Катод прямого накала

Реферат

 

Катод прямого накала содержит пористую таблетку, пропитанную электронно-эмиссионным материалом и расположенную в чашеобразном контейнере, металлический элемент, приваренный к основанию контейнера, и нить накала, расположенную между контейнером и металлическим элементом. Технический результат заключается в повышении долговечности катода и достигается за счет ограничения термоэлектронной эмиссии с основания и сторон таблетки. 15 з.п. ф-лы, 5 ил.

Предпосылки к созданию изобретения Изобретение касается конструкции катода прямого накала для электронно-лучевой трубки (ЭЛТ) и, в частности, конструкции диспенсерного катода прямого накала, предназначенного для использования в электронной пушке цветной ЭЛТ.

Катоды поглощают тепловую энергию и излучают термоэлектроны, и подразделяются, в основном, на катоды прямого накала и катоды косвенного накала в зависимости от способа нагрева материала эмитирующей поверхности. В катоде прямого накала нить накала и эмитирующая поверхность находятся в непосредственном контакте друг с другом, тогда как в катоде косвенного накала они разделены.

Катоды прямого накала чаще всего применяются в электронных пушках таких малых ЭЛТ, как ЭЛТ видоискателей в видеокамерах, а при прямом соединении с нитью накала и использовании металлического основания, поверхность которого покрыта электронно-эмиссионным материалом, или таблетки, пропитанной катодным материалом, они применяются в электронных пушках больших ЭЛТ для телевизионных приемников или мониторов ЭВМ. Автором настоящей заявки была разработана пористая таблетка (заявка на патент США 08/120502), изображенная на фиг. 1. Одна нить накала 102 проникает в пористую таблетку 101, пропитанную электронно-эмиссионным материалом. Альтернативно, две такие нити накала привариваются непосредственно к сторонам пористой таблетки.

Автор данного изобретения также подал заявку на патент США 08/429529, раскрывающую конструкцию катода, в которой опорная конструкция таблетки укреплена самими нитями накала. При этом нити накала приварены (или проникают), по меньшей мере, в трех точках на наружных сторонах пористой таблетки, пропитанной электронно-эмиссионным материалом.

Описанным выше катодам прямого накала требуется очень короткий интервал времени для начала термоэлектронной эмиссии после подачи тока, и они обеспечивают термоэлектронную эмиссию с высокой плотностью, поскольку пористая таблетка нагревается непосредственно током нити накала при контакте нити накала с ее корпусом. Однако при этом наблюдаются потери термоэлектронно-эмиссионного материала, так как термоэлектронная эмиссия происходит со всей поверхности таблетки (включая ее стороны), и термоэлектронно-эмиссионный материал, испаряющийся с таблетки на нить накала, может вызвать ее охрупчивание. Кроме того, процесс присоединения нити к таблетке (посредством сварки или пропускания нити через таблетку) трудоемок для практического осуществления, что снижает производительность.

Учитывая это, автор разработал катод прямого накала с усовершенствованной конструкцией, изображенной на фиг. 2. При этом нить накала 210 закреплена на металлическом элементе 220, расположенном под таблеткой 200, пропитанной электронно-эмиссионным материалом. Таким образом, поскольку металлический элемент 220 покрывает основание таблетки 200, термоэлектронная эмиссия с основания таблетки 200 эффективно блокируется.

Однако незначительная часть термоэлектронов выходит через мелкие зазоры между таблеткой 200 и металлическим элементом 220. Кроме того, поскольку стороны таблетки также являются термоэмиссионными поверхностями, невозможно достичь непрерывной и равномерной эмиссии термоэлектронов. Долговечность таблетки 200 сокращается из-за быстрого расхода электронно-эмиссионного материала, и, как и в описанной выше конструкции, электронно-эмиссионный материал, испаряющийся со сторон таблетки 200, может повышать хрупкость нити накала.

Сущность изобретения Цель данного изобретения - решить перечисленные выше проблемы, создав катод прямого накала, в котором ограничена эмиссия с основания и сторон таблетки.

Еще одна цель изобретения состоит в создании высокоэффективного катода прямого накала, обладающего повышенной стабильностью и более высокой производительностью.

Для достижения данных целей предлагается катод прямого накала, содержащий пористую таблетку, пропитанную электронно-эмиссионным материалом; чашеобразный контейнер, удерживающий пористую таблетку; металлический элемент, приваренный к основанию контейнера, и нить накала, расположенную между контейнером и металлическим элементом.

Краткое описание чертежей Перечисленные выше цели и преимущества данного изобретения будут более очевидны из детального описания предпочтительного варианта со ссылкой на прилагаемые чертежи, на которых на фиг. 1 - перспективный вид известного прямонакального катода; на фиг. 2 - вид в сечении, иллюстрирующий другую известную конструкцию прямонакального катода; на фиг. 3 - перспективный схематический вид предлагаемого катода прямого накала; на фиг. 4 - перспективное изображение прямонакального катода по фиг. 3 в разобранном виде и на фиг. 5 - вид в сечении, иллюстрирующий катод прямого накала по фиг. 3.

Подробное описание изобретения Как изображено на фиг. 3 - 5, пористая таблетка 500, выполненная из металла с высокой точкой плавления, пропитана электронно-эмиссионным материалом. Пористая таблетка 500 вставлена в чашеобразный контейнер 510 для защиты таблетки 500, охватывающий ее стороны и основание. Под контейнером 510 расположена нить накала 600. Под нитью накала 600 имеется металлический элемент 520, предназначенный для закрепления нити накала на основании контейнера 510. Нить накала 600 и металлический элемент 520 прикреплены к основанию контейнера 510 посредством сварки.

При этом пористая таблетка 500 выполнена из вольфрама (W), рутения (Ru), молибдена (Mo), никеля (Ni) и/или тантала (Ta), а материал, используемый для контейнера 510 и металлического элемента 520, включает молибден (Mo), вольфрам (W) и/или тантал (Ta).

Согласно настоящему изобретению контейнер 510, заключающий в себя таблетку 500, имеет внутренний диаметр 0,50 - 2,00 мм, а толщина контейнера 510 составляет 0,02 - 0,50 мм. Контейнер 510 может иметь форму цилиндрической, прямоугольной или многоугольной колонки. Предпочтительным материалом для нити накала 600 является Re-сплав, основным компонентом которого является вольфрам или молибден. Предпочтительно также, чтобы диаметр нити накала составлял 0,02 - 0,50 мм. Металлический элемент 520 имеет форму, соответствующую форме основания контейнера 510, с предпочтительными диаметром и толщиной, соответствующими тем же параметрам контейнера.

Для сварки контейнера 510 с металлическим элементом 520 может применяться сварка электросопротивлением, лазерная сварка, дуговая сварка или плазменная сварка. Для достижения более эффективного нагрева таблетки предпочтительно, чтобы две или более нити накала располагались перекрестно или в радиальном направлении.

Конструкция катода прямого накала, выполненного согласно настоящему изобретению, обладает следующими преимуществами.

Во-первых, благодаря тому, что таблетка, пропитанная электронно-эмиссионным материалом, удерживается в контейнере и защищена им, можно предотвратить окисление электронно-эмиссионного материала за счет тепла, выделяющегося во время сварки контейнера с металлическим элементом.

Во-вторых, поскольку нить накала приварена к контейнеру, заключающему в себе таблетку, можно повысить прочность связи между таблеткой и нитью накала.

В-третьих, благодаря тому, что таблетка удерживается в контейнере, в котором открыта только верхняя сторона, сводится к минимуму испарение термоэлектронно-эмиссионного материала, что позволяет избежать уменьшения долговечности катода.

В-четвертых, ввиду того, что электронно-эмиссионный материал испаряется частично с верхней стороны таблетки, можно избежать явления охрупчивания нити накала из-за присоединения электронно-эмиссионного материала к нити накала.

Предлагаемый катод может быть использован в цветных ЭЛТ для телевизионных приемников с большим экраном и мониторов ЭВМ, а также в небольших черно-белых ЭЛТ.

Формула изобретения

1. Катод прямого накала, содержащий пористую таблетку, пропитанную электронно-эмиссионным материалом, отличающийся тем, что содержит чашеобразный контейнер, удерживающий пористую таблетку, металлический элемент, приваренный к основанию контейнера, и нить накала, разложенную между контейнером и металлическим элементом.

2. Катод по п.1, отличающийся тем, что нить накала состоит из нескольких нитей, расположенных в радиальном направлении.

3. Катод по п.1, отличающийся тем, что таблетка выполнена при использовании, по меньшей мере, одного металла, выбранного из группы, включающей в себя вольфрам (W), рутений (Ru), молибден (Мо), никель (Ni) и тантал (Та).

4. Катод по п.1, отличающийся тем, что основным компонентом нити накала является вольфрам (W), а суб-компонентом - ренит (Re).

5. Катод по п.1, отличающийся тем, что диаметр нити накала составляет 0,02-0,50 мм.

6. Катод по п.2, отличающийся тем, что диаметр нити накала составляет 0,02-0,50 мм.

7. Катод по п.1, отличающийся тем, что контейнер выполнен при использовании, по меньшей мере, одного металла, выбранного из группы, включающей в себя молибден (Мо), вольфрам (W) и тантал (Та).

8. Катод по п.2, отличающийся тем, что контейнер выполнен при использовании, по меньшей мере, одного металла, выбранного из группы, включающей в себя молибден (Мо), вольфрам (W) и тантал (Та).

9. Катод по п. 7, отличающийся тем, что толщина контейнера составляет 0,02-0,50 мм.

10. Катод по п.8, отличающийся тем, что толщина контейнера составляет 0,02-0,50 мм.

11. Катод по п.1, отличающийся тем, что металлический элемент выполнен при использовании, по меньшей мере, одного металла, выбранного из группы, включающей в себя молибден (Мо), вольфрам (W) и тантал (Та).

12. Катод по п.2, отличающийся тем, что контейнер выполнен при использовании, по меньшей мере, одного металла, выбранного из группы, включающей в себя молибден (Мо), вольфрам (W) и тантал (Та).

13. Катод по п.11, отличающийся тем, что диаметр металлического элемента составляет 0,50-2,00 мм, а его толщина 0,02-5,00 мм.

14. Катод по п.12, отличающийся тем, что диаметр металлического элемента составляет 0,50-2,00 мм, а его толщина 0,02-5,00 мм.

15. Катод по п.1, отличающийся тем, что таблетка имеет цилиндрическую форму.

16. Катод по п.1, отличающийся тем, что таблетка имеет форму многогранного столбика.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5