Комплексы переходных металлов, каталитическая система, содержащая их, способ получения полиолефинов и полиолефиновая композиция

Реферат

 

Описывается новый предшественник катализатора, который применим в сочетании с совместно действующим сокатализатором для получения полиолефинов. Предшественник катализатора соответствует формуле (1), где М обозначает цирконий или гафний, L обозначает замещенный или незамещенный лиганд с -связями, Q могут быть одинаковыми или разными и их независимо выбирают из группы, включающей -O-, -NR- и -S-, Y обозначает атом углерода или атом серы, Z выбирают из группы, включающей -NR2, то Z является -NR2-, n равно 1 или 2, W обозначает одновалентную анионную группу, если n равно 2, или W обозначает двухвалентную анионную группу, если n равно 1, R одинаковы и их выбирают из группы, включающей алкил или циклоалкил, B обозначает мостиковую группу, являющуюся алкиленовой группой, содержащей от 1 до 10 атомов углерода, m равно 2. Описывается катализатор для получения полиолефинов, способ получения полиолефинов, полиолефиновая композиция. Технический результат - получение катализатора с очень высокой активностью. 4 с. и 17 з.п.ф-лы, 11 табл.

Настоящее изобретение относится к новому классу катализаторов, полезных для получения полиолефинов, таких как полиэтилен, полипропилен и их сополимеры с другими альфа-олефинами. В частности, настоящее изобретение относится к комплексам переходных металлов, замещенных или незамещенных лигандами с -связями и гетероаллильными фрагментами.

Предпосылки изобретения Разработаны многочисленные катализаторы полимеризации олефинов, с помощью которых получают полимеры с определенными свойствами. Одним из классов указанных катализаторов являются металлоцены, металлоорганические координационные комплексы, содержащие два фрагмента с -связями, соединенные с атомом металла из группы IIIB до группы VIII Периодической системы элементов или с лантанидами. Как сообщается, указанные катализаторы весьма полезны для синтеза полиолефинов, поскольку с их помощью получают гомогенные полимеры при высоких скоростях полимеризации, что позволяет в случае необходимости строго контролировать свойства конечного полимера.

Теперь найден новый класс катализаторов полимеризации олефинов, которые в сочетании с сокатализатором, таким как алюмоксан, образуют каталитическую композицию, которая обладает очень высокой полимеризационной активностью и производительностью, легко получаются, недороги и обладают хорошими эксплуатационными характеристиками. Катализаторы представляют собой комплексы переходных металлов, замещенных или незамещенных лигандами с -связями и гетероаллильными фрагментами.

Комплексы переходных металлов и лигандов циклопентадиенильного типа, содержащие другие функциональные группы, являются хорошо известными. Например, Патент США 5279999 относится к каталитическим композициям, получаемым при взаимодействии с соединением металла группы IVB формулы (Cp)pMeX4-p, где каждая группа Cp представляет собой содержащую заместители циклопентадиенильную группу; Me обозначает металл группы IVB, каждый X обозначает углеводородную группу, алкокси-группу или арилокси-группу, алкиламидную или ариламидную группу, атом водорода или атом галогена, а p равно 1-4.

В Патенте США 5194532 описывается другой катализатор, представленный формулой LTi(NR2)3, где L обозначает лиганд с -связью, выбранный из инденила, инденила, замещенного (C1-C4)алкилом, и инденила, замещенного группой -OSiR3; а R обозначает (C1-C4)алкил.

Патент США 5227440 относится к катализаторам на носителе, содержащим соединение переходного металла группы IVB формулы где M обозначает цирконий, гафний или титан в высшей степени окисления, (C5H5-y-xRx) обозначает циклопентадиенильное кольцо (или конденсированную ароматическую циклическую систему), содержащее вплоть до пяти заместителей R; (JR'z-1-y) обозначает содержащий гетероатом лиганд, в котором J обозначает элемент группы VA с координационным числом три или элемент группы VIA с координационным числом два; а каждый R1 обозначает углеводородную группу C1-C20, содержащий заместители, углеводородный радикал или любой другой радикал, содержащий функциональную группу, обладающую свойствами кислоты или основания Льюиса; каждый Q обозначает любой одновалентный анионный лиганд; T обозначает ковалентную мостиковую группу, содержащую элемент группы IVA или группы VA; a L представляет собой нейтральное основание Льюиса.

В Европейской патентной заявке 0595390 A1 обсуждается каталитическая система, содержащая бис(циклопетадиенил)бис(амидные) производные элементов группы IVB.

В публикации Hughes et al. , Organometallics, Vol. 12, N 5, p. 1936 (1993) приводятся различные циклопентадиениламидные комплексы металлов группы IV и их синтез.

Патент США 354693 относится к каталитической системе для сополимеризации этилена с другими ненасыщенными углеводородами, включающей продукт, полученный при смешении в инертном растворителе соли ванадия, дигалогенида алкилалюминия и N,N-дизамещенного карбамида, имеющего формулу: где R, и R' обозначают углеводородные радикалы, которые не содержат других непредельных связей помимо ароматических радикалов.

Европейская патентная заявка 0520811 A2 и Патент США 5331071 относятся к каталитической системе, содержащей металло-алкоксидные комплексы. В Европейской патентной заявке 0520811 A2 описывается компонент катализатора, состоящий из первого соединения формулы M1(OR1)pR2qX14-p-q, где M1 обозначает титан, цирконий или гафний; R1 и R2 каждый обозначают углеводородные фрагменты, содержащие 1-24 атома углерода; а X1 обозначает атом галогена, и второго соединения, которое представляет собой металлоорганическое соединение, содержащее две или больше сопряженных двойных связей. Патент США 5331071 относится к компоненту катализатора, получаемого по реакции соединения формулы Me1R1nX14-n, соединения формулы Me2R2mX2z-m, металлоорганического соединения, содержащего две или больше сопряженных двойных связей, и материала носителя. Me1 обозначает цирконий, титан или гафний; R1 обозначает C1-C24 углеводород; а X1 является атомом галогена. Me2 обозначает элемент группы I-III; R2 обозначает C1-C24 углеводород, а X2 обозначает C1-C12 алкоксигруппу или атом галогена.

Однако ни в одной из указанных публикаций не указываются или предлагаются координационные комплексы переходных металлов группы IVB, замещенные или незамещенные лигандами с -связями и гетероаллильными фрагментами, или использование указанных комплексов в качестве катализаторов для полимеризации олефинов.

Краткое описание изобретения В настоящем изобретении заявляется новый катализатор синтеза полиолефинов. Указанный катализатор получают по реакции предшественника катализатора, либо формулы I, либо формулы II, как это указано далее, с совместно действующим катализатором, таким как МАО или ММАО, с образованием катализатора.

где M обозначает переходный металл, преимущественно цирконий или гафний, L обозначает замещенный или незамещенный лиганд с -связями, координированный с M, предпочтительно лиганд циклопентадиенильного типа, Q может быть одинаковым или разным и его независимо выбирают из группы, включающей -O-, -NR-, -CR2- и -S-, Y обозначает атом углерода или атом серы, Z выбирают из группы, включающей -OR, -NR2, -CR3, -SR, -SiR3, -PR2 или -H, при условии, что если Q обозначает -NR-, то Z выбирают из группы, включающей -OR, -NR2, -SR, -SiR3, -PR2 или -H, n равно 1 или 2, W обозначает одновалентную анионную группу, если n равно 2, или W обозначает двухвалентную анионную группу, если n, равно 1, и R могут быть одинаковыми или различными и независимо выбираются из группы, содержащей углерод, кремний, азот, кислород и/или фосфор, при этом к заместителю L может присоединяться одна или несколько групп R, предпочтительно R обозначает углеводородную группу, содержащую от 1 до 20 атомов углерода, наиболее предпочтительно - алкильную, циклоалкильную или арильную группу.

где M обозначает переходный металл, преимущественно цирконий или гафний, L обозначает замещенный или незамещенный лиганд с -связями, координированный с M, предпочтительно лиганд циклопентадиенильного типа, Q может быть одинаковым или разным и его независимо выбирают из группы, включающей -O-, -NR-, -CR2- и -S-, Y обозначает атом углерода или атом серы; Z выбирают из группы, включающей -OR, -NR2, -CR3, -SR, -SiR3, -PR2 или -H, при условии, что если Q обозначает -NR-, то Z выбирают из группы, включающей -OR, -NR2, -SR, -SiR3, -PR2 или -H; n равно 1 или 2, W обозначает одновалентную анионную группу, если n равно 2, или W обозначает двухвалентную анионную группу, если n равно 1, R может быть одинаковым или различным и независимо выбирается из группы, содержащей углерод, кремний, азот, кислород и/или фосфор, при этом одна или несколько групп R может присоединяться к заместителю L, предпочтительно R обозначает углеводородную группу, содержащую от 1 до 20 атомов углерода, наиболее предпочтительно - алкильную, циклоалкильную или арильную группу; B обозначает мостиковую группу, выбранную из алкиленовой или ариленовой группы, содержащей от 1 до 10 атомов углерода, необязательно замещенной углеродом или гетероатомами, германий, кремний или алкилфосфин; и m равно 1-7, предпочтительно 2-6, наиболее предпочтительно 2 или 3.

Изобретение далее относится к каталитической композиции для получения полиолефинов, которая включает один из указанных выше предшественников катализатора и совместно действующий активирующий сокатализатор.

Наконец, объектом изобретения является способ получения полиолефина или полиолефинов, который заключается в контактировании олефина или смеси олефинов в условиях реакции полимеризации с каталитической композицией, включающей один из указанных выше предшественников катализатора и совместно действующий активирующий сокатализатор.

Подробное описание изобретения В соответствии с настоящим изобретением заявляются комплексы переходных металлов, замещенные или незамещенные лигандами с -связями и гетероаллильными фрагментами, при этом указанные комплексы полезны в качестве предшественников катализаторов, применяемых при получении полиолефинов. Полиолефины, которые могут быть получены с использованием указанных катализаторов, включают, однако ими не ограничиваются, гомополимеры, сополимеры и тройные сополимеры этилена и высших альфа-олефинов, содержащих от 3 до 12 атомов углерода, таких как пропилен, 1-бутен, 1-пентен, 1-гексен, 4-метил-1-пентен и 1-октен, с плотностью в интервале приблизительно от 0,86 до приблизительно 0,97; полипропилена; этилен-пропиленовых смол; этилен-пропилендиеновых тройных сополимеров, и т.п.

Указанный катализатор получается по реакции предшественника катализатора, либо формулы I, либо формулы II, как это указано далее, с совместно действующим катализатором, таким как МАО или ММАО, с образованием катализатора.

где M обозначает переходный металл, преимущественно цирконий или гафний, L обозначает замещенный или незамещенный лиганд с -связями, координированный с M, предпочтительно лиганд циклопентадиенильного типа, Q может быть одинаковым или разным и его независимо выбирают из группы, включающей -O-, -NR-, -CR2- и -S-, преимущественно атома кислорода, Y обозначает атом углерода или атом серы, предпочтительно атом углерода, Z выбирают из группы, включающей -OR, -NR2, -CR3, -SR, -SiR3, -PR2 или -H, при условии, что если Q обозначает -NR-, то Z выбирают из группы, включающей -OR, -NR2, -SR, -SiR3, -PR2 или -H, Z предпочтительно выбирают из группы, включающей -OR, -CR3 и -NR2, n равно 1 или 2, W обозначает одновалентную анионную группу, если n равно 2, или W обозначает двухвалентную анионную группу, если n равно 1, предпочтительно W обозначает карбамат, карбоксилат или другой гетероаллильный фрагмент, описываемый комбинацией X, Y и Z, и R могут быть одинаковыми или различными и независимо выбираются из группы, содержащей углерод, кремний, азот, кислород и/или фосфор, при этом к заместителю L может присоединяться одна или большее количество групп R, предпочтительно R обозначает углеводородную группу, содержащую от 1 до 20 атомов углерода, наиболее предпочтительно - алкильную, циклоалкильную или арильную группу, при этом к заместителю L могут присоединяться одна или несколько из этих групп.

где M обозначает переходный металл, преимущественно цирконий или гафний, L обозначает замещенный или незамещенный лиганд с -связями, координированный с M, предпочтительно лиганд циклопентадиенильного типа, Q могут быть одинаковыми или разными и их независимо выбирают из группы, включающей -O-, NR-, -CR2- и -S-, предпочтительно атома кислорода, Y обозначает атом углерода или атом серы, предпочтительно атом углерода, Z выбирают из группы, включающей -OR, -NR2, -CR3, -SR, -SiR3, -PR2 или -H, при условии, что если Q обозначает -NR-, то Z выбирают из группы, включающей -OR, -NR2, -SR, -SiR3, -PR2 или -H, предпочтительно Z выбирают из группы, включающей -OR, -CR3 и -NR2, n равно 1 или 2, W обозначает одновалентную анионную группу, если n равно 2, или W обозначает двухвалентную анионную группу, если n равно 1; предпочтительно W обозначает карбамат, карбоксилат или другой гетероаллильный фрагмент, описываемый комбинацией X, Y и Z, R может быть одинаковым или различным и независимо обозначает группу, содержащую углерод, кремний, азот, кислород и/или фосфор, при этом одна или большее количество групп R может присоединяться к заместителю L, предпочтительно R обозначает углеводородную группу, содержащую от 1 до 20 атомов углерода, наиболее предпочтительно - алкильную, циклоалкильную или арильную группу, при этом к заместителю L могут присоединяться одна или несколько из них, B обозначает мостиковую группу, выбранную из алкиленовой или ариленовой группы, содержащей от 1 до 10 атомов углерода, необязательно замещенной углеродом или гетероатомами, германий, кремний или алкилфосфин; и m равно 1-7, предпочтительно 2-8, наиболее предпочтительно 2 или 3.

Вспомогательный заместитель, образованный с помощью Q, Y и Z, представляет собой незаряженный полидентантный лиганд, который оказывает электронное воздействие благодаря своей высокой полярности, аналогичной полярности группы Cp'. В наиболее предпочтительных вариантах осуществления настоящего изобретения используются дизамещенные карбаматы и карбоксилаты В наиболее предпочтительном варианте осуществления настоящего изобретения используют трис(диэтикарбамат)инденилцирконий.

Предшественник катализатора по настоящему изобретению может быть получен обычными способами; при этом метод получения не является критичным. В предпочтительном способе изготовления указанного катализатора источник лиганда циклопентадиенильного типа взаимодействует с соединением металла формулы M(NR2)4, где значения M и R указаны ранее, для присоединения лиганда циклопентадиенильного типа к соединению металла. Полученный продукт затем растворяют в инертном растворителе, таком как толуол, и гетерокуммулен, такой как, в данном случае, CO2, вступает во взаимодействие с растворенным продуктом, при этом вводится одна или большее количество связей M-NR2 с образованием, в данном случае, карбамата. Полученный предшественник вступает во взаимодействие с активатором, таким как алюминоксан, с образованием активного катализатора.

Другие примеры предшественников катализатора включают трис(пивалат)инденилцирконий или трис(п-толуат)инденилцирконий трис(пивалат)циркония, трис(п-толуат)инденилцирконий, трис(бензоат)инденилцирконий, трис(пивалат)(1-метилинденил)цирконий, трис(диэтилкарбамат)(2-метилинденил)цирконий, трис(пивалат) (метилциклопентадиенил)цирконий, трис(пивалат)циклопентадиенил, трис(бензоат)(пентаметилциклопентадиенил)цирконий.

Как указано выше, эти предшественники катализатора используют в сочетании с совместно действующим активирующим сокатализатором с образованием каталитических композиций для получения полиолефинов. Совместно действующими активирующими сокатализаторами предпочтительно являются следующие: (a) разветвленные или циклические олигомерные поли(углеводородалюминийоксиды), которые содержат повторяющиеся фрагменты общей формулы -(Al(R)O)-, где R обозначает алкильный радикал, содержащий от 1 до 12 атомов углерода, или арильный радикал, такой как замещенная или незамещенная фенильная или нафтильная группа, или (b) бораты, такие как трис(пентафторфенил)борат, триэтилтетра(пентафторфенил) борат и т.п.

Совместно действующим активирующим сокатализатором предпочтительно является разветвленный или циклический олигомерный поли(углеводородалюминийоксид). Наиболее предпочтительно совместно действующим активирующим катализатором является алюминоксан, такой как метилалюминоксан (МАО) или модифицированный метилалюминоксан (ММАО).

Алюминоксаны хорошо известны из области техники и представляют собой олигомерные линейные алкилалюминоксаны, которые, как полагают, могут быть в общем виде представлены следующей формулой: и олигомерные циклические алкилалюминоксаны формулы: где S равно 1-40, преимущественно 10-20, p равно 3-40, преимущественно 3-20; а R обозначает алкильную группу, содержащую от 1 до 12 атомов углерода, преимущественно метильный или арильный радикал, такой как замещенный или незамещенный фенильный или нафтильный радикал.

Алюминоксаны могут быть получены различными способами. В общем случае при синтезе алюминоксанов, например, из триметилалюминия и воды, получают смесь линейных и циклических алюминоксанов. Например, алкилалюминий можно обработать водой в виде содержащего влагу растворителя. Иначе алкилалюминий, такой как триметилалюминий, может контактировать с гидратом соли, такой как гидрат сульфата железа. Последний способ включает обработку разбавленного раствора триметилалюминия, например, в толуоле, суспензией гептагидрата сульфата железа. Синтез алюминоксанов можно также осуществить путем реакции производного триалкилалюминия или тетраалкилдиалюминоксана, содержащего группу C2 или высшие алкильные группы, с водой с образованием полиалкилалюминоксана, который затем взаимодействует с триметилалюминием. Модифицированные метилалюминоксаны, которые содержат как метильную группу, так и высшие алкильные группы, могут быть получены путем реакции полиалкилалюминоксана, содержащего группу C2 или высшие алкильные группы, с триметилалюминием, а затем с водой, как описывается, например, в Патенте США 5041584.

Количество катализатора, которое полезно использовать в каталитической композиции, можно варьировать в широких пределах. Обычно предпочтительно использовать каталитические композиции в концентрациях, достаточных, чтобы обеспечить по крайней мере около 0,000001, предпочтительно около 0,00001% вес. переходного металла в пересчете на вес мономера. Верхний предел процентного содержания определяется сочетанием активности катализатора и экономичности процесса. Если совместно действующий активирующий сокатализатор представляет собой разветвленный или циклический поли(углеводородалюминийоксид), то молярное отношение атомов алюминия, содержащихся в поли(углеводородалюминийоксиде), к атомам переходного металла, содержащегося в катализаторе по настоящему изобретению, обычно составляет в интервале приблизительно от 2:1 до приблизительно 100000:1, преимущественно приблизительно от 10:1 до приблизительно 10000:1 и наиболее предпочтительно в интервале приблизительно от 50:1 до приблизительно 2000:1.

Каталитическая композиция необязательно содержит один или большее количество других полиолефиновых катализаторов. Эти катализаторы включают, например, любые катализаторы Циглера-Натта, содержащие металл групп (IV(B), V(B) или VI(B) Периодической таблицы. Подходящие активаторы для катализаторов Циглера-Натта хорошо известны в данной области техники и также могут включаться в каталитическую композицию.

Каталитическая композиция может быть на носителе или без носителя. В случае каталитической композиции на носителе катализатором и совместно действующим активирующим сокатализатором можно пропитать носитель или нанести катализатор и совместно действующий активирующий сокатализатор на поверхность носителя, такого как диоксид кремния, оксид алюминия, дихлорид магния, полистирол, полиэтилен, полипропилен или поликарбонат, так что каталитическая композиция составляет от 0,01 до 90% вес. от общего веса каталитической композиции и носителя.

Носитель можно вначале пропитать раствором совместно действующего катализатора в растворе углеводорода, высушить от растворителя, а затем пропитать раствором металлического катализатора с последующим удалением растворителя. Иначе, основной носитель можно пропитать продуктом взаимодействия предшественника металлического катализатора и совместно действующего катализатора с последующим удалением растворителя. В любом случае получают взвесь в углеводороде активированного катализатора на носителе или порошок, не содержащий углеводородов, и эту взвесь используют, обычно без добавления активатора, в качестве катализатора полимеризации. Часто в реакционную смесь перед добавлением или одновременно с добавлением взвеси или порошка катализатора и совместно действующего катализатора вносят поглотитель примесей, чтобы максимально усилить его активность.

В качестве альтернативы носитель можно вначале нагреть, чтобы удалить гидроксилсодержащие примеси, а именно - воду, а затем провести реакцию оставшихся гидроксильных групп с веществами, связывающими ионы водорода, такими как углеводородные производные алюминия (триметилалюминий, триэтилалюминий, три-изо-бутилалюминий, ТНГА, МАО, ММАО и т.п.). Стадию нагревания можно опустить и провести прямое взаимодействие с углеводородными производными алюминия.

Было также обнаружено, что обработка каталитической системы аминными активаторами позволяет получить катализатор, обладающий большей активностью. При добавлении к предшественнику катализатора вначале амина, а затем - совместно действующего сокатализатора каталитическая система приобретает большую активность нежели в том случае, когда обработка амином не проводится или же когда проводят обработку амином каталитической системы, содержащей как предшественник катализатора, так и совместно действующий катализатор. В самом деле, в последнем случае обработка даже приводит в каталитической системе, активность которой несколько подавлена. Количество добавляемого амина составляет от 0,1 до 10 молей амина на моль переходного металла, преимущественно от 1 до 5 молей амина на моль переходного металла. Подходящие амины включают, однако ими не ограничиваются, этиламин, диэтиламин, триэтиламин, пиперидин и т.п.

Полимеризацию можно проводить в газовой фазе в перемешиваемом реакторе или в реакторе с псевдоожиженным слоем или же в реакторе в растворе или суспензии, используя хорошо известное из области техники оборудование. В общем случае температура полимеризации составляет приблизительно от 0oC до приблизительно 200oC при атмосферном давлении, и давлении меньше или больше атмосферного. Процесс полимеризации в суспензии или в растворе можно проводить при давлении больше или меньше атмосферного, и при температуре в интервале приблизительно от 40oC до приблизительно 110oC. В соответствии с настоящим изобретением предпочтительнее использовать полимеризацию в газовой фазе при давлении больше атмосферного в интервале от 6,89 кПа до 6,89 МПа, предпочтительно от 344,7 кПа до 2757,9 кПа и наиболее предпочтительно от 689,5 кПа до 2068,4 кПа, и при температуре в интервале от 30 до 130oC, предпочтительно от 65 до 110oC. Этилен, высшие альфа-олефины и необязательно другие мономеры контактируют с эффективным количеством каталитической композиции при температуре и давлении, достаточном для инициирования полимеризации. Процесс можно проводить в одном реакторе или в двух реакторах последовательно. Процесс проводят преимущественно в отсутствие веществ, отравляющих катализатор, поскольку эти соединения, как было показано, оказывают вредное воздействие на реакцию полимеризации. В качестве веществ, связывающих отравляющие катализатор соединения, с целью повышения активности катализатора, можно использовать металлоорганические соединения. Примерами указанных соединений являются алкильные соединения металлов, предпочтительно алкильные соединения алюминия и наиболее предпочтительно три-изо-бутилалюминий.

В процессе могут участвовать обычно применяемые вспомогательные соединения, при условии, что они не мешают действиям каталитической системы при получении нужного полиолефина. В качестве агента для передачи цепи может использоваться водород в количестве приблизительно до 10 молей водорода на моль общей загрузки мономера.

Если необходимо, то для контроля за температурой в системе в газовый поток может также вводиться любой газ, инертный по отношению к каталитической композиции и реагентам.

В общем случае мономеры альфа-олефинов содержат от 2 до 12 атомов углерода и обычно включают, однако ими не ограничиваются, этилен, пропилен, 1-бутен, 1-пентен, 4-метил-1-пентен, 1-гексен, стирол и т.п. Предпочтительными диенами, которые могут необязательно полимеризоваться совместно с альфа-олефинами, являются несопряженные диены. Указанные несопряженные диеновые мономеры могут быть диенами с прямой цепью, разветвленной цепью или же они могут быть циклическими диенами, содержащими приблизительно от 5 до приблизительно 15 атомов углерода. Наиболее предпочтительными диенами являются 1,5-гексадиен, 5-винил-2-норборнен, 1,7-октадиен и т.п.

Предпочтительными ароматическими соединениями, содержащими винильные группы, которые необязательно могут полимеризоваться вместе с альфа-олефинами, являются стирол и замещенные стиролы.

Полиолефины, получаемые в соответствии с настоящим изобретением, могут представлять собой полимеры, образованные одним или несколькими олефинами. Полиолефины могут быть также получены из диолефинов, таких как дивинилбензол, изопрен, линейные углеводороды с концевыми диолефиновыми группами, такие как 1,7-октадиен, или из олефинов, содержащих одну или несколько напряженных двойных связей, таких как бицикло(2.2.1)гепта-2,5-диен, 5-этилиден-2-норборнен, 5-винил-2-норборнен (эндо- и экзо-формы или их смеси) и нормальные моноолефины.

Как часть каталитической системы, с целью модифицирования скоростей реакции, в реакционную зону могут вводиться каталитические добавки, такие как основания Льюиса. Основаниями Льюиса, которые пригодны для использования по настоящему изобретению и которые, в случае необходимости, способны полностью обратимо снижать активность реакции полимеризации, в том числе практически полностью останавливать реакцию, включают простые эфиры, спирты, кетоны, альдегиды, карбоновые кислоты, сложные эфиры, карбонаты, фосфины, фосфиноксиды, фосфаты, фосфиты, амины, амиды, нитрилы, алкоксисиланы, алкоксиды алюминия, воду, кислород, оксиды азота и т.п.

Основание Льюиса может вводиться в реакцию полимеризации различными способами в зависимости от применяемого процесса полимеризации и вида основания Льюиса. Оно может добавляться в чистом виде или же его можно добавить в виде раствора. В зависимости от растворимости основания Льюиса подходящие разбавители могут включать мономер или углеводород, такой как толуол или изо-пентан.

Количество основания Льюиса, которое используют для снижения активности реакции полимеризации олефина в каталитической системе гетероаллил/алюминоксан, сильно зависит от ряда факторов. Эти факторы включают конкретное используемое основание Льюиса, конкретный присутствующий в системе предшественник катализатора, конкретное присутствующее в системе алюминоксановое соединение, температуру реакции, молярное отношение алюминоксана к предшественнику катализатора, конкретные присутствующие в системе олефины и концентрацию применяемых в реакции полимеризации олефинов. В общем случае, если для снижения активности реакции полимеризации используют многофункциональные основания Льюиса, степень снижения полимеризационной активности будет больше, чем снижение полимеризационной активности, которое наблюдается при использовании эквивалентного количества монофункционального основания Льюиса. Количество основания Льюиса, необходимое для снижения активности реакции полимеризации, будет меньше, если меньше отношение алюминоксан/предшественник катализатора.

Системы для проведения реакций газофазных полимеризаций олефинов, в которых применимо настоящее изобретение, включают реакционный сосуд, в который добавляют олефиновый мономер и компоненты катализатора и который содержит слой, сформированный образующимися частицами полиолефина. Настоящее изобретение не ограничивается конкретным типом газофазных реакционных систем. В наиболее общем виде обычный процесс получения синтетических смол в псевдоожиженном слое проводят, непрерывно пропуская через реактор с псевдоожиженным слоем при условиях реакции и в присутствии катализатора поток газа, содержащий один или несколько мономеров, со скоростью, достаточной для поддержания слоя частиц во взвешенном состоянии. Газовый поток, содержащий непрореагировавший газообразный мономер, постоянно удаляется из реактора, подвергается сжатию, охлаждается и вновь возвращается в реактор. Продукт извлекают из реактора и выделяют полимер, а в рециклируемый поток подают свежую порцию мономера.

Одна из реакционных систем жидкофазной полимеризации олефинов, в которой полезно использовать настоящее изобретение, описывается в Патенте США 3324095. Реакционные системы жидкофазной полимеризации олефинов обычно включают реактор, в который могут добавляться олефиновый мономер и компоненты катализатора и который содержит жидкую реакционную среду для растворения или суспендирования полиолефина. Жидкая среда может представлять собой избыток жидкого мономера или инертный углеводород, который не активен в условиях проведения реакции полимеризации. Хотя выбранный углеводород может не являться растворителем для катализатора или получаемых в процессе реакции полимеров, обычно он служит растворителем для мономеров, применяемых в реакции полимеризации. Среди инертных жидких углеводородов, пригодных для указанной цели, можно назвать изо-пентан, гексан, циклогексан, гептан, бензол, толуол и т. п. Настоящее изобретение не ограничивается конкретными типами реакционных систем с растворами, суспензиями или с избытком жидкого мономера. В наиболее общем виде обычный жидкофазный процесс получения синтетических смол проводят, непрерывно добавляя в реактор, в условиях проведения реакции и в присутствии катализатора, один или несколько мономеров в количестве, достаточном для поддержания реакционной среды в жидком состоянии. Контакт между олефиновым мономером и катализатором должен поддерживаться путем непрерывного перемешивания или встряхивания реакционной смеси. Реакционная среда, содержащая полиолефиновый продукт и непрореагировавший газообразный мономер, постоянно выводится из реактора. Полиолефиновый продукт отделяют, а затем непрореагировавший мономер и жидкость вновь возвращают в реактор.

Изобретение далее относится к каталитической композиции для получения полиолефинов, которая включает указанные выше катализаторы и совместно действующие активирующие сокатализаторы.

Наконец, настоящее изобретение относится к способу получения полиолефинов, который включает контактирование в условиях реакции полимеризации этилена высших альфа-олефинов и их смесей с каталитической композицией, содержащей один из указанных выше катализаторов и совместно действующих активирующих сокатализаторов, также объектом изобретения являются полиолефины, в частности полиэтилен, образующиеся в указанном процессе.

Поскольку объем притязаний по настоящему изобретению определен в формуле изобретения, то приведенные ниже примеры поясняют некоторые аспекты настоящего изобретения, в частности способы их оценки. Указанные примеры приводятся лишь в качестве иллюстрации и не они, а формула изобретения характеризует настоящее изобретение. Все части и проценты, если специально не указано, приведены в весовых единицах.

Глоссарий: Плотность в г/см.куб определяют в соответствии с методикой ASTM 1505, в соответствии с процедурой С ASTM D-1928, путем изготовления диска. Диск изготавливают и отжигают при температуре 100oC для получения равновесного кристаллического состояния, а затем проводят определения плотности в колонне с градиентом плотности.

МАО представляет собой раствор метилалюминоксана в толуоле, приблизительно с 1,8 молярной концентрацией по алюминию, который получают от компании "Ethyl Corporation" (Батон-Руж, штат Луизиана).

ТЭА обозначает триэтилалюминий.

ТИБА обозначает три-изо-бутилалюминий.

ТНБА обозначает три(н-бутил)алюминий.

ОТР обозначает отношение текучести расплава, которое равно отношению индекса текучести к индексу расплава. Он связан с молекулярно-весовым распределением полимера.

UP обозначает индекс расплава, оцениваемый в граммах за период времени 10 минут, который определяют в соответствии с условиями E методики ASTM D-1238 при температуре 190oC.

UT обозначает индекс текучести, оцениваемый в граммах за период времени 10 минут, который определяют в соответствии с условиями F методики ASTM D-1238, при этом количество применяемого при проведении испытаний вещества в десять раз превышает количество, используемое для определения индекса плавления.

Методики: Вискозиметрия по размеру молекул для определения длинноцепных боковых цепей.

Молекулы полиэтилена с длинноцепными боковыми цепями имеют в разбавленном растворе более компактную конформационную упаковку, чем линейные молекулы полиэтилена с той же молекулярной массой. Таким образом, первый тип молекул имеет меньшие предельные величины вязкости, чем второй тип молекул, поскольку эти молекулы имеют меньший динамический размер. Теоретические соотношения позволяют рассчитать статистику распределения длинноцепных боковых цепей из отношения предельной величины вязкости разветвленного полимера к предельной величине вязкости его линейной части. См., например, публикацию F. M. Mirabella, Jr., L.Wild, "Determination of Long-Chain Branching Distributions of Polyethylenes", Polymer Characterization, Amer. Chem. Soc. Symp. Ser. 227, 190, p. 23. Таким образом, измеряя предельную величину вязкости полиэтилена, содержащего длинноцепные боковые цепи как функцию молекулярного веса и сравнивая результаты с соответствующими данными, определенными для того же количества линейного полиэтилена, можно оценить количество длинноцепных боковых цепей в разветвленном полиэтилене.

Определение молекулярного веса, молекулярно-весового распределения и длинноцепных боковых цепей Используют жидкостный хроматограф Waters 150-C, снабженный колонками для гель-проникающей хроматографии для определения молекулярного веса, и вискозиметр Viscotek 150R для определения вязкости. Гель-проникающая хроматография позволяет определить молекулярно-весовое распределение образцов полиэтилена, а вискозиметр, снабженный инфракрасным детектором для гель-проникающей хроматографии, определяет концентрацию и вязкость. Для эксклюзионной хро