Подшипник качения, способ управляемого подвода смазочного материала к подшипнику качения, устройство для подвода смазочного материала к подшипникам качения, насос для дозирования смазочного материала
Реферат
Настоящее изобретение относится к подшипнику качения с внешним подводом смазочного материала, который проходит через наружное или внутреннее подшипниковое кольцо и заканчивается в непосредственной близости от тел качения. Согласно способу смазочный материал подводят в зависимости от эксплуатационных данных и данных состояния. В устройстве для подвода смазочного материала предусмотрен кольцевой трубопровод, по которому подают смазочный материал к подшипникам качения. В насосе для дозирования смазочного материала впускная камера связана с цилиндром, а впускной клапан образован граничной кромкой цилиндра по направлению к камере. Технический результат - улучшение подвода смазочного материала к подшипникам качения прядильного станка. 5 с. и 35 з. п. ф-лы, 12 ил.
Изобретение относится к подшипнику качения с устройством для подвода смазочного материала согласно ограничительной части п. 1 формулы.
Подобные подшипники качения известны из книги Манфреда Векка и др. "Конструкция систем шпиндель-опора для высокоскоростной обработки металлов", изд-во "Эксперт Ферлаг", Энинген. У этих подшипников качения с подводом смазочного материала происходит промывка подшипника. Поэтому к подшипнику подводят всегда значительно больше смазочного материала, чем это необходимо. Избыток приходится поэтому извлекать и отводить. Недостатком является не только дополнительная мощность на разбрызгивание, которую необходимо прикладывать, но и дополнительный нагрев подшипника, возникающий как следствие мощности на разбрызгивание, а также износ смазочного материала. Кроме того, из европейской заявки N 0350734 известны устройства для подвода смазочного материала к подшипникам качения. У этих подшипников качения подвод смазочного материала происходит по трубопроводам или соплам, посредством которых смазочный материал, смешанный с потоком воздуха, вдувается в подшипник. Недостаток этой формы исполнения состоит в том, что наряду с подводом смазочного материала к месту смазки происходит также загрязнение смазочным материалом окружающего пространства. Кроме того, такая конструкция вызывает относительно высокий расход смазочного материала, поскольку наряду с потребностью в смазочном материале собственно места смазки приходится учитывать и потери вдуваемого в окружающее пространство смазочного материала. Правда, за счет выбора относительно высоковязкого смазочного материала эти потери можно снизить, однако избежать их полностью невозможно. С другой стороны, высоковязкие смазочные материалы в определенных случаях применения препятствуют легкости хода подшипника, требуемой, в частности, для очень быстрого и в основном без сопротивления вращающихся прядильных дисков хода для нитей. В частности, у прядильных дисков загрязнение окружающего пространства масляным туманом имеет важное значение, поскольку загрязнения продукта следует обязательно избегать. Кроме того, известно, что подобные подшипники качения снабжают длительной набивкой, причем их затем герметизируют уплотнительными шайбами, расположенными с обеих сторон тел качения. Подобная длительная набивка предполагает соответственно пастообразные или высоковязкие смазочные материалы, с тем чтобы обеспечить длительную герметичность подшипника качения. Из этого следует, однако, тот недостаток, что вязкость смазочного материала сильно зависит от температуры подшипника. Задачей изобретения является поэтому усовершенствование подвода смазочного материала к подшипникам качения так, чтобы при небольшом расходе смазочного материала обеспечить эффективную и в основном без потерь смазку подшипников качения. Эта задача решается. Способ управляемого подвода смазочного материала к подшипнику (1) качения, содержащему внутреннее подшипниковое кольцо (21) и наружное подшипниковое кольцо (20), дорожку (6i) качения, образованную на внутреннем подшипниковом кольце (20), множество тел качения, заключенных между дорожками качения, и проточку, предусмотренную в одном из упомянутых подшипниковых колец и соединенную с устройством (2) для подачи смазочного материала, благодаря чему проточка (3) оканчивается у выпускного отверстия (23) на участке дорожки (6a) качения соответственного подшипникового кольца, согласно изобретению способ включает прерывистую подачу смазочного материала к подшипнику (1) качения, определяют количество подаваемого каждый раз смазочного материала к подшипнику (1) качения в блоке (28, 82) управления, в котором устанавливают основную регулировку посредством заранее определенных эксплуатационных данных или данных условий подшипника (1) качения. Преимущество изобретения состоит в том, что смазочный материал подводят непосредственно и исключительно в зону тел качения. Подводимое количество смазочного материала необходимо лишь привести в соответствие с непосредственной потребностью в нем подшипника качения. Подвод смазочного материала может происходить периодически малыми порциями, поскольку общее количество смазочного материала подводится исключительно в зону тел качения и расходуется там. При этом в соответствии с данным случаем применения смазочный материал может подводиться в твердом, пастообразном или жидком виде, т.е. в компактном виде без смешивания с воздухом. Непосредственный подвод смазочного материала в зону тел качения вызывает его осаждение без тумана на дорожки качения и благоприятно сказывается на образовании тонкой пленки смазочного материала между телами качения и дорожками качения. Благодаря небольшой потребности подобных подшипников качения в смазочном материале следует предпочтительно исходить из того, что одного-единственного отверстия в одном из подшипниковых колец достаточно для подвода необходимого количества смазочного материала. Возможны, однако, и несколько отверстий, расположенных предпочтительно друг за другом в одной осевой плоскости подшипника качения или по окружности. Поскольку, в частности, для небольших подшипников качения при быстровращающихся прядильных досках для текстильных машин дозируемые количества смазочного материала должны быть очень малы, диаметр отверстия может быть очень маленьким, т.е. лежать в миллиметровом диапазоне или ниже (например, 0,5 мм). При этом в зависимости от применения отверстие может быть выполнено либо на внутреннем, либо на наружном подшипниковом кольце. В частности, внутреннее или наружное подшипниковое кольцо может быть образовано также деталью машины. Рекомендуется предусмотреть отверстие на неподвижном подшипниковом кольце, что дает преимущество простоты присоединения трубопровода для смазочного материала. Для оптимального результата смазки необходимо учитывать действие центробежной силы на смазочный материал. В этом случае трубопровод для смазочного материала следовало бы соединить с отверстием посредством входящего в зацепление канала или вращающейся гидромуфты. При этом изобретение обеспечивает подвод смазочного материала к дорожке качения кратчайшим путем. Благодаря этим признакам непосредственный подвод смазочного материала может быть реализован, следовательно, там, где он требуется. Зону уменьшенной нагрузки можно создать у подшипника качения за счет особого исполнения дорожки качения. В этом случае дорожка качения выполнена таким образом, что тело качения прилегает преимущественно на двух удаленных друг от друга кольцеобразных участках. Между этими участками прилегания находится кольцеобразная зона небольшого удельного давления, в которой выполняют отверстие (отверстия). Независимо от конструкции, однако, у любого подшипника качения возникает зона уменьшенной нагрузки на обращенной от поперечного усилия подшипника стороне. Воздействующее на подшипник качения поперечное усилие является внешним, направленным поперек оси вала усилием, которое удерживает вал в равновесии вместе с внешней нагрузкой и другими поперечными усилиями подшипника. Возникающие на валу внешние нагрузки и поперечные усилия подшипника лежат более или менее в одной осевой плоскости. В этой же осевой плоскости лежит и отверстие, а именно на обращенной от поперечного усилия подшипника стороне. Изобретение исходит из очень малого расхода смазочного материала. Поэтому можно избежать ненужного наполнения подшипника качения, которое не требуется для смазки. Это исключает одновременно потери мощности на разбрызгивание, т. е. расход энергии, объясняющийся трением жидкости и вызывающий при высоких частотах вращения также высокие температуры подшипника. Вследствие низкого расхода смазочного материала с обеих сторон дорожек качения могут быть расположены уплотнительные шайбы. Поскольку изобретение, в принципе, исходит из очень малого расхода смазочного материала, уплотнительные шайбы, расположенные с обеих сторон дорожек качения, могут принести преимущества. Эти признаки препятствуют, в частности, неконтролируемому испарению смазочного материала, обусловленному, например, высокой температурой подшипника. Уплотнительные шайбы могут быть в определенной степени немного проницаемыми, с тем чтобы, с одной стороны, исключить переполнение подшипника качения, а, с другой стороны, обеспечить пыленепроницаемое уплотнение. Переполнения подшипника качения следует избегать в любом случае, с тем чтобы избежать дополнительных потерь мощности на разбрызгивание, в частности, при высоких частотах вращения и связанных с этим высоких температур подшипника. Поэтому согласно усовершенствованию изобретения характеристику определенного эксплуатационного параметра вводят в память данных в зависимости от количества смазочного материала и от заданного оптимального количества смазочного материала, после чего этот эксплуатационный параметр регистрируют и считывают на подшипнике качения, а количеством смазочного материала, подаваемого к подшипнику (1) качения, управляют в зависимости от соответственного значения эксплуатационного параметра и оптимального количества смазочного материала. Далее смазочный материал подают дозированным количеством в весьма компактной форме и без образования тумана к отдельному подшипнику (1) качения под повышенным давлением. Далее питают множество подшипников (1) качения многопозиционного текстильного станка, причем эксплуатационный параметр получают отдельно в каждом месте подшипника и каждое место подшипника снабжают отдельными количествами смазочного материала. Далее смазочный материал подают к каждому подшипнику (1) качения посредством насоса (15), связанного с подшипником (1) качения, которым управляют в зависимости от соответствующего значения эксплуатационного параметра и оптимального количества смазочного материала. Далее смазочный материал подают из резервуара (14) для масла под давлением к каждому подшипнику (1) качения через клапан, связанный с подшипником (1) качения, а управление этим клапаном осуществляется в зависимости от соответствующего значения эксплуатационного параметра и оптимального количества смазочного материала. Далее управление количеством смазочного материала, подаваемого к каждому подшипнику (1) качения, осуществляют посредством последовательности выключающих сигналов заранее определенной длительности, но управляемой частоты. Далее управление количеством смазочного материала, подаваемого к каждому подшипнику (1) качения, осуществляют посредством последовательности выключающих сигналов заранее определенной частоты, но управляемой длительности. Далее оптимальное количество смазочного материала контролируют и устанавливают для обеспечения низкой рабочей температуры подшипника. Это усовершенствование обеспечивает возможность прогрессивного увеличения интервалов времени обслуживания подобной многопозиционной текстильной машины. Здесь следует сказать, что у такой текстильной машины имеется множество мест опоры, каждое из которых подвержено определенному износу. Установленные с возможностью вращения детали машины, например прядильные диски, мотальные головки, расположены вдоль направления движения нити, которая пробегает по ним до наматывания на катушку. Поэтому существует проблема, заключающаяся в том, что при повреждении одного из подшипников качения необходимо остановить всю машину, по меньшей мере одно место обработки. Таким образом, однако, минимальный срок службы подшипника определяет длину эксплуатационной фазы, в течение которой текстильная машина работает непрерывно. Поскольку при выходе из строя одного из подшипников качения, по причинам безопасности заменяют все подшипники, большой интерес представляет увеличение срока службы подшипника у текстильных машин также в сложных условиях эксплуатации. Поскольку благодаря изобретению могут быть созданы единые и оптимальные условия эксплуатации для всех подшипников качения, срок их службы может быть увеличен по меньшей мере в основном независимо от нагрузки на них. Это достигается тем, что, несмотря на множество мест опоры, можно обеспечить индивидуальную согласованность подвода смазочного материала с фактической потребностью каждого подшипника качения в смазочном материале. Другими словами, для каждого отдельного подшипника происходит постоянная корректировка установленной основной настройки. Основная настройка задается изготовителем. Она складывается из опытных значений и корректируется данными состояния отдельных мест опоры. Сюда относится, в частности, температура. Данные состояния вводят, например, в блок управления и сравнивают с имеющимися в нем данными основной настройки. Основная настройка должна соответствовать оптимальным эксплуатационным условиям, так что данные состояния за счет сравнения с основной настройкой приводят к практически идеальному подводу смазочного материала в диапазоне оптимального его количества к каждому отдельному подшипнику. Установление индивидуальных количеств смазочного материала предполагает, следовательно, зарегистрированные данные состояния, снимаемые по отдельности с каждого места опоры. Для этого из температуры подшипника можно выработать, например, сигналы фактического значения, вводимые в блок управления. Кроме того, сигналы фактического значения можно вырабатывать из действительных для каждого подшипника частот вращения вала, также вводимые в центральный блок управления. Из введенных сигналов фактического значения вычисляют затем данную оптимальную потребность в смазочном материале, который следует подвести к каждому отдельному подшипнику. Для контроля крупных подшипников могут быть предусмотрены предпочтительно распределенные по окружности данного подшипника два или более мест измерения температуры, и средние значения, полученные из их данных измерений, могут быть переданы в центральный блок управления. Правда, путем регистрации полей характеристик можно получить определенные эксплуатационные параметры для управления дозированием смазочного материала, однако подобные поля характеристик могут быть всегда действительны только для одной ситуации, поскольку все параметры, например, частота вращения, температура нагрева, расположение подшипника и т.д., должны быть зарегистрированы по отдельности и приведены в функциональное соответствие с дозированным количеством смазочного материала. В частности, у текстильных машин оказалось, что температура имеет множество влияющих факторов. Эти влияющие факторы связаны не непосредственно и не принудительным образом с влияющими факторами, вызывающими температуру подшипника в результате трения. У текстильных машин температура подшипника следовательно искажается, например за счет условий эксплуатации детали машины (прядильного диска), а также за счет продолжительности эксплуатации и состояния износа подшипника. Факт, что медленно вращающиеся, нагреваемые прядильные доски имеют более высокую температуру подшипников, чем быстровращающиеся прядильные диски. Из этого видно, что управление/регулирование дозирования смазочного материала не может происходить надежно только за счет регистрации температуры подшипника. Кроме того, необходимо учесть, что связь между температурой подшипника и смазкой изменяется. Это вызвано, в частности, тем, что износ оказывает отдельное влияние на температуру подшипника. Из этого вытекает, следовательно, другая проблема, заключающаяся в том, что необходимо найти для подшипников качения эксплуатационный параметр, который обеспечивает смазку, однозначно приведенную в соответствие с потребностью в смазочном материале. Под "эксплуатационными параметрами" или "параметрами состояния" следует понимать физические величины, позволяющие описать актуальное состояние подшипника. Усовершенствования пригодные, в частности, для подшипников качения, обеспечивают совершенно независимую от температуры подшипника величину, определяющую данные дозированные количества смазочного материала. При этом определяющая величина "вибрация подшипника" подразумевается как эксплуатационный параметр или параметр состояния, дающий однозначные сведения об условиях смазки в подшипнике качения. Таким образом регистрируется актуальное состояние подшипника, независимое от температуры. Преимущество следует усматривать, в частности, в том, что при исключении специфичных для установки полей характеристик для характеристики температуры подшипника в распоряжении имеются легко регистрируемые эксплуатационные параметры для управления дозированными количествами смазочного материала. Другое преимущество состоит в том, что состояние вибрации представляет собой однозначное показание наличия смазочного материала в подшипнике и регистрирует поэтому также дополнительную за счет износа потребность в нем. У нового подшипника наблюдается то, что определенное состояние смазки вызывает в определенной степени колебания. Из этого следует целесообразная обработка данных, в частности можно обрабатывать амплитуду. Регистрируют, например, пики амплитуды путем установления, например, верхнего предела амплитуды и регистрации превышения верхнего предела, продолжительности превышения, числа колебаний подшипника, при которых происходит превышение предельного значения, или частоты повторения превышения предельного значения. Оказалось, однако, что потребность в смазочном материале и износ подшипника можно синхронно регулировать особенно за счет того, что вычисляют определенные частотные диапазоны колебаний, например путем анализа Фурье, и регистрируют их возникновение или частоту их возникновения. Особенно показательный частотный диапазон составляет 200-500 кГц. Благодаря этому усовершенствованию изобретения можно измерить также для каждого подшипника качения определенную колебательную характеристику. Для определения колебательной характеристики на неподвижном участке подшипника качения устанавливают датчик колебаний, смазка которого должна быть дозирована. Возникающие там вибрации подшипника или колебания регистрируются непрерывно или в определенные интервалы времени. При этом в зависимости от нагрузки подшипника, частоты вращения и состояния подшипника допустимы также интервалы времени в несколько часов. Возникающие колебания затем анализируют. Простой метод анализа состоит в том, что вычисляют предварительно определяемые пределы допусков, а затем регистрируют, вышли ли амплитуды колебаний за пределы диапазона допусков. В этом случае устанавливают, следовательно, полосу допусков, в пределах которой должны лежать колебания подшипника. Если амплитуды колебаний выходят за пределы полосы допусков, как это происходит незадолго до начала сухого хода, необходимо добавить смазочный материал. Для того чтобы амплитуда колебания подшипника и превышение заданных пределов допусков были достаточно точным индикатором индивидуальной потребности в смазочном материале и/или износа, можно порекомендовать предварительно опытным путем определить срок службы подшипника в его данной области применения. Надежное показание можно получить из анализа амплитуды, основанного на колебаниях определенного частотного диапазона. Колебания, возникающие в зоне опоры подшипника качения, представляют собой наложения колебаний разных частотных диапазонов. Множество этих частотных диапазонов не являются показательными для состояния смазки и/или износа. Оказалось, например, что в отношении этих критериев типичными являются колебания в диапазоне 200-500 кГц. По этой причине предлагается отфильтровать предпочтительно все колебания за пределами этого признанного показательным частотного диапазона. Амплитудный анализ проводят лишь на колебаниях критического частотного диапазона, т.е. например, 200-500 кГц. Даже если нельзя исключить, что также при амплитудном анализе, относящемся лишь к одному частотному диапазону колебаний, пик амплитуды, приводящий к превышению предусмотренного частотного диапазона, основан на наложении также колебательных частот, не являющихся представительными для состояния смазки или износа, этот способ все же обеспечивает достаточную возможность приведения в соответствие количества смазочного материала с высокой точностью с актуальной потребностью в нем. Кроме того, оказалось также, что возможно дальнейшее уточнение подвода смазочного материала. Для этого анализируют полученные колебания (анализ Фурье). Оказалось, что колебания определенных частотных диапазонов не возникают у хорошо смазанных подшипников. При этом предполагается, что хорошо смазанные подшипники не имеют заметного износа. Во всяком случае величина амплитуды колебаний этого частотного диапазона не превышает определенного заданного значения. При возникновении все же этих колебаний к подшипнику качения подводят дозированное, очень малое количество смазочного материала. При контроле колебания подшипника оказалось, что за счет этого колебания этого частотного диапазона снова исчезают. Если вследствие износа уменьшаются интервалы времени между двумя следующими друг за другом колебательными состояниями (пики амплитуды - частотные диапазоны), то из этого можно сделать вывод о степени износа. С другой стороны, можно предсказать, что износ уменьшится, если в пределах вычисленного интервала дозирования сноба возникнет характеристическое колебательное состояние. Тогда интервал дозирования необходимо соответственно сократить. Таким образом следует ожидать, что из данной продолжительности интервалов дозирования можно сделать вывод о фактическом износе, так что можно надежно предсказать интервалы обслуживания такой машины. За счет этого не только можно очень точно привести в соответствие смазку подшипника с износом, но и, несмотря на это, получить надежные данные о состоянии износа. Таким образом впервые происходит дозирование смазочного материала, зависимое как от потребности в нем, так и от износа. В качестве эксплуатационных параметров рассматриваются, в частности, колебания подшипника в выбранных частотных диапазонах и/или колебания подшипника с выбранной величиной амплитуды. При этом промежутки времени между по меньшей мере двумя следующими друг за другом характеристическими колебаниями подшипника или амплитуды можно измерить. Этим можно тогда установить интервал дозирования. Другое усовершенствование достигается следующим образом. По продолжительности интервала дозирования можно определить так называемый укороченный интервал дозирования, продолжительность которого немного короче измеренного отрезка времени между следующим друг за другом возникновением характеристического колебательного процесса. Это вообще исключает нехватку смазочного материала. Существенный аспект этого усовершенствования изобретения основан поэтому на комбинации из возникновения характеристического колебательного процесса на подшипнике качения вследствие сухого хода и ввода полученных таким образом интервалов времени в контур регулирования для управляемого/регулируемого дополнительного дозирования смазочного материала. Поскольку, в принципе, дополнительное дозирование может происходить очень быстро и поскольку, в принципе, следует исходить из быстрого распределения дозированного смазочного материала по дорожке качения, интервалы времени для дополнительного дозирования смазочного материала могут совпадать с интервалами времени, в которые повторно регистрируется характеристический колебательный процесс после предшествовавшего дозирования смазочного материала. Предпочтительно смазочный материал подводят к отдельным подшипникам в газообразном или жидком виде в качестве смазочного масла и под повышенным давлением, для чего в наружных подшипниковых кольцах, предпочтительно в местах минимальной нагрузки, выполняют соответствующие проточки, при необходимости также несколько на каждый подшипник. Целесообразно предусмотреть при этом на наружной стороне подшипниковых колец в них, а лучше в отверстиях корпуса для размещения наружных подшипниковых колец связанные с маслоснабжением кольцевые каналы, по которым смазочное масло попадает в подшипники. Расчет и подача (дозирование) определенного для каждого отдельного подшипника количества смазочного масла могут осуществляться разными путями. Так, каждому подшипнику можно предать собственный насос, например один сегмент многосекционного насоса (сегментами которого, правда, необходимо тогда управлять по отдельности в отношении объемной подачи), причем подходящими оказались, в частности, объемные насосы. Смазочное масло может также подводиться с локальным управлением посредством клапана, в частности электромагнитного, из гидроаккумулятора, время от времени наполняемого насосом. В частности, в этих случаях управление подводимым к подшипнику количеством смазочного масла может осуществляться при соблюдении равномерных интервалов времени между сигналами открывания за счет изменения данной продолжительности импульса или при сохранении такой же продолжительности импульса за счет изменяющихся интервалов времени между сигналами открывания, приведенных в соответствие с моментально необходимым количеством смазочного масла. Согласно изобретению, требуются предельно малые количества смазочного материала. Поэтому как при регулируемом подводе смазочного материала к подшипнику качения, так и при нерегулируемом (например, подвод смазочного материала в твердо установленный такт времени) может возникнуть проблема старения смазочного материала, седиментации, осмоления и омыления. Если вместо подключенного обратного клапана в качестве устройства повышения давления использовать управляемый по времени запорный клапан, то можно достичь смывания кольцевого трубопровода, независимого от его длины, диаметра, размеров дросселя и температуры. Учитывается тот факт, что смазочный материал является несжимаемой средой, в результате чего при соответствующей частоте ее извлечения аккумулированное давление также относительно быстро падает. Если систему кольцевого трубопровода снабдить дополнительным гидроаккумулятором, то давление в кольцевом трубопроводе выравнивается. Пульсации давления не могут возникнуть ни за счет подвода масла посредством насоса, ни за счет извлечения масла посредством дозирующего устройства. Далее можно время от времени подводить смазочный материал при помощи нагнетательного насоса и таким образом поддерживать давление в течение циклов извлечения в пределах заданного диапазона. Для этого необходимо, чтобы гидроаккумулятор поддерживал масло под давлением. Для этого можно использовать масло-аккумулятор, аккумулирующее пространство которого находится под нагрузкой нагруженного пружиной или сжатым газом поршня. Также можно подвергнуть масло в аккумуляторе непосредственной нагрузке сжатым газом. Существенный признак состоит в том, что гидроаккумулятор должен располагаться на входе кольцевого трубопровода. Этим достигается принудительное смывание в направлении другого конца кольцевого трубопровода, а потери давления в нем компенсируются простым образом. Благоприятно сказывается на самодеаэрации ответвления, поскольку не растворенный в смазочном материале воздух всегда будет стремиться остаться в системе кольцевого трубопровода. Оттуда он постоянно удаляется. Это благоприятно сказывается на равномерном с течением времени подводе смазочного материала к подшипнику качения. Это преимущество достигается наклоненными вниз ответвлениями, в которых воздух всегда поднимается вверх, будучи обусловлен подъемной силой, где он захватывается в процессе промывки кольцевого трубопровода. В частности, усовершенствование служит для полностью автоматического управления давлением, после того как однажды будут установлены верхнее предельное значение и запирающее усилие подключенного обратного клапана. На данное время промывки можно еще дополнительно повлиять за счет установления запирающего усилия обратного клапана. Если запирающее усилие обратного клапана лежит близко от верхнего предельного значения, то время промывки будет короче, чем если запирающее усилие обратного клапана лежит ближе к нижнему предельному значению. Гидравлические устройства для дозирования смазочных масел для подшипников качения известны из патентов США N 4784578 и N 4784584. При этом речь идет о приводимых в действие отдельным насосом устройствах, в которых под давлением подаваемого насосом смазочного масла движется поршень, откачивающий находящиеся в цилиндре количество смазочного масла. Эти устройства имеют сложную конструкцию. В частности, они снабжены впускным клапаном, который вызывает зависимое от хода поршня заполнение цилиндра. Заполнение является за счет этого инерционным, т.е. зависит от движения впускного клапана и потока жидкости. Поршень может поэтому приводиться в действие лишь настолько быстро, чтобы у жидкости оставалось достаточно времени для дотекания. Для использования подобных насосов в области дозированной смазки подшипников качения при очень быстром движении поршня должно обеспечиваться полное заполнение цилиндра. Однако: Устройство подвода смазочного материала к множеству подшипников (1) качения, содержащее трубопровод (4) подачи смазочного материала для подачи смазочного материала (33) к каждому подшипнику (1) качения, согласно изобретению предусмотрен кольцевой трубопровод (48), первый конец которого подсоединен к резервуару (47) посредством насоса (13) для подачи смазочного материала, а второй конец подсоединен к упомянутому резервуару (47) через устройство (50) повышения давления, и множество ответвлений (39, 40, 41), проходящих от кольцевого трубопровода (48) к соответственным упомянутым трубопроводам (4) подачи смазочного материала через дозирующее устройство (15). Далее в упомянутом кольцевом устройстве для повышения давления установлен дроссель (49). Далее, кольцевой трубопровод (48) соединен резервуаром (14), который сообщается с кольцевым трубопроводом в положении между насосом и отводами. Далее, дозирующее устройство (15) представляет собой дозирующий насос. Далее, дозирующее устройство (15) представляет собой клапан. Устройство по одному из п.п. 16-20, отличающееся тем, что каждое ответвление (39, 40, 41) проходит от кольцевого трубопровода (48) с уклоном к каждому связанному дозирующему устройству (15). Предусмотрена управляющая система для поддержания давления в кольцевом трубопроводе между верхним предельным значением (38) и нижним предельным значением (37), а устройство повышения давления содержит обратный клапан (50), имеющий запирающее давление между верхним предельным значением (38) и нижним предельным значением (37). Реле давления (54) выполнено с возможностью регистрировать входное давление каждого дозирующего устройства, а предохранительный выключатель связан с каждым реле давления с возможностью при понижении входного давления ниже нижнего предельного значения подавать на предохранительный выключатель отключающий сигнал для остановки подшипника (1) качения. Реле давления установлено таким образом, что отключающий сигнал подается по истечении заданного времени задержки. Насос (15) для дозирования смазочного материала в малых количествах к подшипнику качения, содержащий цилиндр (58), поршень (66) насоса, проходящий в ориентированной соосно цилиндру (58) направляющей (67), силовой привод (65) для перемещения поршня (66) насоса в цилиндре (58), впускной клапан, соединенный с источником подачи жидкости, и выпускной клапан, согласно изобретению впускная камера (59) связана с цилиндром (58) и направляющей (67), а впускной клапан образован граничной кромкой цилиндра (58) по направлению к впускной камере (59), причем поршень (66) насоса содержит торцевую поверхность, которая приспособлена для перемещения между положением перед граничной кромкой и погруженным в цилиндр (58) положением. Выпускной клапан на обращенном от впускной камеры (59) конце цилиндра (58) представляет собой обратный клапан с подпружиненным коническим золотником (68). Конический золотник (68) располагается в коническом седле клапана, угол при вершине которого больше угла золотника (68). Конический золотник (68) изготовлен из относительно мягкого материала, тогда как образующее седло клапана отверстие изготовлено из более твердого материала. Впускная камера (59) сообщается с манометрическим выключателем. Впускная камера (59) сообщается с вставной муфтой (64), содержащей обратный клапан, который приподнимается от своего седла с целью открывания клапана, когда закрывается муфта. Силовой привод (65) состоит из электромагнита и пружины, причем толкатель электромагнита воздействует на поршень во время рабочего хода, а пружина - во время обратного хода. Камера толкателя (73) содержит в себе упомянутый толкатель упомянутого электромагнита, а впускная камера сообщается с камерой (73) толкателя. Устройство (2) для подвода смазочного материала к подшипникам (1) качения, содержащее трубопровод (4) подачи смазочного материала, имеющий выпускной конец (23), идущий к подшипнику (1) качения, отличающееся тем, что предусмотрен управляемый клапан (15) для подачи и удержания смазочного материала в трубопроводе (4) подачи под повышенным давлением, установленный перед выпускным концом (23) в трубопроводе (4) подачи смазочного материала. Клапан представляет собой электроуправляемый магнитный клапан (31). Клапан (15) установлен с возможностью управлять количеством смазочного материала, подаваемого к каждому подшипнику качения, с помощью последовательности выключающих сигналов заранее определенной длительности и управляемой частоты. Клапан (15) установлен с возможностью управлять количеством смазочного материала, подаваемого к каждому подшипнику качения, с помощью последовательности выключающих сигналов заранее определенной частоты, но управляемой длительности. Трубопровод (4) подачи смазочного материала выполнен в виде гидроаккумулятора (14) и закрыт относительно впускной стороны обратным клапаном (32). Смазочный материал подается из гидроаккумулятора (14), нагружаемого сжимаемой средой. Предусмотрена управляющая схема для поддержания давления в трубопроводе подачи смазочного материала между верхним предельным значением (38) и нижним предельным значением (37). Трубопровод (4) подачи смазочного материала содержит множество ответвлений (39-41) для подачи смазочного материала к множеству подшипников качения. Ниже изобретение более подробно поясняется на примерах его осуществления. Фигуры представляют: - фиг. 1: первый пример осуществления изобретения; - фиг. 2: осевой вид сверху на пример осуществления на фиг. 1; - фиг. 3: другой пример осуществления изобретения; - фиг. 4: пример осуществления со множеством подшипников качения в контуре регулирования для управляемого подвода смазочного материала; - фиг. 5: пример осуществления изобретения, встроенный в систему кольцевого трубопровода; - фиг. 6: возможный п