диапазона (К2); компенсация нулевой погрешности и компенсация погрешности диапазона могут регулироваться одновременно. В данном изобретении применяется корректировка на линейное давление с помощью цифровой обработки сигналов, а не за счет выбранных компенсирующих конденсаторов, хотя можно применять оба этих способа. Как показано на фиг. 1, корпус 5 емкостного конденсатора внутри симметричен относительно центральной диафрагмы 15, разделяющей таким образом внутреннюю камеру на две практически равные полости 11 и 13 для определения давления. При таком конструктивном выполнении паразитные емкости CS1 и CS2 приблизительно равны. В предпочтительном варианте изобретения конденсатор CL1 оперативно подсоединен к переменному конденсатору C1 и его паразитной емкости CS1 во время первого цикла корректировки или итерации, а конденсатор CL2 оперативно подсоединен к переменному конденсатору C2 и его паразитной емкости CS2 во время второго цикла корректировки или итерации, причем эти соединения последовательно чередуются между первым и вторым циклами корректировки. В данном изобретении предпочтительно, чтобы конденсаторы CL1 и CL2 были равны друг другу и удвоенной отдельной паразитной емкости CS1 и CS2, чтобы компенсировать таким образом паразитную емкость: Уравн. 4 CL1 = CL2 - CS1 + CS2. Размеры емкости компенсирующих конденсаторов CL1 и CL2 выбираются таким образом из-за того, что работа схемы требует, чтобы каждый компенсирующий конденсатор приблизительно вдвое превышал отдельную паразитную емкость, и из-за того, что две паразитные емкости приблизительно равны. На фиг. 2 показан предпочтительный вариант передатчика обратной связи 10 со сбалансированным зарядом, работающего по методике компенсации согласно данному изобретению. Передатчик 10 предназначен для использования с емкостным сенсором разности давлений. Схема генератора зарядовых пакетов 200 генерирует величины или пакеты заряда, характеризующего емкость переменных конденсаторов C1 и C2, и передает эти пакеты заряда на узел 76 на входе в схему интеграции и сравнения 14. Схема обратной связи 202 обеспечивает заряжающее напряжение Ve синхронизацию синхросигналов СК1-СК6 для рабочих переключателей 54, 62, 68 и 72 и переключателей в верньерных схемах 20 и 34, чтобы генерировать зарядовые пакеты и передавать их на узел 76, как это более подробно описано в патенте Фрика и др. Согласно данному изобретению схема обратной связи 202 дополнительно выдает управляющий сигнал CNTL на проводе 218, чтобы приводить в действие переключатели 208 и 210, а также выключатели 212 и 214 через инвертор 219, как это будет описано со ссылкой на фиг. 3. Схема интеграции и сравнения 204 содержит интегратор, состоящий из усилителя 82 и конденсатора C1, и компаратор 86, имеющий гистерезисную схему, содержащую сопротивления R3 и R4. Заряд аккумулируется в узле 76 и интегрируется в аналоговый сигнал интегратором. Компаратор 86 сравнивает сигнал от интегратора с эталонным сигналом и вырабатывает выходной цифровой измерительный сигнал VS, характеризующий накопленный заряд на конденсаторе C1 интегратора. Выходной сигнал VS передается как входной на схему обратной связи 202. Схема обратной связи 202 дополнительно содержит логику, обеспечивающую управляющий сигнал CNTL на проводе 218. На фиг. 3 изображена взаимосвязь синхронизирующих сигналов СК1-СК2, управляющего сигнала CNTL и уровней заряжающего напряжения Ve, выходного напряжения V1 усилителя 62, выходного сигнала VS схемы интеграции и сравнения 204. Передатчик 10 устанавливает первый временной интервал, во время которого производятся предварительные или грубые измерения, и второй временной интервал, во время которого осуществляются верньерные или точные измерения. В течение первого временного интервала сигнал СК5 на проводе 30 замыкает выключатели 26 и 40 в верньерных схемах 20 и 34, чтобы приложить полное напряжение возбуждения Ve к пластине 17 емкостного сенсора и через инвертор 30 к конденсаторам CL1 и CL2. Во время второго временного интервала сигнал СК6 на проводе 31 замыкает выключатели 28 и 42 в верньерных схемах, разделяя таким образом напряжение возбуждения на напряжение, проходящее через верньерную схему 20 к емкостному сенсору 5 и проходящее через инвертор 30 и верньерную схему 34 к конденсаторам CL2 и CL2. Согласно данному изобретению дополнительно обеспечиваются многократные последовательные корректировки или итерации, во время которых в первом и во втором временных интервалах производятся грубое и точное измерение разности давлений. Во время первого цикла корректировки или итерации выключатели 208 и 210 разомкнуты, а выключатели 212 и 214 замкнуты. Во время второго цикла корректировки выключатели 208 и 210 замкнуты, а выключатели 212 и 214 разомкнуты. Чтобы пояснить схему, изображенную на фиг. 2, и график синхронизации на фиг. 3, допустим, что измерительная схема находится на стадии первой корректировки или итерации, при которой выключатели 212 и 214 замкнуты, а выключатели 208 и 210 разомкнуты, и допустим также, что эта схема работает в первом временном интервале, когда сигнал СК5 замыкает выключатели 26 и 40, чтобы произвести грубые измерения. Сигнал СК3 на проводе 70 от схемы обратной связи 202 замыкает выключатель 68, сохраняя таким образом пакеты заряда на конденсаторах C2 и CL2. После изменения полярности напряжения возбуждения Ve на проводе 18 сигнал СК4 на проводе 56 замыкает выключатель 54, чтобы сохранить пакеты заряда на конденсаторе C1. (Конденсатор CL1 эффективно изолирован от схемы за счет того, что выключатель 208 разомкнут, а выключатели 54 и 212 замкнуты). После повторного изменения полярности напряжения возбуждения Ve сигналы СК1 и СК3 на проводах 64 и 70 замыкают соответственно выключатели 62 и 68. Выключатель 62 передает пакет заряда от конденсатора C1 на узел 76 и схему интеграции и сравнения 204. При замкнутом выключателе 68 пакеты заряда хранятся на конденсаторах C2 и CL2. После следующего изменения полярности напряжения возбуждения Ve сигнал СК4 приводит в действие выключатель 54, чтобы сохранить пакеты заряда на конденсаторе C1, и сигнал СК2 приводит в действие выключатель 72, чтобы передать пакет заряда от конденсаторов C2 и CL2 схему интеграции и сравнения 204. Аналогичным образом эта схема работает и во время второго временного интервала, когда происходят верньерные или точные измерения, за исключением того, что напряжение возбуждения Ve получают через делители напряжения в верньерных схемах 20 и 34, и оно низкое. Схема интеграции и сравнения 204 реагирует на пакеты заряда, принятые от узла 76, вырабатывая выходной сигнал VS. Как изображено на фиг. 3, во время первого цикла итерации или корректировки измерения сенсора 5 сигнал CNTL на проводе 218 находится в первом состоянии, размыкая выключатели 208 и 210 и через инвертор 216 замыкая выключатели 212 и 214. Таким образом, во время первого цикла корректировки конденсатор CL1 эффективно выведен из схемы, а конденсатор CL2 эффективно включен в нее. Во время второго цикла корректировки сигнал CNTL находится во втором состоянии и условия выключателей 208-214 изменены на обратные, так что конденсатор эффективно выведен из схемы, а конденсатор CL1 эффективно в нее включен. Выключатели 208-214 переменно подсоединяют конденсатор CL1 в рабочую связь с конденсатором C1, а конденсатор CL2 в рабочую связь с конденсатором C2. Следовательно, компенсирующие конденсаторы постоянной емкости последовательно включаются в рабочую связь с конденсаторами C1 и C2 во время последовательных корректировок или итераций. Во время соответственно первого и второго циклов корректировки, когда соответствующий конденсатор постоянной емкости CL1 или CL2 находится в рабочей связи с соответствующим сенсорным конденсатором C1 или C2, соответствующий конденсатор постоянной емкости CL1 или C2 заряжается противоположно заряду соответствующего сенсорного конденсатора C1 или C2 благодаря инвертору 30. Следовательно, токи, проходящие через конденсаторы постоянной емкости CL1 и CL2, противоположны токам, проходящим через сенсорные конденсаторы C1 и C2, а соответственно и их паразитные емкости. Таким образом, токи, протекающие через конденсаторы постоянной емкости CL1 и CL2 алгебраически суммируются с токами, протекающими через сенсорные конденсаторы C1 и C2, и их паразитными емкостями, или вычитаются из них. Зарядовые пакеты из конденсаторов C1, C2, CL1 и CL2 передаются на узел 76 и аккумулируются в нем, чтобы выработать выходной сигнал VS из схемы интеграции и сравнения 204. Выходной сигнал VS приводит в действие логику в схеме обратной связи 202, чтобы подсчитать импульсы на линиях 64 и 74, и, таким образом, подсчитать число зарядовых пакетов, аккумулированных в узле 76. Числа N1 и N2, характеризующие число зарядовых пакетов противоположной полярности, накапливаются во время первого интервала времени (грубое измерение), а числа N3 и N4 накапливаются во время второго интервала времени (точное из- мерение). Таким образом, число N1 - это количество зарядовых пакетов перв