Система записи серводанных для использования в накопителях на дисках

Реферат

 

Система сервозаписи может использоваться в накопителях на дисках для записи информации. Система сервозаписи измеряет положение привода головок и формирует опорный синхросигнал с использованием полупроводниковых лазеров. Внутренние опорные сигналы для определения положения обеспечиваются отражательными дифракционными решетками, прикрепленными к рычагу привода головок и втулке шпинделя дисковода. Оптические средства восстановления волнового фронта обеспечивает коррекцию аберраций в дифракционной решетке. Оптические датчики воспринимают дифференциальные изменения в дифракционных картинах, создаваемых дифракционными решетками, исключая чувствительность к дрейфу частоты. Электронные средства декодирования преобразуют данные оптических датчиков в сигналы измерения положения привода. Электронные средства управления возбуждают двигатель линейного привода в дисководе, позиционирующий преобразователь записи в требуемое положение для записи сервоинформации, обеспечиваемой генератором шаблонов сервосистемы. Прозрачные окна в крышке узла, содержащего головку и диск, позволяют сервосистеме осуществлять запись в дисководах в полностью собранном и герметизированном состоянии. Система не требует вмешательства в конструкцию накопителя. Обеспечена эффективность при использовании в накопителях с высокой плотностью записи. 3 с. и 5 з.п. ф-лы, 20 ил.

Область изобретения Настоящее изобретение относится к накопителям на дисках для записи данных, в частности к записи информации, определяющей местоположение дорожки на дисках для хранения данных.

Накопители на дисках для записи данных предпочтительны при хранении в памяти больших объемов данных для компьютерных систем. Данные хранятся как ряд переходов магнитного поля на поверхности магнитного носителя записи. Переходы формируются на указанной поверхности магнитным преобразователем, обычно называемым магнитной записывающей головкой. Преобразователь преобразует электрическую энергию в магнитное поле, полярность которого переключается согласно информации, которую следует записать. Магнитное поле обеспечивает сохранение намагниченности на носителе после удаления поля. Данные хранятся как двоичная информация в форме изменений полярности, или переходах, сохраняющихся в магнитной среде. Преобразователь, используемый с магнитным носителем записи, может также действовать как детектор для обнаружения данных, запомненных в виде магнитных переходов. Преобразователь воспринимает магнитное поле намагниченной среды. Считанное преобразователем магнитное поле преобразовывается в электрический сигнал, который изменяется в зависимости от полярности магнитного поля. Затем данные, содержащиеся в электрическом сигнале, декодируются. Процесс введения преобразователем данных на носитель записи называется записью данных на носителе. Процесс детектирования преобразователем ранее записанных на носителе данных называется считыванием данных с носителя. В общем случае, системы для хранения данных на магнитном носителе и их восстановления могут использовать одиночный преобразователь для считывания и записи данных, или они могут использовать два преобразователя для считывания и записи соответственно.

Носитель записи имеет форму диска, причем данные обычно записываются на обеих поверхностях. Может быть предусмотрено множество дисков для увеличения суммарной емкости памяти дисковода. Центральное отверстие в носителе обычно представляет собой втулку, с помощью которой носитель записи прикрепляется к двигателю посредством вала шпинделя, вращающего носитель записи. Головка перемещается над поверхностью носителя посредством движения воздуха, создаваемого при вращении диска. Высота перемещения головки должна быть достаточно большой для снижения до минимума вероятности контактирования головки и диска, что могло бы привести к нарушению целостности данных, но одновременно достаточно малой, чтобы магнитное поле, формируемое преобразователем записи, обеспечивало установление магнитных переходов на поверхности носителя записи так, чтобы магнитное поле, сформированное в носителе записи, могло быть считано преобразователем.

Головка размещается в непосредственной близости от поверхности записи и позиционируется над желательной дорожкой данных рычагом исполнительного механизма, к которому она прикреплена с помощью элемента подвески. Рычаг исполнительного механизма (привода) головок перемещает головку радиально относительно поверхности носителя записи из положения вблизи втулки (внутренний диаметр) в положение вблизи края диска (внешний диаметр). Данные обычно записаны на поверхности носителя между внутренним и внешним диаметрами в форме последовательных концентрических дорожек. Ширина дорожки обычно немного превышает ширину преобразователя записи. Концентрические дорожки могут быть подразделены на один или больше секторов.

Головка должна точно устанавливаться над требуемой дорожкой данных при считывании или записи данных. Позиционирование головки обычно выполняется посредством сервоконтроллера исполнительного механизма позиционирования головок, управляющего приводом звуковой катушки, присоединенным к рычагу исполнительного механизма. Сервоконтроллер позиционирования исполнительного механизма использует предварительно записанную информацию позиционирования головки, а также информацию идентификации дорожки и сектора, для перемещения головки от одной дорожки до другой в процессе поиска желательной дорожки и позиционирования головки над центром требуемой дорожки и в соответствующем секторе вдоль этой дорожки. Информация позиционирования и идентификации предварительно записывается на одной или более поверхностей дисков и представляет собой распределения намагниченности, которые изменяются как в радиальном направлении, так и по окружности, чтобы обеспечивать сервоконтроллеру позиционирования исполнительного механизма обратную связь, указывающую текущее положение головки относительно желательной дорожки и сектора.

В зависимости от архитектуры позиционирования дорожек дисковода, информация позиционирования может быть предварительно записана на одной поверхности дисковода с множеством дисковых поверхностей, что обычно определяется как сервосистема со специализированной поверхностью, или на множестве радиальных участков на каждой из дисковых поверхностей, что обычно определяется как сервосистема с встроенным сектором. Дисковод, использующий сервосистему со специализированной поверхностью, устанавливает привод головок, используя информацию, предварительно записанную на отслеживаемой поверхности; положение информационных головок механически приводится приводом головок в позицию следящей головки. Дисковод, использующий сервосистему с встроенным сектором, устанавливает привод головок, используя информацию, предварительно записанную на конкретной поверхности данных, считываемой информационной головкой. В некоторых дисководах используется комбинация двух архитектур. Архитектура сервосистемы с встроенным сектором является предпочтительной для дисководов, имеющих более высокое значение шага дорожки, ввиду меньшей чувствительности в этом случае к механическим и тепловым возмущениям, которые воздействуют на точность позиционирования информационной головки.

Информационная головка должна точно позиционироваться относительно желательной дорожки данных и сектора данных прежде, чем данные пользователя смогут быть записаны или считаны из дисковода. Система позиционирования привода головок осуществляет это путем считывания предварительно записанной информации позиционирования и идентификации и ее использования для изменения положения привода головок. Информация позиционирования и идентификации закодирована на дисковой поверхности в форме некоторого распределения переходов намагниченности, точно определенных по размеру и расстояниям между ними, образующих шаблон для сервосистемы, записанных с высокой точностью как в радиальном направлении, так и по окружности. Для обеспечения требуемой точности позиционирования головок при осуществлении операций считывания и записи данных, эти шаблоны для сервосистемы должны быть записаны с точностью в радиальном направлении такой, чтобы декодируемая позиция в радиальном направлении могла определяться с точностью в пределах малой доли ширины дорожки данных.

Кроме того, точность записи этих шаблонов в направлении по окружности должна быть такой, чтобы относительное позиционирование по окружности от дорожки к дорожке шаблона сервосистемы могло сохранять соответственно малое значение; в наиболее сложных методах кодирования сервосистемы это может потребовать, чтобы относительное позиционирование в направлении по окружности от дорожки к дорожке индивидуальных магнитных переходов сохранялось в пределах малой доли интервала между записанными переходами в указанном направлении.

Эти точно позиционированные шаблоны сервосистемы могут быть записаны на дисковые поверхности до установки дисков в дисковод или после того, как диски будут установлены в дисковод, с использованием процедуры, определяемой как запись шаблона для сервосистемы (сервозапись). В любом случае, требуемая точность радиального позиционирования в процессе сервозаписи обычно обеспечивается с использованием внешнего, управляемого лазерным интерферометром поворотного или линейного исполнительного механизма, механически связанного с дисководом. Требуемая точность позиционирования в направлении по окружности и воспроизводимость от дорожки к дорожке обеспечивается с использованием тактирующей головки (головки синхронизации), устанавливаемой над дисковой поверхностью. Тактирующая головка считывает переходы, разнесенные на приблизительно одинаковые интервалы, предварительно записанные на дорожке на дисковой поверхности. Временное дрожание в сигнале считывания тактирующей головки обычно снижается путем обработки сигнала с использованием узкополосной системы фазовой синхронизации.

Как только соответствующая информация синхронизации дорожки установлена, процедура сервозаписи состоит в позиционировании рычага внешнего исполнительного механизма в последовательных радиальных положениях и записи соответствующих магнитных переходов в множестве позиций в направлении по окружности. Этот процесс чрезвычайно чувствителен к вибрации, вследствие чего должен использоваться большой дорогостоящий гранитный стол для стабилизации дисковода. Процесс также чрезвычайно чувствителен к изменениям температуры окружающей среды, ввиду крупных размеров электромеханической системы, используемый для позиционирования исполнительного механизма. Чтобы минимизировать такие возмущения, процедура обычно выполняется в помещении с контролируемой температурой. Для обеспечения механической связи с исполнительным механизмом и введения дополнительной тактирующей головки в дисковод, дисковод должен оставаться открытым (или предусматривать наличие требуемых отверстий) и негерметизированным в течение указанной процедуры, что требует использования внешней среды с высокой степенью чистоты. Кроме того, последняя процедура сборки, осуществляемая после процесса сервозаписи, может обусловить деформацию основной платы дисковода при присоединении накрывающей платы, что может вызвать наклон вала шпинделя и оси привода головок и ввести рассогласование между шаблонами для сервосистемы на различных дисках. Таким образом, ввиду вышеуказанных причин, процесс сервозаписи является дорогостоящим и подвержен влиянию ошибок.

Последние разработки в области сервозаписи были направлены на решение некоторых из указанных выше проблем. Поворотное кодирующее устройство на полупроводниковом лазере используется для формирования эталонной информации позиционирования. Такой поворотный кодер соединен с рычагом исполнительного механизма посредством поворотной оси вне дисковода. Механическая связь между поворотным кодером и этой осью вращения используется для обеспечения целостности соединения. Опорный синхросигнал генерируется с использованием диска с шаблоном, прикрепленного к части вала шпинделя, выступающей наружу дисковода. Диск с шаблоном имеет светлые и темные сектора, которые отражают падающий свет с различной интенсивностью. Продетектированная комбинация интенсивностей используется для формирования синхросигнала.

Хотя система сервозаписи с поворотным кодером устраняет необходимость использования чистого производственного помещения и гранитного стола, однако она обладает некоторыми собственными недостатками. Во-первых, механическая связь, требуемая между поворотным кодером на полупроводниковом лазере и рычагом исполнительного механизма, дополнительно увеличивает стоимость дисковода и сложность процесса сервозаписи, а также ограничивает достижимую точность. Во-вторых, для вывода вовне вала шпинделя с целью формирования опорного синхросигнала, требуется двойная герметизированная опора, что вновь увеличивает стоимость дисковода. В-третьих, опорный синхросигнал, сформированный диском с шаблоном, недостаточно точен для использования в дисководе с высокой плотностью записи.

В патенте Японии JP-A-4351766 раскрыт дисковод жесткого диска, обеспечивающий повышение точности записи и увеличение скорости записи за счет использования дифрагированного света, формируемого дифракционной решеткой, предусмотренной в подвижном элементе, перемещаемом заодно вместе с головкой, вне корпуса, чтобы устранить проблему излишнего нагружения головки и изменения ее состояния между записью и использованием. Свет, дифрагированный дифракционной решеткой, предусмотренной на рычаге головки, поступает к внешней оптической системе корпуса, что позволяет устранить проблему, подобную приложению избыточной нагрузки к головке и изменению ее состояния между записью и использованием. Часть 1а апертуры корпуса закрыта светопрозрачным материалом для сохранения воздушной герметизации и исключения изменения состояния между однократной записью шаблона для сервосистемы и использованием, вследствие необходимости открытия и закрытия крышки. Дифракционная решетка свободно прикрепляется и снимается и может использоваться многократно, не требуя оптической системы для определения положения головки, например, отражательного типа. Таким образом, возможно использование не обязательно в условиях чистого производственного помещения; кроме того, стоимость уменьшается, точность записи улучшается и быстродействие записи увеличивается. В патенте Японии JP-A-4351767 описано устройство для записи сигнала сервосистемы, позволяющее улучшить точность записи и увеличить быстродействие записи путем обнаружения положения дифракционной решетки, предусмотренной на рычаге головки, оптической системой и управления головкой на основе продетектированного сигнала этой оптической системы для записи сигнала сервосистемы и исключения избыточной нагрузки на головку и изменения условий использования. Рычаг головки снабжен дифракционной решеткой, а корпус имеет часть 1a апертуры, закрытую светопрозрачным материалом для сохранения воздушной герметизации. Оптическая система для обнаружения положения имеет источник света и оптические средства обнаружения, обеспечивая определение положения головки с использованием отраженного от дифракционной решетки света. Устройство записи сигнала сервосистемы и контроллер используют этот сигнал обнаружения для управления двигателем и приводом звуковой катушки (катушки линейного электропривода), причем устройство записи записывает сигнал сервопривода на диске посредством головки. Тем самым решается проблема, вызванная приложением избыточной нагрузки к головке и изменением условий при записи и использовании, точность записи улучшается и быстродействие записи повышается.

Таким образом, существовала не удовлетворенная ранее потребность в системе сервозаписи, которая не требует вмешательства в конструкцию, применения механической связи с приводом головок или шпинделем вращающегося диска и обеспечивает достаточную эффективность при использовании в современных накопителях с высокой плотностью записи данных на дисках. Настоящее изобретение направлено на удовлетворение этой потребности.

Сущность изобретения Согласно изобретению, предлагается система сервозаписи, которая использует полупроводниковые лазеры, размещенные вне дисковода, и отражательные дифракционные решетки, прикрепленные внутри дисковода, для выработки сигналов точного позиционирования. Один лазер излучает луч, направленный через светопрозрачное окно, к дифракционной решетке, присоединенной к рычагу привода головок, в то время как второй лазер излучает луч, направленный через светопрозрачное окно, к дифракционной решетке, присоединенной к валу шпинделя. Дифракционные картины, отраженные от дифракционных решеток, направляются к оптическим детектирующим элементам, которые преобразуют их в электрические сигналы. Сигнал из оптической системы привода головок принимается электронными средствами декодирования положения привода головок, которые преобразуют его в сигнал позиционирования привода головок. Сигнал из оптической системы вала шпинделя, т. е. сигнал синхронизации, принимается электронными средствами детектирования синхросигнала записи, которые преобразуют его в опорный синхросигнал. Сигнал позиционирования и опорный синхросигнал используются для определения положения рычага привода головок и пакета дисков. Затем электронные средства принимают эти сигналы и используют их, чтобы координировать позиционирование рычага привода головок с записью информации сервосистемы на поверхностях дисков.

Система сервозаписи, соответствующая изобретению, включает две основные подсистемы: подсистему позиционирования привода головок и подсистему синхронизации записи. Подсистема позиционирования привода головок содержит полупроводниковый лазер и дифракционную решетку, присоединенную к рычагу привода головок, вместе с оптическими элементами восстановления, которые компенсируют изменения в оптическом пути, и оптическими элементами детектирования, которые измеряют разности фаз в дифракционной картине, отраженной от дифракционной решетки. Подсистема позиционирования привода головок также содержит электронные средства декодирования сигнала положения привода головок, которые получают измеренные разности фаз и преобразуют их в сигнал положения рычага привода головок. В предпочтительном варианте осуществления электронные средства декодирования сигнала положения привода головок содержит электронные средства грубого декодирования, которые обеспечивают сигнал грубого положения привода головок, и электронные средства точного декодирования, которые вырабатывают сигнал точного положения привода головок. Сигналы грубого и точного положения привода головок затем объединяются для определения положения рычага привода головок.

Подсистема синхронизации записи содержит второй полупроводниковый лазер и дифракционную решетку, присоединенную к валу шпинделя, а также оптические элементы восстановления, которые компенсируют изменения в оптическом пути, и оптические элементы детектирования, которые измеряют разности фаз в дифракционной картине, отраженной от дифракционной решетки. Подсистема синхронизации записи также включает электронные средства детектирования синхросигналов записи, которые получают измеренные разности фаз и преобразуют их в опорный синхросигнал. В предпочтительном варианте осуществления электронные средства детектирования синхросигнала записи включает электронные средства обнаружения необработанного синхросигнала, а также электронные средства корректировки синхронизации, которые компенсируют ошибку центрирования дифракционной решетки по отношению к центру вращения вала шпинделя. В другом варианте осуществления подсистема синхронизации записи может быть выполнена с использованием сдвоенной оптической системы полупроводниковых лазеров и оптических элементов детектирования, установленных соответственно на противоположных сторонах, если дифракционная решетка центрирована относительно каждой из этих систем. Электронные средства смешения используются для объединения двух опорных синхросигналов для формирования опорного синхросигнала, в котором скомпенсирована ошибка центрирования дифракционной решетки.

С помощью полупроводниковых лазеров, установленных вне дисковода, наряду с оптическими и электронными средствами детектирования и вычисления точной информации позиционирования, представленное изобретение обеспечивает систему сервозаписи, которая не требует вмешательства в конструкцию, использования какой-либо механической связи с приводом головок или шпинделем вращающегося диска и обеспечивает точность позиционирования, требуемую для использования в дисководах с высокой плотностью записи на дисках. Единственные элементы системы, установленные внутри корпуса дисковода, радиальные дифракционные решетки, имеют малый вес и недороги; они могут прикрепляться в процесса производства до герметизации дисковода и оставаться в дисководе после завершения сервозаписи.

Краткое описание чертежей Фиг. 1a иллюстрирует в форме блок-схемы функциональные компоненты системы сервозаписи, соответствующей настоящему изобретению.

Фиг. 1b иллюстрирует в схематичном виде размещение дифракционных решеток в накопителе на дисках для записи данных, согласно настоящему изобретению.

Фиг. 2a иллюстрирует в форме блок-схемы подсистему позиционирования привода головок, соответствующую настоящему изобретению.

Фиг. 2b иллюстрирует линейную дифракционную решетку для использования с подсистемой позиционирования привода головок.

Фиг. 2c иллюстрирует радиальную дифракционную решетку для использования в подсистеме позиционирования привода головок.

Фиг. 3 иллюстрирует вид в сечении датчика положения привода головок для использования с линейной дифракционной решеткой согласно изобретению.

Фиг. 4 иллюстрирует вид в сечении датчика положения привода головок для использования с радиальной дифракционной решеткой согласно изобретению.

Фиг. 5a иллюстрирует в графической форме выходные аналоговые сигналы фотодетекторов датчика положения привода головок.

Фиг. 5b иллюстрирует в графической форме входной сигнал квадратурного счетчика циклов.

Фиг. 5с иллюстрирует в графической форме информацию точного позиционирования, используемую датчиком положения привода головок.

Фиг. 6 иллюстрирует в форме блок-схемы электронные средства декодирования положения привода головок, используемые в системе сервозаписи согласно настоящему изобретению.

Фиг. 7a иллюстрирует в форме блок-схемы подсистему синхронизации записи согласно настоящему изобретению.

Фиг. 7b иллюстрирует радиальную дифракционную решетку для использования в подсистеме синхронизации записи.

Фиг. 8 иллюстрирует вид в сечении датчика опорного синхросигнала для использования с радиальной дифракционной решеткой согласно изобретению.

Фиг. 9 иллюстрирует в форме блок-схемы электронные средства детектирования синхросигналов записи для системы сервозаписи согласно настоящему изобретению.

Фиг. 10 иллюстрирует временные диаграммы сигналов, формируемых квадратурным генератором пилообразного сигнала.

Фиг. 11 иллюстрирует в форме блок-схемы альтернативный вариант осуществления подсистемы синхронизации записи, использующую две оптических головки синхронизации и электронный смеситель.

Фиг. 12 иллюстрирует вид в сечении оптических средств реконструкции волнового фронта для использования с линейной дифракционной решеткой.

Фиг. 13 иллюстрирует вид в сечении оптических средств реконструкции волнового фронта для использования с радиальной дифракционной решеткой.

Фиг. 14 иллюстрирует вид в сечении компрессора луча для использования с оптическими средствами реконструкции волнового фронта.

Детальное описание вариантов осуществления изобретения 1. Система сервозаписи На фиг. 1a показана блок-схема, иллюстрирующая систему сервозаписи согласно настоящему изобретению при использовании с накопителями на дисках (дисководами) для записи данных. Дисковод 102 содержит корпус 103 с пакетом дисков на шпинделе, включающим один или более дисков 104, вал 106 шпинделя и двигатель 108 шпинделя. Дисковод 102 также включает контроллер 110 скорости шпинделя, усилитель считывания/записи 144, оптически прозрачные окна 122 и 132, расположенные в корпусе 103 над дифракционными решетками 120a и 130, соответственно, и привод головок, который включает в себя одну или более магнитных головок записи 112, поворотный рычаг 114 привода головок (который также включает в себя необходимый узел подвески), ось поворота 116 рычага привода головок (иногда также называемую "E-блоком" или "E-пластиной") и двигатель 118 звуковой катушки.

Корпус 103 окружает высокоточные хрупкие компоненты дисковода и защищает их от загрязнения и возможных повреждений. Он обычно включает в себя основание и крышку (не показаны) хотя возможны и различные другие эквивалентные конфигурации. Часто двигатель 108 шпинделя дисковода устанавливается в основании и, таким образом, образует единую конструкцию с защитным корпусом 103. Следует отметить, что все эти незначительные изменения охватываются примером осуществления, показанным на фиг. 1a и описанным выше, так же как и заявленным изобретением.

На фиг. 1b показан вид сверху внутрь дисковода 102, иллюстрирующий размещение и позиционирование различных компонентов, включая дифракционные решетки, используемые в процессе сервозаписи. Он содержит один или более дисков 104 вышеупомянутого пакета на шпинделе дисковода, поворотный рычаг 114 привода головок, ось вращения 116 рычага привода головок, и двигатель 118 звуковой катушки вышеописанного привода головок, упоры. 150 и 151 привода головок, дифракционную решетку 120a привода головок и дифракционную решетку 130 синхронизации записи. Следует отметить, что в то время как дифракционные решетки присоединены к приводу головок и к пакету шпинделя, однако ни подсистема позиционирования привода головок, ни подсистема синхронизации записи не требует никакого дополнительного механического присоединения к приводу головок или пакету шпинделя. Только оптическая и электрическая связь используется для обмена данными между подсистемой позиционирования привода головок и приводом головок и между подсистемой синхронизации записи и пакетом шпинделя дисковода. В этом состоит отличие изобретения от предшествующего уровня техники, где оптические кодеры механически присоединяются к пакету шпинделя дисковода и к приводу головок. Также следует отметить, что в то время как дифракционная решетка привода головок показана присоединенной к приводу головок, она, как вариант, может присоединяться к любому конструктивному элементу привода головок, например к маленькому фланцу или иному выступу. Кроме того, одна или обе дифракционные решетки могут присоединяться временно для целей сервозаписи, а затем удаляться. В некоторых случаях, это может допускать выбор дифракционных решеток из более широкого их класса, чем это было бы возможно в противном случае (ввиду ограничений по размеру, весу, и стоимости), если бы они должны были оставаться в дисководе постоянно.

Как показано на фиг. 1a, система сервозаписи включает подсистему позиционирования привода, подсистему синхронизации записи, контроллер сервозаписи 140 и генератор 142 шаблонов синхрозаписи, которые взаимодействуют для обеспечения записи точно позиционированных (как по радиусу, так и по окружности) магнитных переходов в виде конкретных распределений на одной или более поверхностях дисков для точного кодирования информации позиционирования сервосистемы. Подсистема позиционирования привода головок включает в себя оптический датчик 124 положения привода головок, дифракционную решетку 120a, оптическое окно 122, систему декодирования 126 сигнала датчика положения привода головок, контроллер 128 положения привода головок, двигатель 118 звуковой катушки привода головок и рычаг 114 привода головок, которые точно устанавливают одну или более магнитных головок записи 112 радиально над соответствующими поверхностями 104 диска, на которые нужно осуществить сервозапись. Подсистема синхронизации записи включает в себя оптический датчик 134 синхросигнала, дифракционную решетку 130, оптическое окно 132 и электронные средства 136 обработки синхросигнала записи, которые генерируют точный сигнал синхронизации записи и сигнал синхронизации индекса диска, который "синхронизирован по фазе" с дисковой поверхностью (поверхностями).

Надежные механические средства крепления (не показаны) используется для фиксации положения дисковода 102, оптического датчика 124 положения привода головок и оптического датчика 134 синхросигнала относительно друг друга. Механические средства крепления также изолированы от внешних механических и тепловых возмущений, которые могли бы ухудшить точность записанных распределений намагниченности. Эти средства крепления могут выполняться с использованием многих известных компонентов в соответствии с хорошо известными принципами инженерного проектирования и не требуют детального описания. Следует отметить, однако, что гранитный стол такой, как требуется в предшествующем уровне техники, нет необходимости использовать для обеспечения гарантированной точности записи.

В процессе функционирования контроллер 140 сервозаписи управляет контроллером 128 положения привода головок для позиционирования привода 114 головок и связанных с ним головок записи 112 в желательном радиальном положении на дисковой поверхности, где должны быть записаны упоминавшиеся магнитные распределения (шаблоны для сервосистемы). Контроллер 140 сервозаписи также управляет генератором 142 шаблонов записи 142, усилителем считывания/записи 144 и одной или более магнитных головок для записи требуемого распределения магнитных переходов на одной или более поверхностях дисков. Точные радиальные положения записанных магнитных переходов управляются подсистемой позиционирования привода головок, которая формирует сигналы требуемого радиального положения привода головок, используемые для точного позиционирования головки записи. Точные положения по окружности записанных магнитных переходов управляются подсистемой записи синхросигнала, которая формирует требуемые сигналы синхронизации и дисковые индексные сигналы, используемые для точной синхронизации комбинации данных, запомненной в генераторе шаблонов 142.

Контроллер 140 сервозаписи вместе с подсистемой синхронизации записи и усилителем считывания/записи 144 осуществляет последовательный выбор магнитной головки записи и, тем самым, дисковой поверхности, на которую следует осуществить запись шаблона для сервосистемы. Одна или более поверхностей дисков может быть использована для сервозаписи в течение любого заданного поворота диска. Процесс повторяется для множества последовательных радиальных позиций, пока необходимое множество магнитных переходов не будет записано на одной или более дисковых поверхностей. Таким способом осуществляется точная запись в радиальном направлении и по окружности магнитных шаблонов, как это требуется для кодирования информации позиционирования для сервосистемы.

Следует отметить, что при соответствующем выборе формы дифракционной решетки 120a привода головок, настоящее изобретение одинаково применимо для дисководов, использующих поворотные приводы головок, линейные приводы головок, или приводы головок, которые формируют комбинацию линейного и радиального движения, такие как приводы с пластинчатой пружиной, выполненные с использованием параллелограммной конструкции.

Информация позиционирования для сервосистемы, упомянутая выше, может быть закодирована с использованием любого из методов, хорошо известных в уровне техники. Например, номер дорожки может быть закодирован с использованием кода Грея, а информация точного позиционирования следящей системы может быть закодирована с использованием квадратурных импульсных комбинаций. Весь процесс сервозаписи может выполняться на полностью собранном и герметизированном дисководе, не требуя высокой чистоты производственного помещения, так как требуется только оптический и электрический доступ к дисководу 102. Не требуется никакая механическая связь или физический доступ к двигателю шпинделя или рычагу привода головок. Также, компактность оптического датчика положения привода головок, оптического датчика синхросигнала записи и конструкция современного дисковода делают процедуру сервозаписи менее чувствительной к механическим и тепловым возмущениям и более простой относительно стандартных методов сервозаписи.

II. Подсистема позиционирования привода головок На фиг. 2a показана подсистема позиционирования привода головок согласно настоящему изобретению, включающая в себя оптический датчик 124 положения привода головок, состоящий из полупроводникового лазерного источника 200, дефлектора 206 лазерного луча и оптических средств детектирования 202 и 204, а также дифракционную решетку 120a, оптическое окно 122, систему декодирования 126 сигнала датчика положения привода головок, контроллер 128 положения привода головок, двигатель звуковой катушки 118 привода головок и рычаг 114 привода головок.

Как будет более детально описано ниже, подсистема может быть использована как с линейной, так и с радиальной дифракционной решеткой в позиции 120a путем изменения конструкции оптического датчика 124 положения привода.

А. Оптический датчик положения Оптический датчик 124 положения привода использует источник света 200 на полупроводниковом лазере. В общем случае полупроводниковые лазеры обнаруживают дрейф длины волны в зависимости от времени и температуры, что ограничивает возможности их использования в классических интерферометрах определения расстояния. Однако датчик положения привода в настоящем изобретении нечувствителен к дрейфу длины волны, так как измерение положения дифракционной решетки определяется шагом строки дифракционной решетки и изменением относительной фазы между лазерными лучами +1 и -1 порядков дифракции. Кроме того, в противоположность обычным лазерным интерферометрическим системам измерения положения, которые используют луч двухчастотного источника для разрешения неоднозначности по направлению движения, настоящее изобретение использует только луч одночастотного лазера для определения направления движения.

Плоская отражательная дифракционная решетка 120a может быть как линейной, так и радиальной, в зависимости от конструкции датчика 124 положения привода. Линейная дифракционная решетка, схематично показанная на фиг. 2b, имеет параллельные дифракционные линии с постоянным шагом и глубиной. Дифракционная решетка 120a, в общем случае в форме углового сегмента, достаточно широка для соответствия диаметру лучей лазера, поступающих из датчика 124 положения привода, и имеет достаточную длину доя соответствия углу качания привода головок. Дифракционная решетка поворачивается вокруг точки 230, которая совпадает с центром вращения оси привода головок. На фиг.2a дифракционная решетка показана присоединенной к рычагу 114 привода головок на стороне магнитной головки оси поворота 116 привода головок, но может размещаться на стороне звуковой катушки или в каком-либо ином месте на приводе головок с тем же результатом.

Радиальная дифракционная решетка, показанная схематично на фиг. 2c, имеет радиальные дифракционные линии, которые сходятся в точке 230, совпадающей с центром вращения оси 116 привода головок. Линейная дифракционная решетка имеет шаг, приблизительно равный удвоенной длине волны лазерного луча, и глубину, приблизительно равную 1/4 длины волны лазерного луча. Аналогично, радиальная дифракционная решетка в радиально